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Abstract: In some data stream applications, the information embedded in the data arriving in the new recent time period is 

important than historical transactions. Because data stream is changing over time, concept drift problem may appear in data 

stream mining. Frequent pattern mining methods always generate useless and redundant patterns. In order to obtain the result 

set of lossless compression, closed pattern is needed. A novel method for efficiently mining closed frequent patterns on data 

stream is proposed in this paper. The main works includes: distinguished importance of recent transactions from historical 

transactions based on time decay model and sliding window model; designed the frame minimum support count-maximal 

support error rate-decay factor (θ-ε-f) to avoid concept drift; used closure operator to improve the efficiency of algorithm; 

design a novel way to set decay factor: average-decay-factor faverage in order to balance the high recall and high precision of 

algorithm. The performance of proposed method is evaluated via experiments, and the results show that the proposed method 

is efficient and steady-state. It applies to mine data streams with high density and long patterns. It is suitable for different size 

sliding windows, and it is also superior to other analogous algorithms.  
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1. Introduction
1
 

Data stream as a new data model is widely used in 

many applications. Data stream which is different from 

traditional database is time ordered, rapidly changing, 

massive and unlimited. Searching for frequent patterns 

in a continuous data stream has became important and 

challenging. 

In recent years, some algorithms for mining frequent 

patterns or itemsets on data streams have been 

proposed. Algorithms such as sticky sampling [15], 

lossy counting [15], XSM [1] and FDPM [26] mine 

frequent patterns which meet maximal support error 

rate and minimum support count. These methods do not 

distinguish between recent and historical transactions 

and do not consider the importance of recent 

transactions. In addition, these methods for mining 

complete result sets will produce a lot of useless 

patterns. For reducing the number of patterns, concise 

pattern set should be mined, mainly including: maximal 

frequent patterns, closed frequent patterns, top-k 

frequent patterns or a combination of them and so on. 

Algorithms max-FISM [6] and GUIDE [19] discover 

recent maximal frequent patterns based on sliding 

windows. WMFP-SW [10] mines weighted maximal 

frequent patterns based on sliding windows. Algorithms 

moment [5], newmoment [11], clostream [24],  
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Stream_FCI [20], TMoment [17], IncMine [4] and 

CloStream*[25] discover closed frequent patterns 

based on sliding windows. TOPSIL- Miner [23] uses 

landmark windows to mine top-k frequent patterns. 

Methods Top-k Lossy Counting [22], MSWTP [2] and 

Top-k Miner [18] discover top-k frequent patterns 

based on sliding windows. FCI_max [21] mines 

closed top-k frequent patterns based on sliding 

windows and so on. The drawbacks of above 

algorithms are that:  

1. Using only the minimum support threshold for 

frequent patterns mining and unprocessed concept 

drift problem of data streams.  

2. Although window model are used in these methods, 

the weights of transactions in window are same. 

As can be seen from the above algorithms, mining 

frequent patterns on data streams usually based on 

window model, especially the sliding window. The 

reason is that recent transactions normally contain 

more information than historical ones. Besides sliding 

window model, Time Decay Model (TDM) [3, 5, 8, 9, 

12, 13, 14, 19] is also used to process recent 

transactions. 

TDM-based methods to mine frequent patterns on 

data stream emphasize that the importance of recent 

and historical transactions should be distinguished in 

the window. Recent years, the ways to set decay factor 

in TDM usually divide into two categories. The first 
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one set decay factor to random value in the range of (0, 

1) [9, 14, 19]. Such ways lead to the instability of the 

mining results because of the random values of decay 

factor. The second method assumes that algorithm 

meets 100% Recall or 100% Precision to get the upper 

and lower bounds of decay factors [3, 12]. Then set 

decay factor to the upper bound or lower bound or 

random value between them. The problems of these 

two ways to set decay factor are that they can get high 

recall or high precision of algorithm, while get the low 

corresponding precision or recall of algorithm. Or 

because of the uncertainty of the decay factor value, the 

pattern results of algorithm are instability. 

