
870 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Efficient Segmentation of Arabic Handwritten

Characters Using Structural Features

Mazen Bahashwan, Syed Abu-Bakar, and Usman Sheikh

Department of Electronics and Computer Engineering, Universiti Teknologi Malaysia, Malaysia

Abstract: Handwriting recognition is an important field as it has many practical applications such as for bank cheque

processing, post office address processing and zip code recognition. Most applications are developed exclusively for Latin

characters. However, despite tremendous effort by researchers in the past three decades, Arabic handwriting recognition

accuracy remains low because of low efficiency in determining the correct segmentation points. This paper presents an

approach for character segmentation of unconstrained handwritten Arabic words. First, we seek all possible character

segmentation points based on structural features. Next, we develop a novel technique to create several paths for each possible

segmentation point. These paths are used in differentiating between different types of segmentation points. Finally, we use

heuristic rules and neural networks, utilizing the information related to segmentation points, to select the correct segmentation

points. For comparison, we applied our method on IESK-arDB and IFN/ENIT databases, in which we achieved a success rate

of 91.6% and 90.5% respectively.

Keywords: Arabic handwriting, character segmentation and structural features.

Received December 23, 2014; accepted August 26, 2015

1. Introduction

Automatic handwriting recognition has many

applications, such as for bank cheque processing,

address and zip code recognition on envelopes, and

handwriting analysis [9, 13, 25]. As a result, studies

had been conducted on handwriting recognition for

many languages such as English, Chinese, Japanese,

and Arabic, among others [4, 21]. This paper focuses

on Arabic text recognition. The Arabic language is an

official language in over 25 countries and is spoken by

approximately 234 million people [22]. Arabic

characters are similar to characters in other languages

such as Jawi, Farsi, Urdu, and Kardi [8, 24].

Approximately 7 to 10 million manuscripts were

written in Arabic script between the seventh and

fourteenth centuries [17]. Hence, a high-performance

offline Arabic script recognition is needed for certain

tasks, such as preservation of old manuscripts.

A large gap exists between the research on Latin

script and the research on Arabic script. Among the

reasons for this gap are lack of adequate support in

terms of financial funding, coordination, and other

utilities, such as comprehensive Arabic text databases

and dictionaries [14]. This situation could also be

attributed to difficulties associated with characteristics

of Arabic script, which will be described in Section 3.

The recognition of unconstrained cursive Arabic

handwriting is still low because of poor character

segmentation. This finding is an indication that

segmentation plays a vital role in the character

recognition process [2, 18].

Segmentation approaches can be divided into two

categories: holistic approach and analytical approach

[27]. Systems that are based on the holistic approach

(also called as global approach) try to recognize entire

words without splitting them into individual characters.

The disadvantage of the holistic approach is that it

needs a large dictionary (lexicon), which, in turn,

makes the searching process costly [1]. On the other

hand, systems based on the analytical approach try to

segment a word into characters or graphemes (part of

the character) and does not require the use of a large

dictionary. In this work, the analytical approach is

adopted. The technique consists of three stages:

preprocessing, generating candidate segmentation

points, refining and verifying all candidate points.

This paper is organized into six sections. Section 2

explains some works related to Arabic character

segmentation. Section 3 illustrates the characteristics

of Arabic language scripts. Section 4 describes our

proposed method to generate the segmentation points,

segmentation paths and the process of refining and

verifying the segmentation points. Section 5 presents

the results and discussion. Finally, we conclude our

paper in Section 6 and suggest several directions for

future works.

2. Related Works

For the last few decades, an increasing number of

empirical studies have been conducted on handwriting

recognition. However, findings on recognizing

unconstrained cursive handwriting remain limited. One

of the major reasons for this lack of findings can be

attributed to poor character segmentation [18]. The

Efficient Segmentation of Arabic Handwritten Characters Using Structural Features 871

suitable features for character segmentation can be in

the form of segmentation points such as local minima

[5], branch points, cross points, loop points [11], or

pen thickness [20]. These features may not be detected

in all segmentation points because some of them might

be lost during the writing or the preprocessing stage.

Bouafif et al. [7] used Harris corner method to

detect possible segmentation points in words, and only

corners that lie between 5 pixels above and below the

baseline were taken as valid segmentation points.

Obviously, many valid segmentation points that were

outside this range were ignored. The main

disadvantage of this technique is its high dependency

on the baseline.

 Elnagar and Bentrcia [10] used six agents and a

baseline for detecting segmentation points. They
mentioned some limitations of their algorithm, such as

missing segmentation points due to weakness in agents

and dependency on the endpoints, branch points, and

cross points as features. Moreover, the detection of the

agents was error prone because of its high dependency

on the accuracy of the baseline detection.

