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Abstract: Handwriting recognition is an important field as it has many practical applications such as for bank cheque 

processing, post office address processing and zip code recognition. Most applications are developed exclusively for Latin 

characters. However, despite tremendous effort by researchers in the past three decades, Arabic handwriting recognition 

accuracy remains low because of low efficiency in determining the correct segmentation points. This paper presents an 

approach for character segmentation of unconstrained handwritten Arabic words. First, we seek all possible character 

segmentation points based on structural features. Next, we develop a novel technique to create several paths for each possible 

segmentation point. These paths are used in differentiating between different types of segmentation points. Finally, we use 

heuristic rules and neural networks, utilizing the information related to segmentation points, to select the correct segmentation 

points. For comparison, we applied our method on IESK-arDB and IFN/ENIT databases, in which we achieved a success rate 

of 91.6% and 90.5% respectively. 
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1. Introduction 

Automatic handwriting recognition has many 

applications, such as for bank cheque processing, 

address and zip code recognition on envelopes, and 

handwriting analysis [9, 13, 25]. As a result, studies 

had been conducted on handwriting recognition for 

many languages such as English, Chinese, Japanese, 

and Arabic, among others [4, 21]. This paper focuses 

on Arabic text recognition. The Arabic language is an 

official language in over 25 countries and is spoken by 

approximately 234 million people [22]. Arabic 

characters are similar to characters in other languages 

such as Jawi, Farsi, Urdu, and Kardi [8, 24]. 

Approximately 7 to 10 million manuscripts were 

written in Arabic script between the seventh and 

fourteenth centuries [17]. Hence, a high-performance 

offline Arabic script recognition is needed for certain 

tasks, such as preservation of old manuscripts. 

A large gap exists between the research on Latin 

script and the research on Arabic script. Among the 

reasons for this gap are lack of adequate support in 

terms of financial funding, coordination, and other 

utilities, such as comprehensive Arabic text databases 

and dictionaries [14]. This situation could also be 

attributed to difficulties associated with characteristics 

of Arabic script, which will be described in Section 3. 

The recognition of unconstrained cursive Arabic 

handwriting is still low because of poor character 

segmentation. This finding is an indication that 

segmentation plays a vital role in the character 

recognition process [2, 18].  

Segmentation approaches can be divided into two 

 
categories: holistic approach and analytical approach 

[27]. Systems that are based on the holistic approach 

(also called as global approach) try to recognize entire 

words without splitting them into individual characters. 

The disadvantage of the holistic approach is that it 

needs a large dictionary (lexicon), which, in turn, 

makes the searching process costly [1]. On the other 

hand, systems based on the analytical approach try to 

segment a word into characters or graphemes (part of 

the character) and does not require the use of a large 

dictionary. In this work, the analytical approach is 

adopted. The technique consists of three stages: 

preprocessing, generating candidate segmentation 

points, refining and verifying all candidate points.  

This paper is organized into six sections. Section 2 

explains some works related to Arabic character 

segmentation. Section 3 illustrates the characteristics 

of Arabic language scripts. Section 4 describes our 

proposed method to generate the segmentation points, 

segmentation paths and the process of refining and 

verifying the segmentation points. Section 5 presents 

the results and discussion. Finally, we conclude our 

paper in Section 6 and suggest several directions for 

future works.  

2. Related Works 

For the last few decades, an increasing number of 

empirical studies have been conducted on handwriting 

recognition. However, findings on recognizing 

unconstrained cursive handwriting remain limited. One 

of the major reasons for this lack of findings can be 

attributed to poor character segmentation [18]. The 
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suitable features for character segmentation can be in 

the form of segmentation points such as local minima 

[5], branch points, cross points, loop points [11], or 

pen thickness [20]. These features may not be detected 

in all segmentation points because some of them might 

be lost during the writing or the preprocessing stage.  

Bouafif et al. [7] used Harris corner method to 

detect possible segmentation points in words, and only 

corners that lie between 5 pixels above and below the 

baseline were taken as valid segmentation points. 

