
914 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Method-level Code Clone Detection for Java

through Hybrid Approach

Egambaram Kodhai
1
 and Selvadurai Kanmani

2

1
Department of Computer Science and Engineering, Sri MankulaVinayagar Engineering College, India

2
Department of Information Technology, Pondicherry Engineering College, India

Abstract: A software clone is an active research area where several researchers have investigated techniques to automatically

detect duplicated code in programs. However their researches have limitations either in finding the structural or functional

clones. Moreover, all these techniques detected only the first three types of clones. In this paper, we propose a hybrid

approach combining metric-based approach with textual analysis of the source code for the detection of both syntactical and

functional clones in a given Java source code. This proposal is also used to detect all four types of clones. The detection

process makes use of a set of metrics calculated for each type of clones. A tool named CloneManager is developed based on

this method in Java for high portability and platform-independency. The various types of clones detected by the tool are

classified and clustered as clone clusters. The tool is also tested with seven existing open source projects developed in Java

and compared with the existing approaches.

Keywords: Clone detection, functional clones, source code metrics, string-matching.

Received October 21, 2013; accepted June 24, 2014

1. Introduction

Copying code fragments and then re-use by pasting

with or without minor modifications or adaptations

is called Code Cloning and the pasted code

fragment is called a “clone”. Clone detection is a

research problem where there is no precise definition.

Code clones are the source of heated debates

among software maintenance researchers [4].
Clones are compared on the basis of the program

text that has been copied. A related definition of

cloning was described by Bellon [2], who defined the

types of code clones based on the degree and type of

similarities.

 Type 1. Is an exact copy without modification

(except for whitespace and comments).

 Type 2. Is a syntactically identical copy; only

variable, type, or function identifiers have been

changed.

 Type 3. Is copied fragments with further

modifications. Statements can be changed, added or

removed in addition to variations in identifiers,

literals, types, layout and comments.

 Type 4. Two or more code fragments that perform

the same computation but implemented through

different syntactic variants.

The granularity of clones can be free with no syntactic

boundaries or fixed within predefined syntactic

boundaries such as method or blocks. Clone

granularity is fixed at different levels such as files,

classes, functions/methods, begin-end blocks,

statements or sequences of source lines.

In the literature there are number of clone detection

techniques has been proposed with free granularity.

Only limited detectors used function clones as

granularity. The techniques that return only function

clones are useful for architectural refactoring [10, 26].

Moreover, function clones are the meaningful clones

which are more useful for software maintenance and

evolution phases [20, 21].

In this paper, we propose a code clone detection

method through hybrid approach. It is the combination

of textual analysis using metrics to detect all the four

types of clones. We also implemented a tool in Java

using this approach. Our tool, detects function clones

found in either the given Java source code projects at

method level efficiently and accurately.

This paper is divided into four major sections.

Section 2 presents the literature review for clone

detection. Section 3 describes the implementation of

the proposed method. Section 4 discusses the results

obtained using our proposed method. Finally, section 5

describes the conclusion of the paper.

2. Motivation for Clone Detection

There has been more than a decade of research in the

field of software clones. To understand the growth and

trends in different dimensions of clone research, the

research has been carried out with a quantitative

review of related publications. In literature, Bellon [2]

has classified and defined four types of clones. A

number of techniques have been proposed for the

detection of type-1, type-2, and type-3 clones as per

the definition of clone literature. However, for type-4

Method-level Code Clone Detection for Java through Hybrid Approach 915

clones called semantic clones, very few attempts were

made with limitations to detect them [11, 18]. So far,

there is a lack of technique for the detection of all four

types of clones in literature.

Table 1. An example for the four types of clones.

Source

code(a)

Type 1

clone(b)

Type 2

clone(c)

Type 3

clone(d)

Type 4

clone(e)

int main()

{
int x = 1;

int y = x +

5;
return y;

}

int main()
{

int x = 1;

int y = x +
5;

return y; //

output
}

int func2()

{
int p = 1;

int q = p +

5;
return q;

}

int main()
{

int s = 1;

int t = s +
5;

t/++s;

return t;
}

int func4()

{

int n= 5;
return ++n;

}

3. Literature Review

Code cloning or the act of copying code fragments and

making minor alterations is a well-known problem

leading to duplicated code fragments or clones [11,

16]. Of course, the normal functioning of the system is

not affected, but without counter measures, further

development may become prohibitively expensive [5,

6].

Effective code clone detection will support for the

perfective maintenance [17]. Hariharan [14] in his

paper identified some key parameters that would

help to identify plagiarism. Up to the present, several

code clone detection methods have been proposed [3,

15, 19, 22, 24, 26]. Several clone detection methods

have used the Abstract Syntax Tree (AST)

representation of a program to find clones [8, 9, 13].