In order to avoid concept drift, distinguish recent 

transactions from historical ones, discover compact 

pattern result set efficiently, and apply to mine high 

dense transactions and long patterns, a novel algorithm 

is proposed in this paper. Mainly works and 

innovations are that:  

1. Design a novel way to set decay factor f. Existed 

methods set f to boundary value of lower bound or 

high bound by assuming 100% Recall and 100% 

Precision [3, 12, 26], or to a random value in range 

of (0, 1) [13, 16]. The former will lead to 

corresponding algorithm low Precision or low 

Recall. And the later will make unstable 

performance of algorithm. In order to balance Recall 

and Precision of algorithm, proposed an average way 

to set decay factor in this paper.  

2. Propose a three layers frame: minimum support-

maximum support error-decay factor to solve the 

concept drift problem and avoid loss of possible 

frequent patterns.  

3. Propose a novel algorithm to mine closed frequent 

patterns on data streams based on time decay model 

and sliding window model. It can get lossless 

compression result set. Time decay model [2, 11, 12, 

15] is used to further emphasize the importance of 

recent transaction and reduce the importance of 

historical one. By comparisons of precisions of novel 

algorithm and existed algorithms, the novel 

algorithm can get more accurate pattern result. 

The rest of this paper is organized as follows. Section 2 

presents background knowledge; mainly about closure 

operator and time decal model. The efficient novel 

algorithm based on time decay model to discover 

closed patterns is introduced in section 3. Section 4 

describes the experiments and explains the 

experimental results. Section 5 concludes this work. 

2. Preliminaries 

A data stream DS=<T1, T2, … , Ti, …> is a continuous 

and unbounded sequence of transactions in a timely 

order, where Ti (i=1, 2, …) is the ith transaction. Each 

transaction contains a unique transaction identifier tid, as 

shown in the first column of Table 1. The support count 

of frequent pattern P, denoted as freq(P, N)[5], is the 

number of transactions in existed N transactions in 

which P occurs. 

 Define 1. (Frequent Pattern [12]) Let N be the 

sliding window size, and θ ( ]1,0( ) be the 

minimum support. If itemset P meets freq(P, 

N)≥θ×N, P is a frequent pattern.  

 Define 2. (Half-Frequent Pattern, Non-Frequent 

Pattern [12]) Let N be the sliding window size, 

θ(θ∈(0,1]) be the minimum support and ε (ε∈(0, 

θ)) be the maximal support error. If itemset P meets 

θ×N ≥ freq(P, N) ≥ ε×θ×N, P is a half-frequent 

pattern. Else if freq(P, N) < ε×θ×N, P is a non-

frequent pattern. 

Table 1. Transaction data stream. 

TID Transaction 

t1 1 3 4 

t2 2 3 5 

t3 1 2 3 5 

t4 2 3 4 5 

Data stream changes in real time and the infrequent 

patterns over time may become frequent patterns. That 

is concept drift. Therefore, in order to reduce the 

number of missing possible patterns, frequent patterns 

and half-frequent patterns need to be maintained 

during mining process. In addition, in order to reduce 

the cost of maintaining patterns, non-frequent patterns 

need to be lost. By this way, the possible error of 

missing patterns is not greater than ε [3, 12]. 

Therefore, using θ-ε framework can solve the problem 

of concept drift. 

A heavy problem of mining frequent pattern from 

data stream is generated a large number of useless 

patterns. Therefore, mining useful and compressed 

patterns are needed. Discovering closed frequent 

pattern is a common method, which is lossless 

compressed and contains all the information of the 

complete result. Meanwhile, in order to improve the 

efficiency to discover closed patterns, closure operator 

[24, 25] is used in this paper. The performance of the 

algorithm with closure operator is better than classic 

closed pattern mining algorithms such as Moment [5], 

CFI-Stream [9] and NewMoment [11]. Take closure 

operator into account, the concepts of closed patterns 

are shown in definitions 3 to 5. 

 Define 3. (Closure Operator [24, 25]) Let T be the 

subsets of all that transactions in D, denotes as
DT  . Let Y be the subset of all items I ( IY  ) 

which appears in D. Concept of closed itemset is 

based on the following two functions h and g: 

},|{)( tiTtIiTh   

},|{)( tiDiDtYg   

Function h takes T as input and returns an itemset 

included in all transactions belonging to T. Function g 

(1) 

(2) 
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takes an itemset Y as an input and returns a set of 

transactions including Y. A function  
)(ghghC    

is called Closure Operator. 