Obviously, many valid segmentation points that were 

outside this range were ignored. The main 

disadvantage of this technique is its high dependency 

on the baseline. 

  Elnagar and Bentrcia  [10] used six agents and a 

baseline for detecting segmentation points. They 
mentioned some limitations of their algorithm, such as 

missing segmentation points due to weakness in agents 

and dependency on the endpoints, branch points, and 

cross points as features. Moreover, the detection of the 

agents was error prone because of its high dependency 

on the accuracy of the baseline detection. 

Al-Hamad introduced an algorithm for 

segmentation and validation of Arabic handwritten 

words [3]. His method involved three major steps. 

First, segmentation points are obtained from a 

modified vertical histogram of a thinned word–image. 

Then, the initial segmentation points are validated by 

using a neural-based segmentation point validation 

scheme. Finally, the fusion confidence value is 

obtained to validate segmentation points. According to 

Al-Hamad [2], the modified vertical histogram has a 

limited ability to identify some characters, such as the 

character baa (ب) and similar character shapes. 

Moreover, such characters are not detected as 

characters because they look like ligatures in the 

histogram. The main limitation is the presence of 

numerous incorrect local minima and maxima, which 

often result in a large number of incorrect ligatures. 

Elzobi et al. [11] used a histogram to detect possible 

segmentation points and applied heuristic rules to 

refine the result. They reported the occurrence of 

missed segmentation points because of the overlapping 

characters and over-segmentation points in characters 

such as seen ( س)  and sheen (ش). In addition, the rules 

cause missed and over-segmentation points because of 

the dependency on cross points, branches, and loop 

points.  

Thus, we propose a new segmentation method 

based on using a corner detector, branch points, and 

cross points. We also propose a novel verification 

technique of the segmentation points using heuristic 

rules and neural network. 

 

3. Characteristics of Arabic script 

The Arabic script consists of 28 characters and is 

written from right to left. Each character has at least 

two to four shapes that depend on the position of the 

character within the word. In addition, a single word 

may consist of one or more than one sub words. This is 

because the following characters cannot be joined 

 from the left side. More than half of the (و,ز,ر,ذ,د,ا)

characters contain one to three dots. These dots may be 

at the top, middle, or bottom of the character. These 

dots distinguish between characters that may otherwise 

have the same shape. Usually, the characters are 

connected horizontally, but in some cases, characters 

may be connected vertically. Overlapping normally 

occurs between the sub-words or between the sub-

word and characters in the same word, which are 

mostly found in the vertical direction.   

4. Proposed Method  

The general block diagram of the proposed method is 

shown in Figure 1. Initially, an image will be loaded 

into the system followed by some operations at the 

preprocessing stage before the segmentation stage is 

initiated.   
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Figure 1. Block diagram of character segmentation. 

4.1. Preprocessing  

The operations applied in the preprocessing stage are 

for general images. However, all the images in the 

database we used, i.e., the IESK-arDB and IFN/ENIT 

datasets, underwent binarization, smoothing, dilation 

operation. 

Generally, an Arabic word contains one or more 

main components. The main component contains a 

single character or some connected characters. More 

than half of the characters in the Arabic script have a 

secondary component such as a dot and hamza, and the 

size of the secondary component is usually very small 

compared with the main component and is quite far 

from the center of the main component, as shown in 

Figure 2. In this figure, the main component is 

represented by a rectangular box, while the secondary 

component is represented by an ellipse.     

Baseline detection is a method that is used to 
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identify word components. The baseline corresponds to 

a simple horizontal projection that contains the 

maximum number of foreground pixel count. A box is 

first drawn in each connected component, and then the 

main connected component is intersected with the 

baseline (as depicted in Figure 2).  

 

Figure 2. Arabic word that contains two main components and two 

secondary components with a baseline drawn.  

Each secondary component is assigned to one main 

component. If the secondary components are inside, 

above, or below the main component without 

overlapping, then they will be assigned to that main 

component. In case of overlapping between two main 

components, the distance will be measured depending 

on the location of the secondary components.  

