
The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017 851

TDMCS: An Efficient Method for Mining Closed

Frequent Patterns over Data Streams Based on

Time Decay Model

Meng Han, Jian Ding, and Juan Li

School of Computer Science and Engineering, North Minzu University, China

Abstract: In some data stream applications, the information embedded in the data arriving in the new recent time period is

important than historical transactions. Because data stream is changing over time, concept drift problem may appear in data

stream mining. Frequent pattern mining methods always generate useless and redundant patterns. In order to obtain the result

set of lossless compression, closed pattern is needed. A novel method for efficiently mining closed frequent patterns on data

stream is proposed in this paper. The main works includes: distinguished importance of recent transactions from historical

transactions based on time decay model and sliding window model; designed the frame minimum support count-maximal

support error rate-decay factor (θ-ε-f) to avoid concept drift; used closure operator to improve the efficiency of algorithm;

design a novel way to set decay factor: average-decay-factor faverage in order to balance the high recall and high precision of

algorithm. The performance of proposed method is evaluated via experiments, and the results show that the proposed method

is efficient and steady-state. It applies to mine data streams with high density and long patterns. It is suitable for different size

sliding windows, and it is also superior to other analogous algorithms.

Keywords: data stream mining, frequent pattern mining, closed pattern mining, time decay model, sliding window,

concept drift.

Received January 15, 2015; accepted August 12, 2015

1. Introduction
1

Data stream as a new data model is widely used in

many applications. Data stream which is different from

traditional database is time ordered, rapidly changing,

massive and unlimited. Searching for frequent patterns

in a continuous data stream has became important and

challenging.

In recent years, some algorithms for mining frequent

patterns or itemsets on data streams have been

proposed. Algorithms such as sticky sampling [15],

lossy counting [15], XSM [1] and FDPM [26] mine

frequent patterns which meet maximal support error

rate and minimum support count. These methods do not

distinguish between recent and historical transactions

and do not consider the importance of recent

transactions. In addition, these methods for mining

complete result sets will produce a lot of useless

patterns. For reducing the number of patterns, concise

pattern set should be mined, mainly including: maximal

frequent patterns, closed frequent patterns, top-k

frequent patterns or a combination of them and so on.

Algorithms max-FISM [6] and GUIDE [19] discover

recent maximal frequent patterns based on sliding

windows. WMFP-SW [10] mines weighted maximal

frequent patterns based on sliding windows. Algorithms

moment [5], newmoment [11], clostream [24],

1
This paper is supported by National Nature Science Foundation of China

(61563001) and Nature Science Foundation of Ningxia (No. NZ17115) and

North Minzu University (2014XYZ13).

Stream_FCI [20], TMoment [17], IncMine [4] and

CloStream*[25] discover closed frequent patterns

based on sliding windows. TOPSIL- Miner [23] uses

landmark windows to mine top-k frequent patterns.

Methods Top-k Lossy Counting [22], MSWTP [2] and

Top-k Miner [18] discover top-k frequent patterns

based on sliding windows. FCI_max [21] mines

closed top-k frequent patterns based on sliding

windows and so on. The drawbacks of above

algorithms are that:

1. Using only the minimum support threshold for

frequent patterns mining and unprocessed concept

drift problem of data streams.

2. Although window model are used in these methods,

the weights of transactions in window are same.

As can be seen from the above algorithms, mining

frequent patterns on data streams usually based on

window model, especially the sliding window. The

reason is that recent transactions normally contain

more information than historical ones. Besides sliding

window model, Time Decay Model (TDM) [3, 5, 8, 9,

12, 13, 14, 19] is also used to process recent

transactions.

TDM-based methods to mine frequent patterns on

data stream emphasize that the importance of recent

and historical transactions should be distinguished in

the window. Recent years, the ways to set decay factor

in TDM usually divide into two categories. The first

852 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

one set decay factor to random value in the range of (0,

1) [9, 14, 19]. Such ways lead to the instability of the

mining results because of the random values of decay

factor. The second method assumes that algorithm

meets 100% Recall or 100% Precision to get the upper

and lower bounds of decay factors [3, 12]. Then set

decay factor to the upper bound or lower bound or

random value between them. The problems of these

two ways to set decay factor are that they can get high

recall or high precision of algorithm, while get the low

corresponding precision or recall of algorithm. Or

because of the uncertainty of the decay factor value, the

pattern results of algorithm are instability.

In order to avoid concept drift, distinguish recent

transactions from historical ones, discover compact

pattern result set efficiently, and apply to mine high

dense transactions and long patterns, a novel algorithm

is proposed in this paper. Mainly works and

innovations are that:

1. Design a novel way to set decay factor f. Existed

methods set f to boundary value of lower bound or

high bound by assuming 100% Recall and 100%

Precision [3, 12, 26], or to a random value in range

of (0, 1) [13, 16]. The former will lead to

corresponding algorithm low Precision or low

Recall. And the later will make unstable

performance of algorithm. In order to balance Recall

and Precision of algorithm, proposed an average way

to set decay factor in this paper.