Al-Hamad introduced an algorithm for

segmentation and validation of Arabic handwritten

words [3]. His method involved three major steps.

First, segmentation points are obtained from a

modified vertical histogram of a thinned word–image.

Then, the initial segmentation points are validated by

using a neural-based segmentation point validation

scheme. Finally, the fusion confidence value is

obtained to validate segmentation points. According to

Al-Hamad [2], the modified vertical histogram has a

limited ability to identify some characters, such as the

character baa (ب) and similar character shapes.

Moreover, such characters are not detected as

characters because they look like ligatures in the

histogram. The main limitation is the presence of

numerous incorrect local minima and maxima, which

often result in a large number of incorrect ligatures.

Elzobi et al. [11] used a histogram to detect possible

segmentation points and applied heuristic rules to

refine the result. They reported the occurrence of

missed segmentation points because of the overlapping

characters and over-segmentation points in characters

such as seen (س) and sheen (ش). In addition, the rules

cause missed and over-segmentation points because of

the dependency on cross points, branches, and loop

points.

Thus, we propose a new segmentation method

based on using a corner detector, branch points, and

cross points. We also propose a novel verification

technique of the segmentation points using heuristic

rules and neural network.

3. Characteristics of Arabic script

The Arabic script consists of 28 characters and is

written from right to left. Each character has at least

two to four shapes that depend on the position of the

character within the word. In addition, a single word

may consist of one or more than one sub words. This is

because the following characters cannot be joined

 from the left side. More than half of the (و,ز,ر,ذ,د,ا)

characters contain one to three dots. These dots may be

at the top, middle, or bottom of the character. These

dots distinguish between characters that may otherwise

have the same shape. Usually, the characters are

connected horizontally, but in some cases, characters

may be connected vertically. Overlapping normally

occurs between the sub-words or between the sub-

word and characters in the same word, which are

mostly found in the vertical direction.

4. Proposed Method

The general block diagram of the proposed method is

shown in Figure 1. Initially, an image will be loaded

into the system followed by some operations at the

preprocessing stage before the segmentation stage is

initiated.

BinarizationBinarization
Filtering &

Smoothing

Filtering &

Smoothing
Thinning Thinning

Identifying word

components

Identifying word

components
Removing

overlapping

Removing

overlapping

Remove incorrect segmentation points by

heuristic rules

Remove incorrect segmentation points by

heuristic rules

Pre-processing Stage

Detect possible

segmentation points:

· Branch points

· Cross points

· Corner points

Segmentation Stage

Feature extraction for

corner points,branch

and cross points

Feature extraction for

corner points,branch

and cross points

Classify the branch and

cross point into correct or

incorrect segmentation

points by neural network

Classify the branch and

cross point into correct or

incorrect segmentation

points by neural network

Classify the corner

point into correct or

incorrect segmentation

points by neural network

Classify the corner

point into correct or

incorrect segmentation

points by neural network

Figure 1. Block diagram of character segmentation.

4.1. Preprocessing

The operations applied in the preprocessing stage are

for general images. However, all the images in the

database we used, i.e., the IESK-arDB and IFN/ENIT

datasets, underwent binarization, smoothing, dilation

operation.

Generally, an Arabic word contains one or more

main components. The main component contains a

single character or some connected characters. More

than half of the characters in the Arabic script have a

secondary component such as a dot and hamza, and the

size of the secondary component is usually very small

compared with the main component and is quite far

from the center of the main component, as shown in

Figure 2. In this figure, the main component is

represented by a rectangular box, while the secondary

component is represented by an ellipse.

Baseline detection is a method that is used to

872 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

identify word components. The baseline corresponds to

a simple horizontal projection that contains the

maximum number of foreground pixel count. A box is

first drawn in each connected component, and then the

main connected component is intersected with the

baseline (as depicted in Figure 2).

Figure 2. Arabic word that contains two main components and two

secondary components with a baseline drawn.

Each secondary component is assigned to one main

component. If the secondary components are inside,

above, or below the main component without

overlapping, then they will be assigned to that main

component. In case of overlapping between two main

components, the distance will be measured depending

on the location of the secondary components.

According to this distance, the secondary components

are assigned to the nearest main components [11].

Finally, we apply thinning operation based on the

approach used by Zhang and Suen [28]. This method

has been widely used in previous researches [15, 16,

19]. Figure 3 shows an example of the thinning

operation.

a) original binary image. b) result after the thinning process.

Figure 3. An example of Zhang and Suen thinning algorithm.