 Define 4. (Closed Itemset [25]) An itemset P is 

called a closed itemset if and only if it satisfy 

Formula 3. Otherwise, P is non-closed. The C(P) is 

called the closure of P. 

PPghPC  ))(( )(  

 Define 5. (Closed Frequent/Half-Frequent Pattern) If 

itemset P=C(P) and its support is no less than 

minimum support, P is called a closed frequent 

pattern. If itemset P=C(P) and its support is no less 

than maximal support error, P is called a closed half-

frequent pattern. Otherwise, P is a non-frequent 

pattern. 

Due to the continuous and infinite, knowledge 

contained in data stream may change with the passage 

of time. Under normal circumstances, the value of 

recent transaction is more important than historical one. 

Therefore, it is necessary to increase the weight of 

recent transaction. The TDM is developed to gradually 

decay the occurrence count of itemset contained in the 

transaction [2, 11]. Let the decay ratio of support count 

in the unit time to decay factor f (f∈(0,1]). When Tn 

arrives, support count of frequent pattern P is denoted 

as freqd(P, Tn). Each time a new transaction arrives, 

freqd(P, Tn) is multiplied by a decay factor f. When the 

mth transaction Tm arrives, r is 1 if it contains P, 

otherwise r=0. The freqd(P, Tm) based on decay factor 

is shown in Formulas 4 and 5. 

1,),(  mifrTPfreq md
 

2,*),(),( 1   mifrfTPfreqTPfreq mdmd
 

(4) 

mTPifr  ,1  

otherwiser ,0  (5) 

3. Algorithm TDMCS 

In this section, data structures and the new way to 

define decay factor f are introduced, and the proposed 

algorithm (TDMCS TDM-Based Closed Frequent 

Pattern Mining on Data Stream) is introduced in detail 

which mines frequent closed patterns based on f-θ-ε 

framework. 

Three data structures are used in algorithm TDMCS, 

including: ClosedTable [24], CidList [24] and New-

TransactionTable / OldTransactionTable. ClosedTable 

which is used to maintain the information of closed 

itemsets consists of three fields: Cid, CP and SCP. Each 

closed itemset CP is assigned to a unique closed 

identifier Cid, and its support count is denoted as SCP. 

CidList maintains each item in data stream and the 

corresponding Cid points to pattern in ClosedTable. 

NewTransactionTable is used to maintain the 

information of a new transaction Tnew. It consists of 

two fields: TempItem and Cid. TempItem contains the 

information of itemsets which satisfy {Ti∩Tnew, Ti∈ 

ClosdeTable}. The Ti is the ith transaction in data 

stream and Tnew is the new transaction. Structure of 

OldTransactionTable is same as NewTransaction-

Table. It is used to maintain the information of old 

transaction Told. 

The core issue of removing old transactions from 

sliding window is how to effectively prune the 

existing data structures. Existing methods are often 

pruning step by step which are inefficient. A sliding 

step M is used in this paper. Pruning data structure 

after the sliding window move M transactions, that is, 

pruning when transactions Tsw+i*M (sw is the size of 

sliding window, i=1, 2, …) are arrived. 

In order to distinguish the weights of the historical 

transactions and the recent transactions, improve the 

accuracy of result set, and avoiding the missing of 

possible frequent patterns, a novel algorithm TDMCS 

is proposed in this paper. TDMCS mines closed 

frequent patterns on data streams based on frame θ-ε-f 

(minimum support-maximal support error-decay 

factor). This algorithm uses data structures 

ClosedTable, CidList, NewTransactionTable and 

OldTransactionTable to maintain frequent itemsets 

information. It uses TDM to estimate the support 

count of pattern, and it maintains the frequent and 

half-frequent closed frequent itemsets which satisfy 

frame θ-ε. The description of algorithm TDMCS is 

shown as Algorithm 1. The main idea is processing 

the information of new transaction Tnew at first. 