According to this distance, the secondary components 

are assigned to the nearest main components [11]. 

Finally, we apply thinning operation based on the 

approach used by Zhang and Suen [28]. This method 

has been widely used in previous researches [15, 16, 

19]. Figure 3 shows an example of the thinning 

operation. 

  
a) original binary image. b) result after the thinning process. 

Figure 3. An example of Zhang and Suen thinning algorithm.  

4.2. Candidate Segmentation Points  

Usually, the connection point between two characters 

is considered a branch point or a cross point. However, 

the connection point (branch point or cross point) 

might not be present due to the writing style or as a 

result of the preprocessing operation. The missed 

connection point can still be captured using a corner 

detector as shown in Figure 4. Therefore, to avoid 

missing the connection point, our approach uses the 

corner points as the candidate segmentation points. 

  

a) due to preprocessing stage. b) due to writing style; these 

missing points are indicated with 

small squares. 

Figure 4.  Missing segmentation points. 

In our work, we adopted the contour-based detector 

method with the Chord-to-Point Distance 

Accumulation (CPDA), which is found in [6] to detect 

the corners as candidate segmentation points. CPDA 

discrete curvature estimation is less sensitive to local 

variations and noise on the curve and it does not use 

any derivatives.  We generate short curves by 

removing branch points and the loop points from the 

thinned word. We then apply the corner detector to 

each curve separately. 

To detect the corner in the curve using the CPDA 

[6], the curve is first smoothened, and then three 

chord-lengths (L1=10, L2=20, L3=30) are used to 

estimate the curvature value at each point n in the 

curve. The CPDA curvatures (h1(k), h2(k),h3(k)) that 

correspond to the three chord lengths are then 

computed by using Equation (1). The CPDA discrete 

curvature  hL(k) at the point  K with the chord length L 

is calculated by taking the summation of all 

perpendicular distances from the point K to the chord 

length at all possible chord length locations.  
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Then, the CPDA discrete curvature for each chord 

length is normalized by using Equation (2) 

   
          

 

 
311

max
)('  j &  nk for ,

h

kh
kh

j

j
j      (2) 

All these curvatures are then multiplied to produce a 

single value, which is called the curvature product, 

H(k), as given in Equation (3).  

 
                 nk1  for  khkhkhkH jjj  ,.. '''

      (3) 

The curvature product curve is then smoothened, and 

the candidate corners are located by detecting the 

maxima H(k). Finally, our proposed method adopts the 

algorithm in [12] to measure the angle at each 

candidate corner point by using two tangent lines.  

4.3. Construction of the Segmentation Path 

In this study, we propose a segmentation path based 

method to extract features which are related to 

segmentation points. The proposed segmentation path 

is a curve that starts from a point on the thinned word 

to one of the three ends: either to the top boundary of 

the image, bottom boundary of the image, or back to 

the start point for a closed-loop path. Before creating a 

path, a preprocessing step is applied on the background 

of the image. This preprocessing step will change the 

value of the background pixels based on some 

conditions. We use four different values of base 2 (2
n
), 

where n is an integer, to assign the background values. 

These values have the following characteristics: 1) 

summation of any two values from a set of four values 

will always be different from the sum of the remaining 

values; 2) summation of any three out of a set of four 

values will always be different from the last remaining 

value. These characteristics will ensure the creation of 

a unique track path.  
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These four numbers are arranged in decreasing 

order from the highest to the lowest with the following 

labels: Pt, Pb, Pr, and Pl. The descending arrangement 

from highest to lowest value is used to determine the 

track path of either as top, bottom, right, or left, 

respectively. 

We then scan the image column by column from top 

to bottom. During the scanning process, all background 

pixels (255)
1
 are replaced by Pt until foreground pixel 

(0) is reached or until the bottom of the image is 

reached. This condition can be formulated as follows; 

Let AMxN be an image, and aij ϵ A denotes the pixel 

value of row i and column j. The image is first scanned 

from top to bottom in each column separately. 