2. Propose a three layers frame: minimum support-

maximum support error-decay factor to solve the

concept drift problem and avoid loss of possible

frequent patterns.

3. Propose a novel algorithm to mine closed frequent

patterns on data streams based on time decay model

and sliding window model. It can get lossless

compression result set. Time decay model [2, 11, 12,

15] is used to further emphasize the importance of

recent transaction and reduce the importance of

historical one. By comparisons of precisions of novel

algorithm and existed algorithms, the novel

algorithm can get more accurate pattern result.

The rest of this paper is organized as follows. Section 2

presents background knowledge; mainly about closure

operator and time decal model. The efficient novel

algorithm based on time decay model to discover

closed patterns is introduced in section 3. Section 4

describes the experiments and explains the

experimental results. Section 5 concludes this work.

2. Preliminaries

A data stream DS=<T1, T2, … , Ti, …> is a continuous

and unbounded sequence of transactions in a timely

order, where Ti (i=1, 2, …) is the ith transaction. Each

transaction contains a unique transaction identifier tid, as

shown in the first column of Table 1. The support count

of frequent pattern P, denoted as freq(P, N)[5], is the

number of transactions in existed N transactions in

which P occurs.

 Define 1. (Frequent Pattern [12]) Let N be the

sliding window size, and θ (]1,0() be the

minimum support. If itemset P meets freq(P,

N)≥θ×N, P is a frequent pattern.

 Define 2. (Half-Frequent Pattern, Non-Frequent

Pattern [12]) Let N be the sliding window size,

θ(θ∈(0,1]) be the minimum support and ε (ε∈(0,

θ)) be the maximal support error. If itemset P meets

θ×N ≥ freq(P, N) ≥ ε×θ×N, P is a half-frequent

pattern. Else if freq(P, N) < ε×θ×N, P is a non-

frequent pattern.

Table 1. Transaction data stream.

TID Transaction

t1 1 3 4

t2 2 3 5

t3 1 2 3 5

t4 2 3 4 5

Data stream changes in real time and the infrequent

patterns over time may become frequent patterns. That

is concept drift. Therefore, in order to reduce the

number of missing possible patterns, frequent patterns

and half-frequent patterns need to be maintained

during mining process. In addition, in order to reduce

the cost of maintaining patterns, non-frequent patterns

need to be lost. By this way, the possible error of

missing patterns is not greater than ε [3, 12].

Therefore, using θ-ε framework can solve the problem

of concept drift.

A heavy problem of mining frequent pattern from

data stream is generated a large number of useless

patterns. Therefore, mining useful and compressed

patterns are needed. Discovering closed frequent

pattern is a common method, which is lossless

compressed and contains all the information of the

complete result. Meanwhile, in order to improve the

efficiency to discover closed patterns, closure operator

[24, 25] is used in this paper. The performance of the

algorithm with closure operator is better than classic

closed pattern mining algorithms such as Moment [5],

CFI-Stream [9] and NewMoment [11]. Take closure

operator into account, the concepts of closed patterns

are shown in definitions 3 to 5.

 Define 3. (Closure Operator [24, 25]) Let T be the

subsets of all that transactions in D, denotes as
DT . Let Y be the subset of all items I (IY)

which appears in D. Concept of closed itemset is

based on the following two functions h and g:

},|{)(tiTtIiTh

},|{)(tiDiDtYg

Function h takes T as input and returns an itemset

included in all transactions belonging to T. Function g

(1)

(2)

TDMCS: An Efficient Method for Mining Closed Frequent Patterns over Data Streams Based on ... 853

takes an itemset Y as an input and returns a set of

transactions including Y. A function
)(ghghC

is called Closure Operator.

 Define 4. (Closed Itemset [25]) An itemset P is

called a closed itemset if and only if it satisfy

Formula 3. Otherwise, P is non-closed. The C(P) is

called the closure of P.

PPghPC))(()(

 Define 5. (Closed Frequent/Half-Frequent Pattern) If

itemset P=C(P) and its support is no less than

minimum support, P is called a closed frequent

pattern. If itemset P=C(P) and its support is no less

than maximal support error, P is called a closed half-

frequent pattern. Otherwise, P is a non-frequent

pattern.

Due to the continuous and infinite, knowledge

contained in data stream may change with the passage

of time. Under normal circumstances, the value of

recent transaction is more important than historical one.

Therefore, it is necessary to increase the weight of

recent transaction. The TDM is developed to gradually

decay the occurrence count of itemset contained in the

transaction [2, 11]. Let the decay ratio of support count

in the unit time to decay factor f (f∈(0,1]). When Tn

arrives, support count of frequent pattern P is denoted

as freqd(P, Tn). Each time a new transaction arrives,

freqd(P, Tn) is multiplied by a decay factor f. When the

mth transaction Tm arrives, r is 1 if it contains P,

otherwise r=0. The freqd(P, Tm) based on decay factor

is shown in Formulas 4 and 5.