Secondly, if the number of processed transactions 

exceeds the size of sliding window, delete the 

information of old transaction Told. If the processing 

steps of the transactions meet the pruning step M, do 

pruning operation. In order to increase the efficiency 

of the algorithm, it only adds delete flags (DeleteFlag) 

when processing old transactions and does the actual 

delete operations when pruning. 

Algorithm 1: TDMCS() 

Mining closed frequent patterns on data streams 

1 For Each Transaction Tnew In S Do  

2 Call TDMCSADD(Tnew); 

3 If NUM>N Then TDMCSREMOVE(Told); 

4 If NUM%M==0 Then Call PRUNNING(); 

5 End For 

Specifically, there are three methods in algorithm 

TDMCS. Method TDMCSADD(Tnew) is used to 

process the new transactions, method TDMCS-

REMOVE(Told) to process old transactions and method 

PRUNING() to process pruning. 

When new transaction Tnew arrived, TDMCSADD 

(Tnew) is described as Algorithm 2. For example, if 

new transaction is T4 as shown in Table 1, this 

algorithm processes it in four steps. First, generate 

CidSet associated with T4 to discover the intersections 

(3) 
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between T4 and existed frequent itemsets. Second, it 

builds NewTransactionTable to maintain possible 

frequent itemsets associated with T4. Then it updates 

ClosedTable and CidList referring to NewTrans-

actionTable and ClosedTable. The processing is as 

shown in Figure 1.

 

Figure 1. Schematic of the process of handling new transaction T4. 

Algorithm 2: TDMCSADD()  

Processing new transactions 

1 Add Tnew To NewTransactionTable 

2 Let setcid(Tnew)={∪CidSet(itemi),itemi∈Tnew } 

3 For Cid In setcid(Tnew) Do 

3.1 interS= Tnew∩ClosedTable(Cid) 

3.2 For TempItem In NewTransactionTable Do 

If interS∈ClosedTable 

Then update support(interS) 

Else If support(interS) ≥ N×ε×θ 

Then Add (interS, Cid) To ClosedTable 

End For 

3.3 For (TempItem, Cid) In NewTransactionTable Do 

If(TempItem==ClosedTable(Cid)) 

Then update support(ClosedTable(Cid)) 

Else update support(TempItem) 

If(newsupport(TempItem) ≥ N×ε×θ) 

Then Add (TempItem, newsupport(TempItem))  

To ClosedTable 

 

 

 

T4: {2     3      4    5} 

Table 2. CidList(before T4) 

item CidSet 

{1} {1, 4, 5} 

{2} {2, 4} 

{3} {1, 2, 3, 4, 5} 

{4} {1} 

{5} {2, 4} 

 

 

CidSet: {1,    2,    3,     4,     5} 

Table 3. ClosedTable 

(θ=0.1, before T4) 

Cid CP SCP 

0 {0} 0 

1 {1 3 4} 0.64 

2 {2 3 5} 1.8 

3 {3} 2.44 

4 {1 2 3 5} 1 

5 {1 3} 1.64 

 

 

Table 4. 

NewTransactionTable 

TempItem Cid 

{2 3 4 5} 0 

{3 4} 1 

{2 3 5} 2 

{3} 3 

 Table 5. ClosedTable  

(θ=0.1, after T4) 

Cid CP SCP 

0 {0} 0 

1 {1 3 4} 0.512 

2 {2 3 5} 2.44 

3 {3} 2.952 

4 {1 2 3 5} 0.8 

5 {1 3} 1.312 

6 {2 3 4 5 7} 1 

7 {3 4} 1.512 

 

 

Table 6. CidList(after T4) 

item CidSet 

{1} {1, 4, 5} 

{2} {2, 4, 6} 

{3} {1, 2, 3, 4, 5, 6, 7} 

{4} {1, 6, 7} 

{5} {2, 4, 6} 

{7} {6} 

 

 

T4: {2    3    4    5    7} 
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If item∈Tnew And item Is Not In CidList 

Then Add item To CidList 

End For 

4 End For 

Illustrate the process of algorithm TDMCSADD(Tnew) to 

handle new transactions. Data stream is shown as in 

Table 1 including 4 transactions. Let decay factor f=0.8, 

minimum support threshold θ=0.1. When new 

transaction T4={2, 3, 4, 5} is arrived, information of 

ClosedTable, CidList and NewTransactionTable are as 

shown in Tables 2-4. There are 5 frequent itemsets in 

ClosedTable, 5 items in CidList and NULL in 

initialized NewTransactionTable. When new tranaction 

T4 arrived, there are some steps to process it. 