  

 




















2550255255

00

255255

,1,1

,1,1

jijiij

ij

jjiij

ij

a   or  a  and  a   if       

a   if           

a or   Pta  and  a  if         Pt

a       (4) 

Then, the output image from the previous step is 

scanned from the bottom to the top, and all pixels with 

the value of 255 are replaced with Pb. The scan 

continues until the foreground pixel (0) or Pt in the 

image is reached. This can be described as follows: 
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The procedure is repeated from right to left, with 

pixels with a value of 255 being replaced with Pr. This 

condition is described as follows: 
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Finally, the image is scanned from left to right, with 

pixels with a value of 255 being replaced with Pl until 

the foreground pixel (0) is reached. This step is 

expressed as follows: 
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For easy explanation, the converted background pixels 

are referred to as the “guiding pixels”. 

Once the scanning procedures are done, the 

background pixels will have either one of these 

guiding pixel values (255, Pt, Pb, Pr, Pl), and they are 

                                                 
1 In this implementation, we use the value of 255 instead of 1 for 

the binary image.   

grouped into five classes that define their respective 

direction path, as shown in Table 1. 

Table 1. Path direction based on guiding pixel value 

Background pixel value Path direction 

Pt Top-bound 

Pb Bottom-bound 

Pr Right-bound 

Pl Left-bound 

255 Move with reference point 

To find the starting point for each path, a 3x3 

window is used with the candidate segmentation point 

placed at its center. An anticlockwise scanning 

mechanism is performed starting from the upper right 

corner of the window. The scanning will continue until 

all the guiding pixels that surround the foreground 

pixels are grouped together. Depending on the type of 

the segmentation point (i.e., corner point, branch point, 

or cross point), two, three, or four groups can exist, as 

shown in Figure 5.  

     
a) Corner point. 

      
b) Branch point. 

    
c) Cross point. 

Figure 5. Dashed boxes represent groups in (a) corner point-2 

groups, (b) branch point-3 groups and (c) cross point-4 groups. 

The starting point of the path for each group 

(Stp_grp) will be the last guiding pixel before the 

foreground pixel (reference point), with respect to the 

anticlockwise scanning mechanism. Initially, the 

reference point (Ref_grp) refers to the first foreground 

pixel after the starting point in the anticlockwise 

direction. An example for the branch point case is 

shown in Figure 6.  

 
a) Branch point–at the center of the 
window. 

  

Group 2

Group 3

Group 1

 
b) Number of available groups. 

 

Stp_grp_2

Stp_grp_1

Ref_grp_1

Ref_grp_3

Ref_grp_2

Stp_grp_3

 
c) Location of the respective start and reference points for tracing each 

path. Stp_grp is the start point and Ref_grp is the reference point in the 
group respectively. 

Figure 6. An example of a branch point with its related reference 

points and starting points. 

We begin tracing in each path from the start point. 

The next move is determined by checking the value of 

the current pixel. If it is equal to one of these guiding 

pixel values (Pt, Pb, Pr, Pl), then the path moves 

according to the direction specified by these values 

(refer to Table 1).Otherwise, if it is equal to 255, then 

the path will move according to the reference point, 

and the current reference point will be changed. The 
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reference point has four possible positions with respect 

to the current path point, as shown in Figure 7. To 

determine the next step for the path, the location of the 

next reference point needs to be determined. First, the 

starting scanning point (marked as x in Figure 7) needs 

to be located. Equation 8 is used to determine the 

initial scanning.  

  
 refcpcpsc

refcpcpsc

xxyy

yyxx





 

     (8) 

where xsc and ysc are the coordinates for the initial 

scanning point, xcp and ycp are the coordinates of the 

current path point, and xref and yref  are the coordinates 

of the current reference point. Here, we follow the 

convention of the right-hand rule for the coordinates 

system. Anticlockwise scanning will then begin from 

this initial scanning point. During the scanning, several 

cases may occur as follows: 

· Case 1. If the next pixel encountered is one of the 4 

guiding pixels, then the path will proceed as 

indicated in Table 1, where it will eventually reach 

either the top or the bottom of the image. In this 

case, the path will be completed. 