4.2. Candidate Segmentation Points

Usually, the connection point between two characters

is considered a branch point or a cross point. However,

the connection point (branch point or cross point)

might not be present due to the writing style or as a

result of the preprocessing operation. The missed

connection point can still be captured using a corner

detector as shown in Figure 4. Therefore, to avoid

missing the connection point, our approach uses the

corner points as the candidate segmentation points.

a) due to preprocessing stage. b) due to writing style; these

missing points are indicated with

small squares.

Figure 4. Missing segmentation points.

In our work, we adopted the contour-based detector

method with the Chord-to-Point Distance

Accumulation (CPDA), which is found in [6] to detect

the corners as candidate segmentation points. CPDA

discrete curvature estimation is less sensitive to local

variations and noise on the curve and it does not use

any derivatives. We generate short curves by

removing branch points and the loop points from the

thinned word. We then apply the corner detector to

each curve separately.

To detect the corner in the curve using the CPDA

[6], the curve is first smoothened, and then three

chord-lengths (L1=10, L2=20, L3=30) are used to

estimate the curvature value at each point n in the

curve. The CPDA curvatures (h1(k), h2(k),h3(k)) that

correspond to the three chord lengths are then

computed by using Equation (1). The CPDA discrete

curvature hL(k) at the point K with the chord length L

is calculated by taking the summation of all

perpendicular distances from the point K to the chord

length at all possible chord length locations.

1k

1Lkj

k,jL dkh (1)

Then, the CPDA discrete curvature for each chord

length is normalized by using Equation (2)

311

max
)(' j & nk for ,

h

kh
kh

j

j
j (2)

All these curvatures are then multiplied to produce a

single value, which is called the curvature product,

H(k), as given in Equation (3).

 nk1 for khkhkhkH jjj ,.. '''

 (3)

The curvature product curve is then smoothened, and

the candidate corners are located by detecting the

maxima H(k). Finally, our proposed method adopts the

algorithm in [12] to measure the angle at each

candidate corner point by using two tangent lines.

4.3. Construction of the Segmentation Path

In this study, we propose a segmentation path based

method to extract features which are related to

segmentation points. The proposed segmentation path

is a curve that starts from a point on the thinned word

to one of the three ends: either to the top boundary of

the image, bottom boundary of the image, or back to

the start point for a closed-loop path. Before creating a

path, a preprocessing step is applied on the background

of the image. This preprocessing step will change the

value of the background pixels based on some

conditions. We use four different values of base 2 (2
n
),

where n is an integer, to assign the background values.

These values have the following characteristics: 1)

summation of any two values from a set of four values

will always be different from the sum of the remaining

values; 2) summation of any three out of a set of four

values will always be different from the last remaining

value. These characteristics will ensure the creation of

a unique track path.

Efficient Segmentation of Arabic Handwritten Characters Using Structural Features 873

These four numbers are arranged in decreasing

order from the highest to the lowest with the following

labels: Pt, Pb, Pr, and Pl. The descending arrangement

from highest to lowest value is used to determine the

track path of either as top, bottom, right, or left,

respectively.

We then scan the image column by column from top

to bottom. During the scanning process, all background

pixels (255)
1
 are replaced by Pt until foreground pixel

(0) is reached or until the bottom of the image is

reached. This condition can be formulated as follows;

Let AMxN be an image, and aij ϵ A denotes the pixel

value of row i and column j. The image is first scanned

from top to bottom in each column separately.

2550255255

00

255255

,1,1

,1,1

jijiij

ij

jjiij

ij

a or a and a if

a if

a or Pta and a if Pt

a (4)

Then, the output image from the previous step is

scanned from the bottom to the top, and all pixels with

the value of 255 are replaced with Pb. The scan

continues until the foreground pixel (0) or Pt in the

image is reached. This can be described as follows:

25502552

00

255255

,1,1

,,1

jijiij

ij

ij

jmijiij

ij

a or a & a if 55

Pta if Pt

a if

a or Pba & a if Pb

a (5)

The procedure is repeated from right to left, with

pixels with a value of 255 being replaced with Pr. This

condition is described as follows:

25502552

255

00

1,1,

1,1,1,

jijiij

jijijiij

ij

ij

ij

ij

a or a & a if 55

 Pra ro Pba or Pta & a if Pr

Pta if Pt

a if

 Pba if Pb

a (6)

Finally, the image is scanned from left to right, with

pixels with a value of 255 being replaced with Pl until

the foreground pixel (0) is reached. This step is

expressed as follows:

 a or a & a if

 Pla or Pba or Pta & a if Pl

 Pr a if Pr

Pta if Pt

a if

 Pba if Pb

a

jijiij

jijijiij

ij

ij

ij

ij

ij

2550255255

255

00

1,1,

1,1,1,

 (7)

For easy explanation, the converted background pixels

are referred to as the “guiding pixels”.