Generally, a clone detection tool uses an AST that is

generated by a pre-existing parser.

Baker [1] describes one of the earliest applications

of suffix trees to the clone detection process. In this

work, instead of AST nodes, a token-like structure

produced after the lexical analysis is used to find

duplicates. The use of biological sequence matching

algorithms is evident in [13]. It uses string alignment

algorithm that inspired by dynamic programming

methods. These methods are useful in the detection of

near exact clones.

Godfrey and Zou [12] chose cyclomatic complexity

as the corroboration metric. On a very small test set

they have shown this approach can work for locating

the clone segments across several versions of a

software system. Thummalapenta et al. [26] indicated

that in most of the cases clones are changed

consistently and for the remaining inconsistently

changed cases, clones mainly undergo independent

evolution.

Ducasse et al. [7] describe a clone detection

algorithm with two steps. The first step is to transform

the code. Further normalization was considered by

Ducasse et al. [7] they found that these forms of

normalization dropped precision from 94% to 70% in

one case study and from 42% to 11.5% in another.

This normalization improved recall by as much as

20%.

Mayland et al. [19] proposed a technique to detect

function clones. He identified type-1 and type-2

clones. He maintains a high precision and a low recall.

His tool did not detect type-3 and type-4 clones.

Roy and Cordy [23] proposed a technique to detect

function clones. However, he did not classify the clone

types 1, 2, or 3 as specified in the literature. Instead of

that, the tool fixed some threshold value. If the

threshold value is 0.0 then exact match (type-1) and it

starts matches with threshold value 0.10, 0.20, 0.30. It

means 10%, 20%, 30% of dissimilarity in the clones. It

is able to detect near-missed clones (type-3) but fails to

detect type2 clones.

The limitations in existing methods show a way to

investigate hybrid or combinational techniques to

overcome them. Our proposal is the detection of

function clones using textual analysis and metrics

approach. It also detects all four types of clones as

specified in the literature.

4. Implementation of Clone Detection

A method is proposed to detect function code clones in

Java source codes through textual analysis and metrics.

It is implemented in Java. The tool accepts a Java

source project as the input and identifies various

functions/methods present in it. Then a built-in

hand-coded parser [25] is used to analyze the

various methods following an island-driven parsing

approach [25]. Having identified the methods,

different source code metrics are computed for each

method and stored in the database. With the

help of these metric values the possible potential

clone pairs are extracted and are further put forth for

the textual comparison.

In the following subsections, we explain the design

of the tool using the proposed method for the detection

of four types of clones. The detection tool is thus

lightweight i.e., it doesn‟t employ any external

parsers and requires a less overhead compared to

other methods.

The detection process is carried out in three major

steps: A pre-processing, detection and post-

processing. Figure 1 is the overall block diagram of

the proposed system.

916 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Figure 1. Overall block diagram.

4.1. Pre-Processing

This phase includes the processes of comment and

white space removal and source code standardization.

In this step all the files are scanned for the removal of

comments, whitespaces. The final step is re-structuring

of the code into a standard form which is important for

establishing clone fragments similarity [7]. These steps

help in identification of the cloned methods thus

yielding a significant gain in the recall. Figure 2

illustrates the comment and white space removal and

statement standardization for pre-processing phase.

Figure 2. Comment and white space removal and standardized

source code for pre-processing.

4.2. Template Conversion

This template conversion converts the original source

code into a new form having a uniform notation for the

permitted equivalent constructs between the clone

pairs of same type. In this tool we have employed

variant part for the purpose of detection of type-2,

type-3 and type-4 clones.

4.2.1. Template Conversion for Type-1 and Type-2

For type 2 as per the definition of literature the

function identifiers, variable names, types etc., are the

only allowed difference in functions. Hence to

minimize the differences between the code fragments

due to the editing activities of the programmer we

bring out a uniform intermediate representation of the

source code. Figure 3 shows a sample template

conversion for type-1 and type-2.

Figure 3. Template conversion for type 1 and type 2.

4.2.2. Template Conversion for Type-1 and Type-2

In type-3 and type-4 clone detection, various

constructs like iterations and branches may also change

between clone methods. A slightly different form of

representation is needed to be generated. Thus the

following representations help in generalizing the

various deviations and constructs and in identifying the

various types of cloned methods.

 Iterative Equivalence: The control looping

structures are for, while and do while. In looping

statements, the three patterns present in looping are

initialization, condition and increment/decrement

are separated and they are printed each in separate

line. The common template form iteration is used.