 Step 0. Add values <T4, 0> to New-TransactionTable. 

 Step 1. Compare items in T4 and items in CidList to 

get the CidSet associated with T4.  

 Step 2. Add itemsets associated with T4 to 

NewTransactionTable according with CidSet, as 

shown in Table 4. That is for each element Cid of 

CidSet to get the intersections of T4 and ClosedTable. 

 Step 3. Update ClosedTable with information of 

NewTransactionTable, then get Table 5.  

 Step 4. Update CidList with information of novel 

NewTransactionTable and ClosedTable. It will be 

updated under two conditions: the emergence of a 

new frequent itemset or a new item. Assuming T4 

contains a new item (7) represented in italics in 

Figure 1. Then add value < {7}, {6} > to CidList. 

Meanwhile, there are two new frequent itemsets in 

ClosedTable, then update CidList too. 

For continuous generation of new transactions, 

TDMCSADD() repeats steps above for processing. 

When you need to remove the information of old 

transactions from sliding window, use algorithm 

TDMCSREMOVE(Told). The main process is similar to 

algorithm TDMCSADD(Tnew). First, generate 

OldTransactionTable to maintain the information about 

old transaction Told. Second, find the intersections of 

OldTransactionTable and ClosedTable. Next, update or 

delete ClosedTable. In order to improve efficiency of 

algorithm, it only adds deleting flags and does not do 

the actual deletion.  

When steps of processing transactions meet the 

pruning step, call function PRUNING() to do pruning 

operations. This is the actual process of deleting 

operations, and it updates and deletes ClosedTable and 

CidList. The algorithm is described as shown in 

Algorithm 3. 

Algorithm 3: PRUNING() 

Dropping information of historical transactions. 

1 For Each Cid In ClosedTable 

2 Remove itemsets(with DeleteFlag) From closedTable 

3    If support(Cid)< N×ε×θ 

Then Remove itemsets From closeTable 

4    Update cidlist 

5 End For 

If only the parameters minimum support threshold θ 

and decay factor f are used in algorithms, some 

possible frequent patterns might be lost. Such as, let 

minimum support θ=0.1, then complete result set is 

mined. Therefore, many useless patterns may be 

discovered. If setting θ=0.3, when T4 arrived, frequent 

itemsets should meet the support count 4×0.3=1.2. 

Then generate three frequent itemsets in ClosedTable 

as shown in Table 7. From Table 7 and Table 5, it is 

clear that the pattern {3 4} (freqd({3 4})=1.512>1.2)) 

is missing. 

Table 7. ClosedTable (θ=0.3). 

Cid CP SCP 

0 {0} 0 

1 {2 3 5} 2.44 

2 {3} 2.952 

3 {1 3} 1.312 

The reason is that the frequency with decay factor 

of pattern P is smaller than its original frequency, that 

is freqd(P) < freq(P). Let f=0.8, then freqd(P)<1/(1-

0.8)=5 as calculated by Formula 6. Therefore, if only 

the minimum support threshold θ is used under the 

time decay model, some frequent patterns may be lost, 

for its support count may be less than θ×N. To solve 

this problem, ε is introduced as the maximum support 

error. Therefore, the frequent support of mined pattern 

needs to meet N×ε×θ instead of N×θ. 

rf×TPfreqTPfreq mdmd   ),(),( 1
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The next question is how to determine the value of the 

decay rate f after given parameters: minimum support, 

maximum support error and sliding window size. 

Suppose recall is 100%, a lower bound of the decay 

factory is showed by Formula 7 [3, 12]. Formula 8 [3] 

shows the upper bound of f under the condition of 

precision=100%. The usual methods set f to random 

value between lower bound and upper bound or set f to 

one bound of them [3, 12]. Because both recall=100% 

and precision=100% cannot be achieved at same time, 

selected f should balance these two conditions. 