Once the scanning procedures are done, the

background pixels will have either one of these

guiding pixel values (255, Pt, Pb, Pr, Pl), and they are

1 In this implementation, we use the value of 255 instead of 1 for

the binary image.

grouped into five classes that define their respective

direction path, as shown in Table 1.

Table 1. Path direction based on guiding pixel value

Background pixel value Path direction

Pt Top-bound

Pb Bottom-bound

Pr Right-bound

Pl Left-bound

255 Move with reference point

To find the starting point for each path, a 3x3

window is used with the candidate segmentation point

placed at its center. An anticlockwise scanning

mechanism is performed starting from the upper right

corner of the window. The scanning will continue until

all the guiding pixels that surround the foreground

pixels are grouped together. Depending on the type of

the segmentation point (i.e., corner point, branch point,

or cross point), two, three, or four groups can exist, as

shown in Figure 5.

a) Corner point.

b) Branch point.

c) Cross point.

Figure 5. Dashed boxes represent groups in (a) corner point-2

groups, (b) branch point-3 groups and (c) cross point-4 groups.

The starting point of the path for each group

(Stp_grp) will be the last guiding pixel before the

foreground pixel (reference point), with respect to the

anticlockwise scanning mechanism. Initially, the

reference point (Ref_grp) refers to the first foreground

pixel after the starting point in the anticlockwise

direction. An example for the branch point case is

shown in Figure 6.

a) Branch point–at the center of the
window.

Group 2

Group 3

Group 1

b) Number of available groups.

Stp_grp_2

Stp_grp_1

Ref_grp_1

Ref_grp_3

Ref_grp_2

Stp_grp_3

c) Location of the respective start and reference points for tracing each

path. Stp_grp is the start point and Ref_grp is the reference point in the
group respectively.

Figure 6. An example of a branch point with its related reference

points and starting points.

We begin tracing in each path from the start point.

The next move is determined by checking the value of

the current pixel. If it is equal to one of these guiding

pixel values (Pt, Pb, Pr, Pl), then the path moves

according to the direction specified by these values

(refer to Table 1).Otherwise, if it is equal to 255, then

the path will move according to the reference point,

and the current reference point will be changed. The

874 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

reference point has four possible positions with respect

to the current path point, as shown in Figure 7. To

determine the next step for the path, the location of the

next reference point needs to be determined. First, the

starting scanning point (marked as x in Figure 7) needs

to be located. Equation 8 is used to determine the

initial scanning.

 refcpcpsc

refcpcpsc

xxyy

yyxx

 (8)

where xsc and ysc are the coordinates for the initial

scanning point, xcp and ycp are the coordinates of the

current path point, and xref and yref are the coordinates

of the current reference point. Here, we follow the

convention of the right-hand rule for the coordinates

system. Anticlockwise scanning will then begin from

this initial scanning point. During the scanning, several

cases may occur as follows:

· Case 1. If the next pixel encountered is one of the 4

guiding pixels, then the path will proceed as

indicated in Table 1, where it will eventually reach

either the top or the bottom of the image. In this

case, the path will be completed.

· Case 2. If the next pixel encountered is 255, then

the scan will proceed until it reaches the next black

pixel. In this case, this black pixel will become the

next reference point, and the pixel just before this

black pixel (in the scanning direction) becomes the

new current path point.

This process of searching for the current path point and

the current reference point will continue until either

case 1 above is met or the path returns to the initial

scanning path (i.e., making a closed loop).

Ref_grp_1

Ref_grp_3

Ref_grp_2

Current path
point

Reference
point

Current path
point

Reference
point

Current path
point

Reference
point

Current path
point

Reference
point

The supposed location of the new reference point

The starting point for the scan

Current point
path The last pixel of the path at that instant

Figure 7. An example of four possible locations of the reference

point with the current path point.

4.4. Feature Extraction

The segmentation paths, corner detection (CPDA),

binarized and thinned images produce useful

information which can be used as features for the

refinement and verification of candidate segmentation

points.

The features extracted from the corner points are

listed below:

· The curvature product and angle of each corner is

used as features.

· The thickness of the corresponding coordinate of the

corner point in the image before the thinning

process is also used as feature.

· For a given corner point located in between two

connected points (which may be a branch, corner,

cross or end point), the type of the two connected

points and their respective distance to the corner

point are used as features.

· The vertical distance from the baseline to a

candidate segmentation point is used as feature.