Both open braces and close braces are neglected in

printing due to the change in order and nested

statements in the source code.

 Conditional Equivalence: The conditional structures

are if, else and else if. In these nested statements, the

conditions are separately printed in new line

following the template form selection. The

operations are split separately and rewritten in each

new line.

 Input Equivalence: The input statements are

system.in, input.readline, etc. In these statements,

the variable alone will follow the template form

read. For the multiple inputs which are given in a

single input statement are separately printed in each

line.

 Output Equivalence: The output statements are

system.out, etc. In these statements, the output

public static void main(String args[]) {

 int a,b,c;
 Scanner in = new Scanner(System.in);

 a = in.nextInt();

 b = in.nextInt();

 c = in.nextInt();

 if((a>b)&&(a>c))

 {
 System.out.println("A is

Greater"+a);

}
 else if (b > a && b > c)

 System.out.println("B is

largest."+b);
 else (c > a && c > b)

 System.out.println("C is

largest."+c);
 } }

DAT

FUNCT()
DAT X;

DAT X;

DAT X;

SCAN;

SCAN;

SCAN;
SELECTION;

CONDITION;

PRINT;
SELECTION;

CONDITION;

SELECTION;
CONDITION;

PRINT;

RETURN;

/* ------------------------------------

*/
void setdatetime(chdate,chtime)

/*set up char buffers

 with the date and time */
char chdate[];

char chtime[]; {

 char *timeech,*ctime();
 time(<ime):

 timech = ctime(<ime);

 smove(chdate,8,timech,20,4);
 smove(chtime,0,timech,11,8);

 return; }

void

setdatetime(chdate,chtime)
 char chdate[];

 char chtime[];

 {
 char *timech, *ctime();

 time(<ime);

 timech – ctime(<ime);
move(chdate,8,timech,20,4);

smove(chtime,0,timech,11,8

);
 return;

}

Path to input project

Method

identification

Metrics

computation

Template

conversion

Source

Files

Comment
and white

space

removal

Statement

standardization

Selection of

candidates

Pairs

Type-1 clones matching

Type-2 clones matching

 Type-3 clones matching

 Type-4 clones matching

Clone

pairs and

clusters

Pre-processing

Method-level Code Clone Detection for Java through Hybrid Approach 917

variables alone are printed following the template

form write. The print statements which are just

printing any comments or statements are neglected.

Also the multiple outputs which are printed in a

single print statement are separately printed in each

line.

 Declaration Equivalence: The declarations

statements starts with keywords such as char,

int, long int, double, float, string, etc. In this

case, multiple declarations in a single

statement are split and reprinted in each line as

a single declaration statement. The table 2

shows the conversion of multiple declarations

into single declaration.

Table 2. Type of variants among the source code patterns.

4.3. Method Detection

The standard form of source code is scanned for

detecting various methods by adopting an „island-

driven parsing‟[25] approach and the method

definitions are extracted and collected by means of a

hand-coded parser and saved for further reference. The

end positions of the method and the total no. of lines in

each method are also noted.

4.4. Metrics Computation

A set of 12 count metrics are proposed for the

detection of these cloned methods. Metric sets are

proposed for each type of cloned methods based on the

necessity. They are as shown in the Table 3.

Apart from the above 12 count metrics 4 more

metrics as shown in Equations 1 to 4 are also used. The

features examined for these metric computations are,

global and local variables defined or used, functions

called, files accessed, I/O operations and defined/used

parameters passed by reference and by value.

Let S be a code fragment. The description of the four

metrics used is given below. Note that these metrics

are computed compositionally from statements, to

functions and methods.

Table 3. Metrics applied to methods.

S.No Metrics

1 No. of Lines

2 No. of Arguments

3 No. of Local Variables

4 No. of function Calls

5 No. of conditional statements

6 No. of iteration statements

7 No. of Return Statements

8 No. of Input Statements

9 No. of Output Statements

10 No. of Assignments from Function Calls

11 No. of Selection Statements

12 No. of Assignment Statements

 13. S COMPLEXITY(s) = FAN OUT(s) (1)

 Where FAN OUT(s) is the number of individual

function calls made within s.

 14. D COMPLEXITY(s)=GLOBALS(s)/(FAN OUT(s)+1) (2)

Where GLOBALS(s) is the number of individual

declarations of global variables used or updated within

s. A global variable is a variable which is not declared

in the code fragment s.