1,),(mifrTPfreq md

2,*),(),(1 mifrfTPfreqTPfreq mdmd

(4)

mTPifr ,1

otherwiser ,0 (5)

3. Algorithm TDMCS

In this section, data structures and the new way to

define decay factor f are introduced, and the proposed

algorithm (TDMCS TDM-Based Closed Frequent

Pattern Mining on Data Stream) is introduced in detail

which mines frequent closed patterns based on f-θ-ε

framework.

Three data structures are used in algorithm TDMCS,

including: ClosedTable [24], CidList [24] and New-

TransactionTable / OldTransactionTable. ClosedTable

which is used to maintain the information of closed

itemsets consists of three fields: Cid, CP and SCP. Each

closed itemset CP is assigned to a unique closed

identifier Cid, and its support count is denoted as SCP.

CidList maintains each item in data stream and the

corresponding Cid points to pattern in ClosedTable.

NewTransactionTable is used to maintain the

information of a new transaction Tnew. It consists of

two fields: TempItem and Cid. TempItem contains the

information of itemsets which satisfy {Ti∩Tnew, Ti∈

ClosdeTable}. The Ti is the ith transaction in data

stream and Tnew is the new transaction. Structure of

OldTransactionTable is same as NewTransaction-

Table. It is used to maintain the information of old

transaction Told.

The core issue of removing old transactions from

sliding window is how to effectively prune the

existing data structures. Existing methods are often

pruning step by step which are inefficient. A sliding

step M is used in this paper. Pruning data structure

after the sliding window move M transactions, that is,

pruning when transactions Tsw+i*M (sw is the size of

sliding window, i=1, 2, …) are arrived.

In order to distinguish the weights of the historical

transactions and the recent transactions, improve the

accuracy of result set, and avoiding the missing of

possible frequent patterns, a novel algorithm TDMCS

is proposed in this paper. TDMCS mines closed

frequent patterns on data streams based on frame θ-ε-f

(minimum support-maximal support error-decay

factor). This algorithm uses data structures

ClosedTable, CidList, NewTransactionTable and

OldTransactionTable to maintain frequent itemsets

information. It uses TDM to estimate the support

count of pattern, and it maintains the frequent and

half-frequent closed frequent itemsets which satisfy

frame θ-ε. The description of algorithm TDMCS is

shown as Algorithm 1. The main idea is processing

the information of new transaction Tnew at first.

Secondly, if the number of processed transactions

exceeds the size of sliding window, delete the

information of old transaction Told. If the processing

steps of the transactions meet the pruning step M, do

pruning operation. In order to increase the efficiency

of the algorithm, it only adds delete flags (DeleteFlag)

when processing old transactions and does the actual

delete operations when pruning.

Algorithm 1: TDMCS()

Mining closed frequent patterns on data streams

1 For Each Transaction Tnew In S Do

2 Call TDMCSADD(Tnew);

3 If NUM>N Then TDMCSREMOVE(Told);

4 If NUM%M==0 Then Call PRUNNING();

5 End For

Specifically, there are three methods in algorithm

TDMCS. Method TDMCSADD(Tnew) is used to

process the new transactions, method TDMCS-

REMOVE(Told) to process old transactions and method

PRUNING() to process pruning.

When new transaction Tnew arrived, TDMCSADD

(Tnew) is described as Algorithm 2. For example, if

new transaction is T4 as shown in Table 1, this

algorithm processes it in four steps. First, generate

CidSet associated with T4 to discover the intersections

(3)

854 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

between T4 and existed frequent itemsets. Second, it

builds NewTransactionTable to maintain possible

frequent itemsets associated with T4. Then it updates

ClosedTable and CidList referring to NewTrans-

actionTable and ClosedTable. The processing is as

shown in Figure 1.

Figure 1. Schematic of the process of handling new transaction T4.

Algorithm 2: TDMCSADD()

Processing new transactions

1 Add Tnew To NewTransactionTable

2 Let setcid(Tnew)={∪CidSet(itemi),itemi∈Tnew }

3 For Cid In setcid(Tnew) Do

3.1 interS= Tnew∩ClosedTable(Cid)

3.2 For TempItem In NewTransactionTable Do

If interS∈ClosedTable

Then update support(interS)

Else If support(interS) ≥ N×ε×θ

Then Add (interS, Cid) To ClosedTable

End For

3.3 For (TempItem, Cid) In NewTransactionTable Do

If(TempItem==ClosedTable(Cid))

Then update support(ClosedTable(Cid))

Else update support(TempItem)

If(newsupport(TempItem) ≥ N×ε×θ)

Then Add (TempItem, newsupport(TempItem))

To ClosedTable

T4: {2 3 4 5}

Table 2. CidList(before T4)

item CidSet

{1} {1, 4, 5}

{2} {2, 4}

{3} {1, 2, 3, 4, 5}

{4} {1}

{5} {2, 4}

CidSet: {1, 2, 3, 4, 5}

Table 3. ClosedTable

(θ=0.1, before T4)

Cid CP SCP

0 {0} 0

1 {1 3 4} 0.64

2 {2 3 5} 1.8

3 {3} 2.44

4 {1 2 3 5} 1

5 {1 3} 1.64

Table 4.