· The number of the secondary components in both

sides of the connected candidate segmentation point

is used as features.

The features extracted from the branch and cross points

are listed below:

· The number of top-bound, bottom-bound and loop

paths at each candidate segmentation point are used

as features.

· The measured width between the two segmentation

paths moving in the same direction is used as

feature.

· The number of the foreground pixels located

between the two segmentation paths moving in the

same direction is used as feature.

· For a given candidate segmentation point located in

between two connected points (which may be a

branch, corner, cross or end point), the type of the

two connected points and their respective distance

to a given candidate segmentation point are used as

features.

· The vertical distance from the baseline to a

candidate segmentation point is used as feature.
· The number of the secondary components in both

sides of the connected candidate segmentation point

is used as features.

4.5. Refinement and Verification

We proposed to refine and verify the candidate

segmentation points by two steps; first refining

candidate segmentation points by using some heuristic

rules, secondly, we use neural networks to verify the

rest of candidate segmentation points, as explained in

the following subsections:

4.5.1. Segmentation Point Refinement by Heuristic

Rules

In order to reduce the consumption time for the

training process, heuristic rules are used to remove

candidate segmentation points which in practice cannot

be correct segmentation points. We apply five heuristic

rules based on empirical studies that cover the most

Efficient Segmentation of Arabic Handwritten Characters Using Structural Features 875

probable segmentation point scenarios. These rules are

given as follows:

· If a branch point has three paths and two of them are

closed-loop paths, then this branch point is removed

from the list of segmentation point candidates.

· If a segmentation point is located five pixels from

either end of the curves, then this segmentation

point is removed from the list of segmentation point

candidates.

· If a branch point has two bottom-bound paths and

one top-bound path, located next to a branch point

with a closed-loop path, and the distance between

them is less than five pixels and the x-coordinate of

the end point is equal to or less than the x-

coordinate of the branch point, then this branch

point is removed from the list of segmentation point

candidates.

· If two adjacent branch points have two top-bound

paths with no secondary component centroid

coordinate between them, and the number of pixels

between the two top-bound path points is less than

25 pixels, then the two branch points are removed

from the list of segmentation point candidates.

· If a corner point has curvature product value less

than 0.09 and angle value larger than 150
o
, then this

corner point is removed from the list of

segmentation point candidates.

4.5.2. Segmentation Point Verification using Neural

Networks

The nature of the corner point structure is different

from the branch and cross point due to the fact that

features extracted are not similar. Therefore, the

proposed method uses two parallel back-propagation

neural networks with log-sigmoid activation function

to verify the correct and incorrect segmentation points;

one neural network is used to verify the corner point

and another to verify the branch and cross points. The

neural networks’ input layer consist of features

extracted from the candidate segmentation points,

while the output layer represents the classified

segmentation point as correct or incorrect

segmentation point.

5. Results and Discussion

We tested our proposed segmentation approach on

1,200 word images obtained from the IESK-arDB and

IFN/ENIT databases [11, 23], whereby the words were

handwritten by different people. For the purpose of

comparison, three criteria, i.e., correct segmentation,

over-segmentation, and under-segmentation were

evaluated to measure the performance of the

segmentation technique.

Correct segmentation refers to points that divide the

two characters correctly. Over-segmentation refers to

unnecessary or excess points in segmenting two

characters, while under-segmentation refers to a

situation in which a missed correct segmentation point

exists between two characters. However, a notable

detail is that no unique position for correct

segmentation exists in Arabic characters. Therefore,

the results were validated by visual observation. As

seen from Table 2, our method significantly reduced

the under- and over-segmentation points, and the

correct segmentation accuracy has been improved

compared to other methods.

Table 2. Criteria for evaluating the segmentation rate (%).

Authors

Over-

segmentation

%

Under-

segmentation

%

Correct

segmentation

%

No. of

words
Database

Elzobi et

al. [11]
14.4 18.6 67 600

IESK-

arDB

Xiu et al.

[26]
18.8 26.6 54.6 600

IESK-
arDB

Al-

Hamad

and Abu-

Zitar [3]

17.02% 4.60% 82.98 500
local

database

Elnagar

and

Bentrcia

[10]

≈13.7% 0.3% 86% 550 IFN/ENIT

Our

method
8% 0.4% 91.6% 600

IESK-
arDB

database

Our

method
8.9% 0.6% 90.5% 600

IFN/ENIT

database

The construction of the segmentation path depends

on the values of the guiding pixels Pt, Pb, Pr, and Pl.

In our work, we use Pt =16, Pb =8, Pr=4, and Pl=2.