%100,]/)[(
)12( 2 


recallwhenf

NN  
 

          (7) 

%100,
)(
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 precisionwhen

N
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          (8) 

In this paper, a new way to set decay factor is 

proposed. Let sliding window size be 10K. Parameters 

θ, ε and f are shown in Table 8. The third column frecall 

means the lower bound when assuming recall is 100%. 

The last column fprecision implies the upper bound when 

assuming precision is 100%. There are three policies 
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to select f, as shown in Formula 9. For example, let 

θ=0.025 and ε=0.05, then set f=frecall=0.999995, 

f=fprecision=0.995789 or f=faverage=0.997892. Verified by 

experiments (in Section 4), setting f to faverage can get 

the more balanced recall and precision of algorithm. 

Therefore, setting f=faverage is more reasonable than 

setting f to random value between frecall and fprecision or 

one of it. 

Table 8. Time decay factor.  

θ ε×θ frecall (recall=100%) fprecision (precision=100%) 

0.05 0.05×θ 0.999995 0.997895 

0.05 0.1×θ 0.999989 0.997778 

0.05 0.5×θ 0.999929 0.996 

0.025 0.05×θ 0.999995 0.995789 

0.025 0.1×θ 0.999989 0.995556 

0.025 0.5×θ 0.99993 0.992 
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4. Performance 

The experiments were performed on a 2.1 GHZ CPU 

with 2GB memory, and run on Win7. All the 

algorithms were coded in Java language. To evaluate 

the performance of these algorithms, real and synthetic 

datasets were used. Real dataset from UCI [7] describes 

the page visits of users who visited msnbc.com on 

September 28, 1999. Visits are recorded at the level of 

URL category (see below) and are recorded in order. 

There are 989818 transactions and the average length of 

transactions is 5.7. It is a high dense and similar data 

stream. Synthetic datasets were generated from IBM 

data generator. There are four synthetic datasets with 

different average pattern and transaction sizes: 

T5I5D1000K, T10I4D1000K, T10I5D1000K, 

T10I10D1000K, T20I5D1000K and T20I20D1000K. 

These were used to analyze the performance of data 

stream on different density. The parameters are 

described as follows: D is the total number of 

transactions; I is the average size of maximal potential 

patterns; T is the average length of transactions. Such 

as, T10I5D1000K means the average length of 

transactions is 10, average length of maximal potential 

patterns is 5, and number of transactions is 1000K.  

The mainly purpose of experimental was to analyze:  

1. The ways to set decay factor f. Compared the 

algorithm performances with setting f to random 

value, boundary value and average value.  

2. The effects of sliding window sizes on performance 

of algorithm TDMCS.  

3. The effects of pruning steps on performance of 

algorithm TDMCS.  

4. The comparison the performances of algorithms 

TDMCS and CloStream* [25], MSW [12] and 

SWP [3].  

Compared to algorithm CloStream [24], algorithm 

CloStream* used the sliding window to deal with 

recent transactions to mine closed frequent patterns. 

CloStream handled all the transactions, so it did not 

apply to mine unlimited data stream. Therefore, in this 

paper we compared TDMCS with CloStream*. 

Similar pattern tree structures were used in algorithms 

MSW and SWP. And both of them set decay factor as 

lower bound. In this paper, some modifications were 

made to the two original algorithms for mining closed 

frequent patterns instead of complete patterns.   

The maximum support error ε was 0.1. The value of 

the time decay factor f was average of low bound and 

high bound to balance 100% recall and 100% 

precision. The sliding window sizes N were 0.1M to 

0.8M and the minimum support thresholds were 0.06 

to 0.1. The values of f in the experiments are shown in 

Table 9. 

Table 9. Values of decay factors. 

fid θ ε×θ N f 

f1 0.06 0.006 0.1M 0.990686 

f2 0.06 0.006 0.2M 0.995343 

f3 0.06 0.006 0.3M 0.996895 

f4 0.06 0.006 0.4M 0.997672 

f5 0.06 0.006 0.5M 0.998137 

f6 0.06 0.006 0.7M 0.998669 

f7 0.06 0.006 0.8M 0.998836 

f8 0.07 0.007 0.1M 0.992009 

f9 0.08 0.008 0.1M 0.993001 

f10 0.09 0.009 0.1M 0.993772 

f11 0.1 0.01 0.1M 0.994389 

At first, verify the reasonableness of setting 

f=faverage. The relationship between decay factor f and 

minimum support threshold θ, maximal support error 

threshold ε needs to be discussed in algorithm 

TDMCS, in order to determine the optimum parameter 

value of f. 