NewTransactionTable

TempItem Cid

{2 3 4 5} 0

{3 4} 1

{2 3 5} 2

{3} 3

 Table 5. ClosedTable

(θ=0.1, after T4)

Cid CP SCP

0 {0} 0

1 {1 3 4} 0.512

2 {2 3 5} 2.44

3 {3} 2.952

4 {1 2 3 5} 0.8

5 {1 3} 1.312

6 {2 3 4 5 7} 1

7 {3 4} 1.512

Table 6. CidList(after T4)

item CidSet

{1} {1, 4, 5}

{2} {2, 4, 6}

{3} {1, 2, 3, 4, 5, 6, 7}

{4} {1, 6, 7}

{5} {2, 4, 6}

{7} {6}

T4: {2 3 4 5 7}

TDMCS: An Efficient Method for Mining Closed Frequent Patterns over Data Streams Based on ... 855

If item∈Tnew And item Is Not In CidList

Then Add item To CidList

End For

4 End For

Illustrate the process of algorithm TDMCSADD(Tnew) to

handle new transactions. Data stream is shown as in

Table 1 including 4 transactions. Let decay factor f=0.8,

minimum support threshold θ=0.1. When new

transaction T4={2, 3, 4, 5} is arrived, information of

ClosedTable, CidList and NewTransactionTable are as

shown in Tables 2-4. There are 5 frequent itemsets in

ClosedTable, 5 items in CidList and NULL in

initialized NewTransactionTable. When new tranaction

T4 arrived, there are some steps to process it.

 Step 0. Add values <T4, 0> to New-TransactionTable.

 Step 1. Compare items in T4 and items in CidList to

get the CidSet associated with T4.

 Step 2. Add itemsets associated with T4 to

NewTransactionTable according with CidSet, as

shown in Table 4. That is for each element Cid of

CidSet to get the intersections of T4 and ClosedTable.

 Step 3. Update ClosedTable with information of

NewTransactionTable, then get Table 5.

 Step 4. Update CidList with information of novel

NewTransactionTable and ClosedTable. It will be

updated under two conditions: the emergence of a

new frequent itemset or a new item. Assuming T4

contains a new item (7) represented in italics in

Figure 1. Then add value < {7}, {6} > to CidList.

Meanwhile, there are two new frequent itemsets in

ClosedTable, then update CidList too.

For continuous generation of new transactions,

TDMCSADD() repeats steps above for processing.

When you need to remove the information of old

transactions from sliding window, use algorithm

TDMCSREMOVE(Told). The main process is similar to

algorithm TDMCSADD(Tnew). First, generate

OldTransactionTable to maintain the information about

old transaction Told. Second, find the intersections of

OldTransactionTable and ClosedTable. Next, update or

delete ClosedTable. In order to improve efficiency of

algorithm, it only adds deleting flags and does not do

the actual deletion.

When steps of processing transactions meet the

pruning step, call function PRUNING() to do pruning

operations. This is the actual process of deleting

operations, and it updates and deletes ClosedTable and

CidList. The algorithm is described as shown in

Algorithm 3.

Algorithm 3: PRUNING()

Dropping information of historical transactions.

1 For Each Cid In ClosedTable

2 Remove itemsets(with DeleteFlag) From closedTable

3 If support(Cid)< N×ε×θ

Then Remove itemsets From closeTable

4 Update cidlist

5 End For

If only the parameters minimum support threshold θ

and decay factor f are used in algorithms, some

possible frequent patterns might be lost. Such as, let

minimum support θ=0.1, then complete result set is

mined. Therefore, many useless patterns may be

discovered. If setting θ=0.3, when T4 arrived, frequent

itemsets should meet the support count 4×0.3=1.2.

Then generate three frequent itemsets in ClosedTable

as shown in Table 7. From Table 7 and Table 5, it is

clear that the pattern {3 4} (freqd({3 4})=1.512>1.2))

is missing.

Table 7. ClosedTable (θ=0.3).