Figure 8-a shows the result after constructing the

segmentation paths. As seen from the figure, some

segmentation points have paths that go to the top

boundary, bottom boundary, and a closed-loop path.

For example, the difference between the two

segmentation points (labels 8 and 9) is only in the

location of the closed loop path, i.e., either the closed

loop is located to the left or the right side of the

segmentation point. Some segmentation points (labels

3, 4, and 6) have only one path and two closed-loop

paths, and the difference in this case is the direction of

the path (either to the top or to the bottom).

Furthermore, a segmentation point (label 5) that has

three closed-loop paths exists. In addition, some

segmentation points (labels 7 and 10) have two top-

bound paths and one bottom-bound path. Finally, a

segmentation point (label 1) has two top-bound paths

and one bottom-bound path. The result of the proposed

method is shown in Figure 8-b.

876 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

1
2
3

4

5
6

7 8 9 10

a) Over-segmentation of points.

b) Segmentation points after applying the proposed method.

* Segmentation points

Path leading to top boundary

Path leading to bottom boundary

Path going in a closed loop path

Candidate segmentation points

Figure 8. An example showing candidate segmentation points with

its paths Over-segmentation of points and segmentation points after

applying the proposed method.

In addition, our method can handle different cases,

such as overlapping and cursively written words.

Figure 9 illustrates some of the correct word

segmentation, in which our proposed method can

detect the segmentation points in cases of overlapping

characters and cursively written words.

Figure 9. Segmentation of overlapping and cursively handwritten

words.

Our method is also capable of correctly detecting

the segmentation points for different writing styles

from different writers. Figure 10 shows some of the

results.

Figure 10. Segmentation of Arabic words written by five writers.

One of the strengths of our method is that it reduces

under-segmentation points, because our method can

detect valid segmentation points with a small curvature

as illustrated in Figure 11. In this figure, the method

[6] produced over-segmentation points in characters (ط

 and missed one segmentation point between (و,ن,

character (ش) and character (ن), because loops and the

curvature product (H(k)) (0.07) are less than the

threshold. Our method overcomes this limitation by

removing loop points and modifying the curve

extraction approach. Our approach manages to detect

the segmentation point between character (ش) and

character (ن) because the curvature product (H(k))

(0.98) is higher than the threshold value (0.09).

a) Corner detected by using our

proposed method.

b) Corner detected by using

Awrangjeb and Lu [6].

Figure 11. Results on corner point detection. The small boxes in (a)

indicate that the proposed method can detect the proper corner

point while the other method failed to detect them as shown in (b).

Due to a similarity to another connected character in

terms of shape, over-segmentation points occur in

characters like Sad (ص). The proposed method is able

to remove the over-segmentation points by taking into

account secondary components such as dots, as shown

in Figure 12.

a) Detected segmentation points for the letter (ن (and (ص).

b) Result after applying the proposed method. Note that the
segmentation point on the letter (ص) has been removed.

Figure 12. Results on proper detection of segmentation point.

The main difference between the character seen (سـ)

and two or more connected characters lam (is the (للل

length of the spur and stem, respectively. The character

seen (س) consists of two or three small spurs, while the

connected character lam has two or three stems, as

shown in Figure 13-a. In our proposed method, we

measure the length of the spur and stem before

deciding the status of the segmentation points, as

shown in Figure 13-b.

a) Candidate segmentation points
with segmentation path in blue

lines.

b) Result of segmentation points
after applying the proposed

method.

Figure 13. An example showing correct detection of segmentation

points.

Efficient Segmentation of Arabic Handwritten Characters Using Structural Features 877

Our method can also distinguish between the line

extension that belongs to the character and other

characters such as meem (Figure 14-a shows the .(مـ

branch point with two bottom-bound paths and one

top-bound path. The proposed method can detect the

correct segmentation points, as shown in Figure 14-b,

by determining the direction of the line and the number

of pixels between them.

a) Results of detected candidate segmentation points with the

segmentation path.

b) Results after applying the proposed method. Note that the proposed

able to differentiate proper segmentation points between the letter (م)
and (ط).

Figure 14. An example showing proper segmentation points for

letter (م).

Nevertheless, the proposed method would miss

some segmentation points in case the point does not

have the features of branch, cross, and corner points, as

shown in Figure 15. This issue can be solved by

studying the angles of those points.

Figure 15. Arabic words with missing segmentation points

(indicated by the box).

Likewise, our method still suffers from over-

segmentation points because it generates many corners

for cursive handwritten words, as shown in Figure 16.

To solve this problem, we can either add more rules or

extract new features to remove these unwanted points.

Figure 16. Arabic words with over-segmentation points due to

corners.