Let minimum support θ=0.05, the values of recall 

and precision of TDMCS on msnbc with different 

decay factors are shown in Figure 2. Abscissa axis 

means the random value between frecall and fprecision at 

different window size N. Vertical axis means the recall 

and precision at different N, and the dashed line means 

to set f=faverage. From this figure, it can be concluded 

that:  

1. With the decreasing of f, recall is decreasing and 

precision is increasing.  

2. The trends of recall and precision at different N are 

similar.  

3. When setting f=faverage, the values of recall and 

precision are fixed. They are almost unaffected by 

sizes of sliding windows.  

4. The values of recall and precision can be balanced 

by setting f=faverage.  
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When setting f=frecall, f=fprecision and f=faverage, we compare 

the average values of recalls and precisions of 

algorithm with different sliding window. It can be 

concluded that almost 100% recall when setting f=frecall, 

and get lowest recall with setting f=fprecision are proposed. 

When setting f=faverage, the value of recall is between 

them. Setting f=fprecision and f=faverage can get almost the 

same precisions. But the value of precision is lowest 

when setting f=frecall. Therefore, recall and precision of 

algorithm can be more balanced by setting f=faverage than 

setting f=frecall and f=fprecision.  

 
a) Recall.                                     b) Precision. 

Figure 2. Variations of recall and precision with different decay 

factors. 

Next, we compare the performances of algorithms 

with setting f to faverage and random values. To make the 

random value more reasonable, set them in the range of 

(0.9, 1), and denoted as frandom. Use function 

Math.random() to generate 5 random values to set 

decay factors. The performance of TDMCS on msnbc is 

shown in Figure 3. As can be seen, when setting 

f=faverage and f=frandom, the values of precision are little 

different. But the values of recall are very different 

when setting f to random values. Therefore the 

performance of algorithm is unstable. The performance 

with f=faverage is significantly better than f=frandom, and 

the result set is stable.  

It can get the same conclusions when processing 

synthetic data streams. Thus, setting decay factor to 

average value is reasonable.  

 
Figure 3. The performance studies on msnbc with faverage and frandom. 

The second experiment analyzes the influence of 

window sizes on algorithm TDMCS. Let sliding 

window size N=0.1M, 0.2M and 0.3M; the minimum 

support θ=0.06; the decay factor f= f1, f2, f3 as shown in 

Table 9; pruning step P=0.1M [3, 12]. The runtime and 

space cost of algorithm TDMCS on msnbc are 

compared in Figure 4.  

The performance of TDMCS on data stream msnbc 

is shown in Figure 4 when processing 1M, 1.5M, 2M 

and 2.5M transactions. Figure 4-a shows the runtime 

and in which abscissa axis means number of 

transactions. It can be seen that:  

1. When the number of transactions is small, the 

increment of window size leads to a slight 

increment of runtime;  

2. With the increment of processing transaction 

number, the runtime with big window size is lower 

than runtime with small window size. 

Figure 4-b shows the memory usage. It is clear that the 

effect of different window size on memory usage is 

small. From time and space consumptions, it can be 

concluded that the runtime of algorithm TDMCS on 

data stream msnbc is greatly different as different size 

N under the same number of transactions. And the 

memory usage is almost same as different size N. 

Thence, in terms of space complexity, TDMCS 

applies to discovering frequent patterns of any 

window size.  

  

a) Runtimes. b) Memory usage. 

Figure 4. The performance of TDMCS on msnbc based on 

different sizes of windows. 

Thirdly, we analyze the effect of pruning step on 

performance of algorithm TDMCS over msnbc. 

Sliding window size N was in {0.5M, 0.7M, or 0.8M}. 