· Case 2. If the next pixel encountered is 255, then 

the scan will proceed until it reaches the next black 

pixel. In this case, this black pixel will become the 

next reference point, and the pixel just before this 

black pixel (in the scanning direction) becomes the 

new current path point.  

This process of searching for the current path point and 

the current reference point will continue until either 

case 1 above is met or the path returns to the initial 

scanning path (i.e., making a closed loop). 

  

Ref_grp_1

Ref_grp_3

Ref_grp_2

Current path 
point

Reference 
point 

Current path 
point

Reference 
point 

Current path 
point

Reference 
point 

Current path 
point

Reference 
point 

The supposed location of the new reference point

The starting point for the scan

Current point 
path  The last pixel of the path at that instant

 

Figure 7. An example of four possible locations of the reference 

point with the current path point. 

4.4. Feature Extraction 

The segmentation paths, corner detection (CPDA), 

binarized and thinned images produce useful 

information which can be used as features for the 

refinement and verification of candidate segmentation 

points.  

The features extracted from the corner points are 

listed below:   

· The curvature product and angle of each corner is 

used as features. 

· The thickness of the corresponding coordinate of the 

corner point in the image before the thinning 

process is also used as feature.  

· For a given corner point located in between two 

connected points (which may be a branch, corner, 

cross or end point), the type of the two connected 

points and their respective distance to the corner 

point are used as features.  

· The vertical distance from the baseline to a 

candidate segmentation point is used as feature.  

· The number of the secondary components in both 

sides of the connected candidate segmentation point 

is used as features. 

The features extracted from the branch and cross points 

are listed below:   

· The number of top-bound, bottom-bound and loop 

paths at each candidate segmentation point are used 

as features.  

· The measured width between the two segmentation 

paths moving in the same direction is used as 

feature.  

· The number of the foreground pixels located 

between the two segmentation paths moving in the 

same direction is used as feature.  

· For a given candidate segmentation point located in 

between two connected points (which may be a 

branch, corner, cross or end point), the type of the 

two connected points and their respective distance 

to a given candidate segmentation point are used as 

features.   

· The vertical distance from the baseline to a 

candidate segmentation point is used as feature.  
· The number of the secondary components in both 

sides of the connected candidate segmentation point 

is used as features. 

4.5. Refinement and Verification 

We proposed to refine and verify the candidate 

segmentation points by two steps; first refining 

candidate segmentation points by using some heuristic 

rules, secondly, we use neural networks to verify the 

rest of candidate segmentation points, as explained in 

the following subsections:  

4.5.1. Segmentation Point Refinement by Heuristic 

Rules  

In order to reduce the consumption time for the 

training process, heuristic rules are used to remove 

candidate segmentation points which in practice cannot 

be correct segmentation points. We apply five heuristic 

rules based on empirical studies that cover the most 
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probable segmentation point scenarios. These rules are 

given as follows:  

· If a branch point has three paths and two of them are 

closed-loop paths, then this branch point is removed 

from the list of segmentation point candidates. 

· If a segmentation point is located five pixels from 

either end of the curves, then this segmentation 

point is removed from the list of segmentation point 

candidates. 

· If a branch point has two bottom-bound paths and 

one top-bound path, located next to a branch point 

with a closed-loop path, and the distance between 

them is less than five pixels and the x-coordinate of 

the end point is equal to or less than the x-

coordinate of the branch point, then this branch 

point is removed from the list of segmentation point 

candidates.  

· If two adjacent branch points have two top-bound 

paths with no secondary component centroid 

coordinate between them, and the number of pixels 

between the two top-bound path points is less than 

25 pixels, then the two branch points are removed 

from the list of segmentation point candidates. 

· If a corner point has curvature product value less 

than 0.09 and angle value larger than 150
o
, then this 

corner point is removed from the list of 

segmentation point candidates. 