6. Conclusions and Future Works

This paper presents an offline Arabic handwriting

segmentation method based on structural techniques, in

which the segmentation points are categorized into

branch points, cross points, and corner points. This

paper introduces a method for generating all possible

segmentation points and a way of refining them. By

detecting the branch points and cross points as

segmentation points, the method divides the main

components into small curves to detect small curvature

corners as segmentation points. Finally, heuristic rules

and neural networks are applied to select the correct

segmentation points. The average accuracy of the

proposed method is 91.05%. For future work, we

suggest addressing issues such as establishing the

relationship between the secondary components and

segmentation points and using that in the refinement

and verification step to further improve the

segmentation point classification.

Acknowledgement

The authors would like to thank Universiti Teknologi

Malaysia (UTM) for the support in the research and

development of this work and the Ministry of Science,

Technology and Innovation, Malaysia (MOSTI),

(Science Fund Grant No. 01-01-06-SF1197,

R.J130000.7923.4S081).

References

[1] Abandah G. and Jamour F., “Recognizing

Handwritten Arabic Script through Efficient

Skeleton-Based Grapheme Segmentation

Algorithm,” in Proceeding of International

Conference on Intelligent Systems Design and

Applications, Cairo, pp. 977-982, 2010.

[2] Al-Hamad H., “Over-Segmentation of

Handwriting Arabic Scripts Using an Efficient

Heuristic Technique,” in Proceeding of Wavelet

Analysis and Pattern Recognition, Xian, pp. 180-

185, 2012.

[3] Al-Hamad H. and Abu-Zitar R., “Development

of an Efficient Neural-Based Segmentation

Technique for Arabic Handwriting Recognition,”

Pattern Recognition, vol. 43, no. 8, pp. 2773-

2798, 2010.

[4] Al-Jawfi R., “Handwriting Arabic Character

Recognition LeNet Using Neural Network,” The

International Arab Journal of Information

Technology, vol. 6, no. 3, pp. 304-309, 2009.

[5] Alaei A., Nagabhushan P., and Pal U., “A

Baseline Dependent Approach for Persian

Handwritten Character Segmentation,” in

Proceeding of International Conference on

Pattern Recognition, Istanbul, pp. 1977-1980,

2010.

[6] Awrangjeb M. and Lu G., “Robust Image Corner

Detection Based on the Chord-To-Point Distance

Accumulation Technique,” IEEE Transactions

on Multimedia, vol. 10, no. 6, pp. 1059-1072,

2008.

[7] Bouafif F., Maddouri S., and Ellouze N., “A

Hybrid Method for Three Segmentation Level of

Handwritten Arabic Script,” The International

Arab Journal of Information Technology, vol. 9,

878 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

no. 2, pp. 117-123, 2012.

[8] Broumandnia A. and Shanbehzadeh J., “Fast

Zernike Wavelet Moments for Farsi Character

Recognition,” Image and Vision Computing, vol.

25, no. 5, pp. 717-726, 2007.

[9] Broumandnia A., Shanbehzadeh J., and

Rezakhah M., “Persian/Arabic Handwritten

Word Recognition Using M-Band Packet

Wavelet Transform,” Image and Vision

Computing, vol. 26, no. 6, pp. 829-842, 2008.

[10] Elnagar A. and Bentrcia R., “A Multi-Agent

Approach to Arabic Handwritten Text

Segmentation,” Journal of Intelligent Learning

Systems and Applications, vol. 4, no. 3, pp. 207-

215, 2012.

[11] Elzobi M., Al-Hamadi A., Al-Aghbari Z., and

Dings L., “IESK-ArDB: a Database for

Handwritten Arabic and an Optimized

Topological Segmentation Approach,”

International Journal on Document Analysis and

Recognition, vol. 16, no. 3, pp. 1-14, 2012.

[12] He X. and Yung N., “Curvature Scale Space

Corner Detector with Adaptive Threshold and

Dynamic Region of support,” in Proceeding of

the 17th International Conference on Pattern

Recognition, Cambridge, pp. 791-794, 2004.

[13] Jayadevan R., Kolhe S., Patil P., and Pal U.,

“Automatic Processing of Handwritten Bank

Cheque Images: a Survey,” International Journal

on Document Analysis and Recognition, vol. 15,

no. 4, pp. 267-296, 2012.

[14] Kabbani R., “Selecting Most Efficient Arabic

OCR Features Extraction Methods Using Key

Performance Indicators,” in Proceeding of

International Conference on Communications,

Computing and Control Applications, Marseilles,

pp. 1-6, 2012.