Cid CP SCP

0 {0} 0

1 {2 3 5} 2.44

2 {3} 2.952

3 {1 3} 1.312

The reason is that the frequency with decay factor

of pattern P is smaller than its original frequency, that

is freqd(P) < freq(P). Let f=0.8, then freqd(P)<1/(1-

0.8)=5 as calculated by Formula 6. Therefore, if only

the minimum support threshold θ is used under the

time decay model, some frequent patterns may be lost,

for its support count may be less than θ×N. To solve

this problem, ε is introduced as the maximum support

error. Therefore, the frequent support of mined pattern

needs to meet N×ε×θ instead of N×θ.

rf×TPfreqTPfreq mdmd),(),(1

 (6) m

mm

i

im

i rfrfrfr ...××× 2

2

1

1

f
ff mm

1

1
1...21

The next question is how to determine the value of the

decay rate f after given parameters: minimum support,

maximum support error and sliding window size.

Suppose recall is 100%, a lower bound of the decay

factory is showed by Formula 7 [3, 12]. Formula 8 [3]

shows the upper bound of f under the condition of

precision=100%. The usual methods set f to random

value between lower bound and upper bound or set f to

one bound of them [3, 12]. Because both recall=100%

and precision=100% cannot be achieved at same time,

selected f should balance these two conditions.

%100,]/)[(
)12(2

recallwhenf

NN

 (7)

%100,
)(

1)(

 precisionwhen

N

N
f

 (8)

In this paper, a new way to set decay factor is

proposed. Let sliding window size be 10K. Parameters

θ, ε and f are shown in Table 8. The third column frecall

means the lower bound when assuming recall is 100%.

The last column fprecision implies the upper bound when

assuming precision is 100%. There are three policies

856 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

to select f, as shown in Formula 9. For example, let

θ=0.025 and ε=0.05, then set f=frecall=0.999995,

f=fprecision=0.995789 or f=faverage=0.997892. Verified by

experiments (in Section 4), setting f to faverage can get

the more balanced recall and precision of algorithm.

Therefore, setting f=faverage is more reasonable than

setting f to random value between frecall and fprecision or

one of it.

Table 8. Time decay factor.

θ ε×θ frecall (recall=100%) fprecision (precision=100%)

0.05 0.05×θ 0.999995 0.997895

0.05 0.1×θ 0.999989 0.997778

0.05 0.5×θ 0.999929 0.996

0.025 0.05×θ 0.999995 0.995789

0.025 0.1×θ 0.999989 0.995556

0.025 0.5×θ 0.99993 0.992

)12(2

1]/)[(

NN

recallff

 (9) N

N
ff precision

)(

1)(
2

2

)(

1)(
]/)[(

)12(2

3

N

N

f

NN

4. Performance

The experiments were performed on a 2.1 GHZ CPU

with 2GB memory, and run on Win7. All the

algorithms were coded in Java language. To evaluate

the performance of these algorithms, real and synthetic

datasets were used. Real dataset from UCI [7] describes

the page visits of users who visited msnbc.com on

September 28, 1999. Visits are recorded at the level of

URL category (see below) and are recorded in order.

There are 989818 transactions and the average length of

transactions is 5.7. It is a high dense and similar data

stream. Synthetic datasets were generated from IBM

data generator. There are four synthetic datasets with

different average pattern and transaction sizes:

T5I5D1000K, T10I4D1000K, T10I5D1000K,

T10I10D1000K, T20I5D1000K and T20I20D1000K.

These were used to analyze the performance of data

stream on different density. The parameters are

described as follows: D is the total number of

transactions; I is the average size of maximal potential

patterns; T is the average length of transactions. Such

as, T10I5D1000K means the average length of

transactions is 10, average length of maximal potential

patterns is 5, and number of transactions is 1000K.

The mainly purpose of experimental was to analyze:

1. The ways to set decay factor f. Compared the

algorithm performances with setting f to random

value, boundary value and average value.

2. The effects of sliding window sizes on performance

of algorithm TDMCS.

3. The effects of pruning steps on performance of

algorithm TDMCS.

4. The comparison the performances of algorithms

TDMCS and CloStream* [25], MSW [12] and

SWP [3].

Compared to algorithm CloStream [24], algorithm

CloStream* used the sliding window to deal with

recent transactions to mine closed frequent patterns.

CloStream handled all the transactions, so it did not

apply to mine unlimited data stream. Therefore, in this

paper we compared TDMCS with CloStream*.

Similar pattern tree structures were used in algorithms

MSW and SWP. And both of them set decay factor as

lower bound. In this paper, some modifications were

made to the two original algorithms for mining closed

frequent patterns instead of complete patterns.

The maximum support error ε was 0.1. The value of

the time decay factor f was average of low bound and

high bound to balance 100% recall and 100%

precision. The sliding window sizes N were 0.1M to

0.8M and the minimum support thresholds were 0.06

to 0.1. The values of f in the experiments are shown in

Table 9.