Pruning step P (P≤N) was in  {0.1M 0.2M, 0.3M, 

0.4M, 0.5M}. Minimum support θ was set to 0.06 and 

f was in {f5, f6, f7}. 

Figure 5-a shows the runtime of TDMCS on data 

stream msnbc with different window sizes and 

different pruning steps. From the performance of 

runtime it can be concluded that: 

1. Optimal pruning step length is related to sliding 

window size. 

2. When value P is different, the runtime is obvious 

different with N.  

The memory usage is shown in Figure 5-b. It is clear 

that the effect of pruning step on memory usage is 

small. From Figure 5 it can be seen that the length of 

pruning step has little influence on runtime and 

memory usage when window size is small. And when 

window size is big, pruning step has a wider range 

influence on runtime. Therefore, set the parameter 

P=0.1M when N=0.1M is reasonable. Figure 5-b also 

shows that algorithm TDMCS applies to discover 

frequent patterns of any size of window.  
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a) Runtimes 

 

b) Memory usage 

Figure 5. The performance study of TDMCS on data stream msnbc 

based on different sizes of windows and pruning steps. 

 

Finally, we compare the performances of TDMCS 

and classical algorithms with different sliding window 

sizes. Parameters minimum support θ is 0.06, maximal 

support error ε is 0.1, pruning step P is 0.1M, sliding 

window size N is from 0.1M to 0.5M and decay factor f 

is from f1 to f4 as shown in Table 9. 

The performances of four algorithms processing 

synthetic data streams are shown in Figure 6, which are 

average values of recalls and precisions under different 

sliding window sizes. Four data streams with different 

lengths of transactions or patterns are used, including: 

T10I4, T10I5, T10I10 and T20I5. Figure 6-a shows the 

runtimes of four algorithms. Overall, the runtimes of 

TDMCS and CloStream* are lower than the other two 

algorithms. This is because algorithm CloStream* does 

not process data with decay operations and algorithm 

TDMCS uses closure operator. The memory usages of 

algorithms are shown in Figure 6-b. The memory usage 

of TDMCS is the lowest of all. But the differences 

between four algorithms are not too much. Figure 6-c 

and Figure 6-d show the recalls and precisions of 

algorithms. Both algorithms MSW and SWP set decay 

factor to lower bound, so we only compared with SWP. 

The recall of algorithm CloStream* is the highest of all 

for it does not use time decay model, but the precision 

is the lowest of all. The recall and precision of 

algorithm SWP are in the middle of these algorithms. 

The recall of TDMCS is about 1% lower than other two 

algorithms, but the precision of TDMCS is about 10% 

higher than CloStream* and about 4% higher than 

SWP. Therefore, algorithm TDMCS can get more 

balance recall and precision than the other three 

methods. From performances of four algorithms on data 

streams with different pattern lengths, such as T10I4, 

T10I5 and T10I10, or data streams with different 

transaction lengths, such as T10I5 and T20I5, it can be 

concluded that algorithm TDMCS is more suitable to 

process data streams with long transactions and long 

patterns. 

 
a) Runtimes. 

 
b) Memory usage. 

 
c) Recall. 

 
d) Precision. 

Figure 6. The performance studies of algorithms on synthetic 

data streams. 

5. Summary  

Data stream is a fluid, continuous, unbounded and 

time ordered sequence of data transactions generated 

at a rapid rate. Due to the knowledge contained in data 

stream may change over time, concept drift should be 

taken into account when mining frequent patterns. 
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Normally, recent transactions contain more important 

information than historical transactions, thus they 

should be treated differently. Considering the data 

stream characteristics, an efficient algorithm TDMCS is 

proposed in this paper. It is used to mining closed 

frequent patterns, and it based on time decay model and 

sliding window model. It uses closure operator to 

improve the efficiency of mining closed frequent 

itemsets. In order to balance the recall and precision, a 

novel manner by average the lower bound and higher 

bound is provided in this paper. It uses frame minimum 

support-maximum support error-decay factor to avoid 

concept drift and discover more reasonable and 

compact result set. The performance of the proposed 

algorithm was investigated using experiments. The 

results show that it is efficient and scalable, and it 

applies to mining high dense data stream and long 

patterns.  
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