4.5.2. Segmentation Point Verification using Neural 

Networks  

The nature of the corner point structure is different 

from the branch and cross point due to the fact that 

features extracted are not similar. Therefore, the 

proposed method uses two parallel back-propagation 

neural networks with log-sigmoid activation function 

to verify the correct and incorrect segmentation points; 

one neural network is used to verify the corner point 

and another to verify the branch and cross points. The 

neural networks’ input layer consist of features 

extracted from the candidate segmentation points, 

while the output layer represents the classified 

segmentation point as correct or incorrect 

segmentation point. 

5. Results and Discussion   

We tested our proposed segmentation approach on 

1,200 word images obtained from the IESK-arDB and 

IFN/ENIT databases [11, 23], whereby the words were 

handwritten by different people. For the purpose of 

comparison, three criteria, i.e., correct segmentation, 

over-segmentation, and under-segmentation were 

evaluated to measure the performance of the 

segmentation technique.  

Correct segmentation refers to points that divide the 

two characters correctly. Over-segmentation refers to 

unnecessary or excess points in segmenting two 

characters, while under-segmentation refers to a 

situation in which a missed correct segmentation point 

exists between two characters. However, a notable 

detail is that no unique position for correct 

segmentation exists in Arabic characters. Therefore, 

the results were validated by visual observation. As 

seen from Table 2, our method significantly reduced 

the under- and over-segmentation points, and the 

correct segmentation accuracy has been improved 

compared to other methods. 

Table 2. Criteria for evaluating the segmentation rate (%). 

Authors 

Over-

segmentation 

% 

Under-

segmentation 

% 

Correct 

segmentation 

% 

No. of 

words 
Database 

Elzobi et 

al. [11] 
14.4 18.6 67 600 

IESK-

arDB 

Xiu et al. 

[26] 
18.8 26.6 54.6 600 

IESK-
arDB 

Al-

Hamad 

and Abu-

Zitar [3] 

17.02% 4.60% 82.98 500 
local 

database 

Elnagar 

and 

Bentrcia 

[10] 

≈13.7% 0.3% 86% 550 IFN/ENIT 

Our 

method 
8% 0.4% 91.6% 600 

IESK-
arDB 

database 

Our 

method 
8.9% 0.6% 90.5% 600 

IFN/ENIT 

database 

 

The construction of the segmentation path depends 

on the values of the guiding pixels Pt, Pb, Pr, and Pl. 

In our work, we use Pt =16, Pb =8, Pr=4, and Pl=2. 

Figure 8-a shows the result after constructing the 

segmentation paths. As seen from the figure, some 

segmentation points have paths that go to the top 

boundary, bottom boundary, and a closed-loop path. 

For example, the difference between the two 

segmentation points (labels 8 and 9) is only in the 

location of the closed loop path, i.e., either the closed 

loop is located to the left or the right side of the 

segmentation point. Some segmentation points (labels 

3, 4, and 6) have only one path and two closed-loop 

paths, and the difference in this case is the direction of 

the path (either to the top or to the bottom). 

Furthermore, a segmentation point (label 5) that has 

three closed-loop paths exists. In addition, some 

segmentation points (labels 7 and 10) have two top-

bound paths and one bottom-bound path. Finally, a 

segmentation point (label 1) has two top-bound paths 

and one bottom-bound path. The result of the proposed 

method is shown in Figure 8-b. 
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a) Over-segmentation of points. 

 
b) Segmentation points after applying the proposed method. 

* Segmentation points 

 
Path leading to top boundary 

 
Path leading to bottom boundary   

 
Path going in a closed loop path 

 
Candidate segmentation points 

Figure 8. An example showing candidate segmentation points with 

its paths Over-segmentation of points and segmentation points after 

applying the proposed method. 

In addition, our method can handle different cases, 

such as overlapping and cursively written words. 

Figure 9 illustrates some of the correct word 

segmentation, in which our proposed method can 

detect the segmentation points in cases of overlapping 

characters and cursively written words.  

 

Figure 9.  Segmentation of overlapping and cursively handwritten 

words. 