Table 9. Values of decay factors.

fid θ ε×θ N f

f1 0.06 0.006 0.1M 0.990686

f2 0.06 0.006 0.2M 0.995343

f3 0.06 0.006 0.3M 0.996895

f4 0.06 0.006 0.4M 0.997672

f5 0.06 0.006 0.5M 0.998137

f6 0.06 0.006 0.7M 0.998669

f7 0.06 0.006 0.8M 0.998836

f8 0.07 0.007 0.1M 0.992009

f9 0.08 0.008 0.1M 0.993001

f10 0.09 0.009 0.1M 0.993772

f11 0.1 0.01 0.1M 0.994389

At first, verify the reasonableness of setting

f=faverage. The relationship between decay factor f and

minimum support threshold θ, maximal support error

threshold ε needs to be discussed in algorithm

TDMCS, in order to determine the optimum parameter

value of f.

Let minimum support θ=0.05, the values of recall

and precision of TDMCS on msnbc with different

decay factors are shown in Figure 2. Abscissa axis

means the random value between frecall and fprecision at

different window size N. Vertical axis means the recall

and precision at different N, and the dashed line means

to set f=faverage. From this figure, it can be concluded

that:

1. With the decreasing of f, recall is decreasing and

precision is increasing.

2. The trends of recall and precision at different N are

similar.

3. When setting f=faverage, the values of recall and

precision are fixed. They are almost unaffected by

sizes of sliding windows.

4. The values of recall and precision can be balanced

by setting f=faverage.

TDMCS: An Efficient Method for Mining Closed Frequent Patterns over Data Streams Based on ... 857

When setting f=frecall, f=fprecision and f=faverage, we compare

the average values of recalls and precisions of

algorithm with different sliding window. It can be

concluded that almost 100% recall when setting f=frecall,

and get lowest recall with setting f=fprecision are proposed.

When setting f=faverage, the value of recall is between

them. Setting f=fprecision and f=faverage can get almost the

same precisions. But the value of precision is lowest

when setting f=frecall. Therefore, recall and precision of

algorithm can be more balanced by setting f=faverage than

setting f=frecall and f=fprecision.

a) Recall. b) Precision.

Figure 2. Variations of recall and precision with different decay

factors.

Next, we compare the performances of algorithms

with setting f to faverage and random values. To make the

random value more reasonable, set them in the range of

(0.9, 1), and denoted as frandom. Use function

Math.random() to generate 5 random values to set

decay factors. The performance of TDMCS on msnbc is

shown in Figure 3. As can be seen, when setting

f=faverage and f=frandom, the values of precision are little

different. But the values of recall are very different

when setting f to random values. Therefore the

performance of algorithm is unstable. The performance

with f=faverage is significantly better than f=frandom, and

the result set is stable.

It can get the same conclusions when processing

synthetic data streams. Thus, setting decay factor to

average value is reasonable.

Figure 3. The performance studies on msnbc with faverage and frandom.

The second experiment analyzes the influence of

window sizes on algorithm TDMCS. Let sliding

window size N=0.1M, 0.2M and 0.3M; the minimum

support θ=0.06; the decay factor f= f1, f2, f3 as shown in

Table 9; pruning step P=0.1M [3, 12]. The runtime and

space cost of algorithm TDMCS on msnbc are

compared in Figure 4.

The performance of TDMCS on data stream msnbc

is shown in Figure 4 when processing 1M, 1.5M, 2M

and 2.5M transactions. Figure 4-a shows the runtime

and in which abscissa axis means number of

transactions. It can be seen that:

1. When the number of transactions is small, the

increment of window size leads to a slight

increment of runtime;

2. With the increment of processing transaction

number, the runtime with big window size is lower

than runtime with small window size.

Figure 4-b shows the memory usage. It is clear that the

effect of different window size on memory usage is

small. From time and space consumptions, it can be

concluded that the runtime of algorithm TDMCS on

data stream msnbc is greatly different as different size

N under the same number of transactions. And the

memory usage is almost same as different size N.

Thence, in terms of space complexity, TDMCS

applies to discovering frequent patterns of any

window size.

a) Runtimes. b) Memory usage.

Figure 4. The performance of TDMCS on msnbc based on

different sizes of windows.

Thirdly, we analyze the effect of pruning step on

performance of algorithm TDMCS over msnbc.

Sliding window size N was in {0.5M, 0.7M, or 0.8M}.

Pruning step P (P≤N) was in {0.1M 0.2M, 0.3M,

0.4M, 0.5M}. Minimum support θ was set to 0.06 and

f was in {f5, f6, f7}.

Figure 5-a shows the runtime of TDMCS on data

stream msnbc with different window sizes and

different pruning steps. From the performance of

runtime it can be concluded that:

1. Optimal pruning step length is related to sliding

window size.

2. When value P is different, the runtime is obvious

different with N.

The memory usage is shown in Figure 5-b. It is clear

that the effect of pruning step on memory usage is

small. From Figure 5 it can be seen that the length of

pruning step has little influence on runtime and

memory usage when window size is small. And when

window size is big, pruning step has a wider range

influence on runtime. Therefore, set the parameter

P=0.1M when N=0.1M is reasonable. Figure 5-b also

shows that algorithm TDMCS applies to discover

frequent patterns of any size of window.