[15] Khorsheed M., “Recognising Handwritten Arabic

Manuscripts Using a Single Hidden Markov

Model,” Pattern Recognition Letters, vol. 24, no.

14, pp. 2235-2242, 2003.

[16] Lee H. and Chen B., “Recognition of

Handwritten Chinese Characters via Short Line

Segments,” Pattern Recognition, vol. 25, no. 5,

pp. 543-552, 1992.

[17] Leydier Y., Ouji A., LeBourgeois F., and Emptoz

H., “Towards an Omnilingual Word Retrieval

System for Ancient Manuscripts,” Pattern

Recognition, vol. 42, no. 5, pp. 2089-2105, 2009.

[18] Liang Y., Fairhurst M., and Guest R., “A

Synthesised Word Approach to Word Retrieval

In Handwritten Documents,” Pattern

Recognition, vol. 45, no. 12, pp. 4225-4236,

2012.

[19] Lu S., Ren Y., and Suen C., “Hierarchical

Attributed Graph Representation and

Recognition of Handwritten Chinese Characters,”

Pattern Recognition, vol. 24, no. 7, pp. 617-632,

1991.

[20] Mansour M., Benkhadda M., and Benyettou A.,

“Optimized Segmentation Techniques for

Handwritten Arabic Word and Numbers

Character Recognition,” in Proceeding of IEEE

Signal-Image Technology and Internet-Based

Systems, pp. 96-101, 2005.

[21] Naz S., Hayat K., Razzak M., Anwar M., Madani

S., and Khan S., “The Optical Character

Recognition of Urdu-Like Cursive Scripts,”

Pattern Recognition, vol. 47, no. 3, pp. 1229-

1248, 2014.

[22] Parvez M. and Mahmoud S., “Arabic

Handwriting Recognition using Structural and

Syntactic Pattern Attributes,” Pattern

Recognition, vol. 46, no. 1, pp. 141-154, 2013.

[23] Pechwitz M., Maddouri S., Märgner V., Ellouze

N., and Amiri H., “IFN/ENIT-Database of

Handwritten Arabic Words,” in Proceeding of

Francophone International Conference on

writing and Document, Hammamet, pp. 127-136,

2002.

[24] Razak Z., Zulkiflee K., Noor N., Salleh R., and

Yaacob M., “Off-Line Handwritten Jawi

Character Segmentation Using Histogram

Normalization and Sliding Window Approach for

Hardware Implementation,” Malaysian Journal

of Computer Science, vol. 22, no. 1, pp. 34-43,

2009.

[25] Touj S., Ben-Amara N., and Amiri H., “Arabic

Handwritten Words Recognition Based on a

Planar Hidden Markov Model,” The

International Arab Journal of Information

Technology, vol. 2, no. 4, pp. 318-325, 2005.

[26] Xiu P., Peng L., Ding X., and Wang H., “Offline

Handwritten Arabic Character Segmentation with

Probabilistic Model,” in Proceeding of the 7
th

international conference on Document Analysis

Systems, Nelson, pp. 402-412, 2006.

[27] Zeki A., “The Segmentation Problem in Arabic

Character Recognition the State of the Art,” in

Proceeding of 1st International Conference on

Information and Communication Technologies,

Karachi, pp. 11-26, 2005.

[28] Zhang T. and Suen C., “A Fast Parallel

Algorithm for Thinning Digital Patterns,”

Communications of the ACM, vol. 27, no. 3, pp.

236-239, 1984.

Efficient Segmentation of Arabic Handwritten Characters Using Structural Features 879

Mazen Bahashwan is currently a

postgraduate student at the

Computer Vision, Video and Image

Processing Lab (CvviP), Faculty of

Electrical Engineering, Universiti

Teknologi Malaysia. His research

interest is in the area of computer

vision, particularly in Arabic handwriting recognition.

He obtained his master degree from Universiti

Kebangsaan Malaysia in 2011.

Syed Abu-Bakar received his Ph.D.

degree from the University of

Bradford, England in 1997. He

joined Universiti Teknologi

Malaysia (UTM) in 1992. Currently

he is an associate professor in the

department of Electronics and

Computer Engineering, Faculty of Electrical

Engineering. His current research interest is in image

processing focusing in video security and surveillance,

medical imaging, biometrics, agricultural, and

industrial applications. He has published more than

150 scientific papers both at national and international

levels. He is a senior member of IEEE.

Usman Sheikh received his PhD

degree (2009) in image processing

and computer vision from Universiti

Teknologi Malaysia. His research

work is mainly on computer vision

and embedded systems design. He is

currently a Senior Lecturer at

Universiti Teknologi Malaysia, Malaysia.