Our method is also capable of correctly detecting 

the segmentation points for different writing styles 

from different writers. Figure 10 shows some of the 

results.  

 

Figure 10. Segmentation of Arabic words written by five writers. 

One of the strengths of our method is that it reduces 

under-segmentation points, because our method can 

detect valid segmentation points with a small curvature 

as illustrated in Figure 11. In this figure, the method 

[6] produced over-segmentation points in characters (ط 

 and missed one segmentation point between (و,ن,

character ( ش)  and character (ن), because loops and the 

curvature product (H(k)) (0.07) are less than the 

threshold. Our method overcomes this limitation by 

removing loop points and modifying the curve 

extraction approach. Our approach manages to detect 

the segmentation point between character ( ش)  and 

character (ن) because the curvature product (H(k)) 

(0.98) is higher than the threshold value (0.09).  

  
a) Corner detected by using our 

proposed method. 

b) Corner detected by  using 

Awrangjeb and Lu [6]. 

Figure 11. Results on corner point detection. The small boxes in (a) 

indicate that the proposed method can detect the proper corner 

point while the other method failed to detect them as shown in (b). 

Due to a similarity to another connected character in 

terms of shape, over-segmentation points occur in 

characters like Sad (ص). The proposed method is able 

to remove the over-segmentation points by taking into 

account secondary components such as dots, as shown 

in Figure 12.  

   

 
a) Detected segmentation points for the letter (ن ( and (ص). 

 
b) Result after applying the proposed method. Note that the 
segmentation point on the letter (ص) has been removed. 

Figure 12. Results on proper detection of segmentation point. 

The main difference between the character seen (سـ) 

and two or more connected characters lam (  is the (للل

length of the spur and stem, respectively. The character 

seen (س) consists of two or three small spurs, while the 

connected character lam has two or three stems, as 

shown in Figure 13-a. In our proposed method, we 

measure the length of the spur and stem before 

deciding the status of the segmentation points, as 

shown in Figure 13-b.  

 

  
a) Candidate segmentation points 
with segmentation path in blue 

lines. 

b) Result of segmentation points 
after applying the proposed 

method. 

Figure 13. An example showing correct detection of segmentation 

points.  
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Our method can also distinguish between the line 

extension that belongs to the character and other 

characters such as meem (  Figure 14-a shows the .(مـ

branch point with two bottom-bound paths and one 

top-bound path. The proposed method can detect the 

correct segmentation points, as shown in Figure 14-b, 

by determining the direction of the line and the number 

of pixels between them.  

  

a) Results of detected candidate segmentation points with the 

segmentation path. 

  
b) Results after applying the proposed method. Note that the proposed 

able to differentiate proper segmentation points between the letter (م) 
and (ط). 

Figure 14. An example showing proper segmentation points for 

letter (م). 

Nevertheless, the proposed method would miss 

some segmentation points in case the point does not 

have the features of branch, cross, and corner points, as 

shown in Figure 15. This issue can be solved by 

studying the angles of those points. 

 
Figure 15. Arabic words with missing segmentation points 

(indicated by the box). 

Likewise, our method still suffers from over-

segmentation points because it generates many corners 

for cursive handwritten words, as shown in Figure 16. 

To solve this problem, we can either add more rules or 

extract new features to remove these unwanted points. 

 
Figure 16. Arabic words with over-segmentation points due to 

corners. 

6. Conclusions and Future Works 

This paper presents an offline Arabic handwriting 

segmentation method based on structural techniques, in 

which the segmentation points are categorized into 

branch points, cross points, and corner points. This 

paper introduces a method for generating all possible 

segmentation points and a way of refining them. By 

detecting the branch points and cross points as 

segmentation points, the method divides the main 

components into small curves to detect small curvature 

corners as segmentation points. Finally, heuristic rules 

and neural networks are applied to select the correct 

segmentation points.  The average accuracy of the 

proposed method is 91.05%. For future work, we 

suggest addressing issues such as establishing the 

relationship between the secondary components and 

segmentation points and using that in the refinement 

and verification step to further improve the 

segmentation point classification. 
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