858 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

a) Runtimes

b) Memory usage

Figure 5. The performance study of TDMCS on data stream msnbc

based on different sizes of windows and pruning steps.

Finally, we compare the performances of TDMCS

and classical algorithms with different sliding window

sizes. Parameters minimum support θ is 0.06, maximal

support error ε is 0.1, pruning step P is 0.1M, sliding

window size N is from 0.1M to 0.5M and decay factor f

is from f1 to f4 as shown in Table 9.

The performances of four algorithms processing

synthetic data streams are shown in Figure 6, which are

average values of recalls and precisions under different

sliding window sizes. Four data streams with different

lengths of transactions or patterns are used, including:

T10I4, T10I5, T10I10 and T20I5. Figure 6-a shows the

runtimes of four algorithms. Overall, the runtimes of

TDMCS and CloStream* are lower than the other two

algorithms. This is because algorithm CloStream* does

not process data with decay operations and algorithm

TDMCS uses closure operator. The memory usages of

algorithms are shown in Figure 6-b. The memory usage

of TDMCS is the lowest of all. But the differences

between four algorithms are not too much. Figure 6-c

and Figure 6-d show the recalls and precisions of

algorithms. Both algorithms MSW and SWP set decay

factor to lower bound, so we only compared with SWP.

The recall of algorithm CloStream* is the highest of all

for it does not use time decay model, but the precision

is the lowest of all. The recall and precision of

algorithm SWP are in the middle of these algorithms.

The recall of TDMCS is about 1% lower than other two

algorithms, but the precision of TDMCS is about 10%

higher than CloStream* and about 4% higher than

SWP. Therefore, algorithm TDMCS can get more

balance recall and precision than the other three

methods. From performances of four algorithms on data

streams with different pattern lengths, such as T10I4,

T10I5 and T10I10, or data streams with different

transaction lengths, such as T10I5 and T20I5, it can be

concluded that algorithm TDMCS is more suitable to

process data streams with long transactions and long

patterns.

a) Runtimes.

b) Memory usage.

c) Recall.

d) Precision.

Figure 6. The performance studies of algorithms on synthetic

data streams.

5. Summary

Data stream is a fluid, continuous, unbounded and

time ordered sequence of data transactions generated

at a rapid rate. Due to the knowledge contained in data

stream may change over time, concept drift should be

taken into account when mining frequent patterns.

TDMCS: An Efficient Method for Mining Closed Frequent Patterns over Data Streams Based on ... 859

Normally, recent transactions contain more important

information than historical transactions, thus they

should be treated differently. Considering the data

stream characteristics, an efficient algorithm TDMCS is

proposed in this paper. It is used to mining closed

frequent patterns, and it based on time decay model and

sliding window model. It uses closure operator to

improve the efficiency of mining closed frequent

itemsets. In order to balance the recall and precision, a

novel manner by average the lower bound and higher

bound is provided in this paper. It uses frame minimum

support-maximum support error-decay factor to avoid

concept drift and discover more reasonable and

compact result set. The performance of the proposed

algorithm was investigated using experiments. The

results show that it is efficient and scalable, and it

applies to mining high dense data stream and long

patterns.

References

[1] Chang T., “Mining Frequent User Query Patterns

From xml Query Streams,” The International

Arab Journal of Information Technology, vol. 11,

no. 5, pp. 452-458, 2014.

[2] Chen H., “Mining Top-K Frequent Patterns over

Data Streams Sliding Window,” Journal of

Intelligence Information System, vol. 42, no. 1,

pp. 111-131, 2014.

[3] Chen H., Shu L., Xia J., and Deng Q., “Mining

Frequent Patterns in a Varying-Size Sliding

Window of Online Transactional Data Streams,”

Information Sciences, vol. 215, no. 12, pp. 15-36,

2012.

[4] Cheng J., Ke Y., and Ng W., “Maintaining

Frequent Closed Itemsets over a Sliding Window,”

Journal of Intelligent Information Systems, vol.

31, no. 3, pp. 191-215, 2008.

[5] Chi Y., Wang H., Yu P., and Muntz R., “Catch

the Moment: Maintaining Closed Frequent

Itemsets over a Data Stream Sliding Window,”

Knowledge and Information Systems, vol. 10, no.

3, pp. 265-294, 2006.

[6] Farzanyar Z., Kangavari M., and Cercone N.,

“Max-FISM: Mining (Recently) Maximal

Frequent Itemsets over Data Streams Using the

Sliding Window Model,” Computers and

Mathematics with Applications, vol. 64, no. 6, pp.

1706-1718, 2012.

[7] Frank A. and Asuncion A.,

http://archive.ics.uci.edu/ml, Last Visited 2010.

[8] HewaNadungodage C., Xia Y., Lee J., and Tu Y.,

“Hyper-Structure Mining of Frequent Patterns in

Uncertain Data Streams,” Knowledge and

Information Systems, vol. 37, no. 1, pp. 219-244,

2013.

[9] Jiang N. and Gruenwald L., “CFI-Stream: Mining

Closed Frequent Itemsets in Data Streams,” in

Proceeding of ACM SIGKDD Internal

Conference on Knowledge Discovering and

Data Mining, New York, pp. 592-597, 2006.

[10] Lee G., Yun U., and Ryu K., “Sliding Window

Based Weighted Maximal Frequent Pattern

Mining over Data Streams,” Expert Systems with

Applications, vol. 41, no. 2, pp. 694-708, 2014.

[11] Li H., Ho C., and Lee S., “Incremental Updates

of Closed Frequent Itemsets over Continuous

Data Streams,” Expert Systems with

Applications, vol. 36, no. 2, pp. 2451-2458,

2009.

[12] Li G. and Chen H., “Mining the Frequent

Patterns in an Arbitrary Sliding Window over

Online Data Streams,” Journal of Software, vol.

19, no. 10, pp. 2585-2596, 2008.

[13] Li H., Zhang N., Zhu J., and Cao H., “Frequent

Itemset Mining over Time-Sensitive Streams,”

Chinese Journal of Computers, vol. 35, no. 11,

pp. 2283-2293, 2012.

[14] Li H., Ho C., Chen H., and Lee S., “A Single-

Scan Algorithm for Mining Sequential Patterns

from Data Streams,” International Journal of

Innovative Computing, Information and Control,

vol. 8, no. 3A, pp. 1799-1820, 2012.

[15] Manku Q. and Motwani., “Approximate

Frequency Counts over Streaming Data,” in

Proceeding of the 28
th
 International Conference

on Very Large Data Bases, Hong Kong, pp. 346-

357, 2002.

[16] Nabil H., Eldin A., and Belal M., “Mining

Frequent Itemsets from Online Data Streams:

Comparative Study,” International Journal of

Advanced Computer Science and Applications,

vol. 4, no. 7, pp. 117-125, 2013.

[17] Nori F., Deypir M., and Sadreddini M., “A

Sliding Window based Algorithm for Frequent

Closed Itemset Mining over Data Streams,”

Journal of Systems and Software, vol. 86, no. 3,

pp. 615-623, 2013.

[18] Patnaik D., Laxman S., Chandramouli B., and

Ramakrishnan N., “A General Streaming

Algorithm for Pattern Discovery,” Knowledge

and Information Systems, vol. 37, no. 3, pp. 585-

610, 2013.

[19] Shie B., Yu P., and Tseng V., “Efficient

Algorithms for Mining Maximal High Utility

Itemsets from Data Streams with Different

Models,” Expert Systems with Applications, vol.

39, no. 17, pp. 12947-12960, 2012.

[20] Tang K., Dai C., and Chen L., “A Novel

Strategy for Mining Frequent Closed Itemsets in

Data Streams,” Journal of Computers, vol. 7, no.

7, pp. 1564-1572, 2012.

[21] Tsai P., “Mining top-K Frequent Closed Itemsets

over Data Streams Using the Sliding Window

Model,” Expert Systems with Applications, vol.

37, no. 10, pp. 6968-6973, 2010.

http://archive.ics.uci.edu/ml

860 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

[22] Wong R. and Fu A., “Mining Top-K Frequnt

Itemsets form Data Streams,” Data Mining and

Knowledge Discovery, vol. 13, no. 2, pp. 193-217,

2006.

[23] Yang B. and Huang H., “TOPSIL-Miner: an

Efficient Algorthm for Mining Top-K Significant

Itemsets over Data Streams,” Knowledge and

Information Systems, vol. 23, no. 2, pp. 225-242,

2010.

[24] Yen S., Lee Y., Wu C., and Lin C., “An Efficient

Algorithm for Maintaining Frequent Closed

Itemsets over Data Stream,” Next-Generation

Applied Intelligence, vol. 5579, no. 1, pp. 767-

776, 2009.

[25] Yen S., Wu C., and Lee Y., “A Fast Algorithm for

Mining Frequent Closed Itemsets over Stream

Sliding Window,” in Proceeding of IEEE

International Conference on Fuzzy Systems,

Taipei, pp. 996-1002, 2011.

[26] Yu J., Chong Z., Lu H., and Zhou A., “False

Positive or False Negative: Mining Frequent

Itemsets from High Speed Transactional Data

Streams,” in Proceeding of the 30
th
 International

Conference on Very Large Data Bases, Toronto,

pp. 204-215, 2004.

Han Meng, born in 1982, Ph.D.

candidate, associate professor. Her

research interests include data mining

and machine learning.

Jian Ding, born in 1977, M.S.,

associate professor. His research

interests include machine learning

and data mining.

Juan Li, born in 1975, M.S.,

associate professor. Her research

interests include information security

and cloud computing.