 15. MCCABE(s) = 1 + d, (3)

where d is the number of control decision statements in

s.
 p1*VARSUSEDANDSET(s)+

 p2*GLOBALVARSSET(s)+

16. ALBRECHT(s)= p3* USER INPUT(s)

 p4* FILE INPUT(s)

Where VARSUSEDANDSET(s) is the number of data

elements set and used in the statement s,

GLOBALVARSSET(s) is the number of global data

elements set in the statement s,

USERINPUT(s) is the number of read operations in

statement s,

FILEINPUT(s) is the number of files accessed for

reading in s.

The factors p1, .., p4, are weight factors. The values

chosen are p1 = 5, p2 = 4, p3 = 4 and p4 = 7. The

values are chosen as given in the literature [2].

The computed metric‟s values for each method are

stored for comparison and extraction processes. For

type-1, type-2, and type-4 we pose a constraint that a

cloned method pair must have an identical set of

metric‟s values. Thus the database records containing

identical metric‟s values are short-listed for the type-1

and type-2 clone detection. The metric‟s are computed

for each of the methods and are compared to be short-

S.No
Name of the

pattern

Possible variations in the

source code presentation

Proposed template

form

1
Iterative

equivalence

for

while
do-while

iteration
<initial>

<condition>

<incre/decre>

2
Conditional

equivalence

if
else

else-if

selection

<condition>

3
Input

equivalence

system.in

input.readline
read <variable>

4
Output

equivalence
system.out write <variable>

5
Declaration

equivalence

int

char
float

double
string

Example

int x,y,z
char c,s

Multiple declaration

To Single line
declaration

Example
int x

int y

int z
char c

char s

6 Braces { }
Braces are removed in

the code
 (4)

918 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

listed by the formulas. Table 1 gives the list of metrics

used for the detection of clones.

4.5. Clone Detection

With the short-listed set of methods, a textual

comparison of the method pairs in the formatted and

normalized code is done to identify the exactness of

the extracted pairs. The detection method used for the

identification of the clone types are tabulated in Table

4. The comparison in the template identifies type-1

cloned method along with type-2 cloned methods. So

they need to be listed separately. For this reason

textual comparison with original source code is made

to identify the differences in the parameters.

Table 4. Criteria for clones type detection.

Clone Type

Standardized Source Code Template Code

Metrics

Comparison

Textual

Comparison

Template

Comparison

Type 1 Same Same -

Type 2 Same
Difference in

Parameters
Same

Type 3 Range 1>= 90% - Range 2>= 85%

Type 4 Same No match Same

For type-3 clone detection, Range values are

calculated. Range1 is the ratio of the actual metric

value to the Average metric values in the methods.

i.e.,

 range1=

Actual metric value of a method * 100

Average metric values of the methods
 (5)

If any method having more than 90% value for range1,

they are short-listed under the possibilities for type-3

method clones. Then range2 is calculated as the ratio

of equal no of lines in a method to the total no of lines

in a method.

i.e.,

 range2=

No of similar lines in a method * 100

Total no. of lines in a method
 (6)

The methods having more than 85% values of range2

in template methods are declared as type-3 clones.

For type-4, first the two considered methods are

taken and their metric values are calculated. If the two

methods are having all its metrics values equal then

they are compared with the template methods. If they

are also the same then the textual comparison of the

source code is checked. If they are completely different

then they are categorized under type-4.

4.6. Post-processing

The results of the code clone detection are given as

clone pairs and clone clusters. The identified clone

methods called “potential clone pairs”, are then

clustered separately for each type and the clustered

separately for each type and the clusters are uniquely

numbered. The association of similar pairs into a

single group called a cluster or a class. Each clone

cluster may be defined as a unique set of methods that

are similar within themselves. These clone pairs and

clusters are stored each in a text file separately.

5. Experiment and Results

In this experiment we have applied CloneManager to

find function clones in a number of open source

systems. We have then used a set of metrics to analyze

the results. We manually verify all detected clones and

provide a complete catalogue of different clones in a

variety of formats. This section introduces the systems

we have studied and the metrics used, including a brief

overview of our definition and methodology for

manual verification of the detected clones.

5.1. Experimental Setup and Datasets

The proposed method is implemented and

experimented with seven Java projects. Table 3 lists a

statistical overview of open source projects which are

taken for the performance analysis of our Clone

manager tool. We have only considered .java files in

the calculations. All clones detected in this study were

validated by hand.

In Table 5, the second column is the list of open

source project names as input project. The third

column is the no. of files. The fourth column is the no.

of lines in the source code in thousands. The last

column is the no. of methods in each project.

Table 5. Projects chosen as dataset for CloneManager.

S.No Input projects #files LOC in K #methods

1 Eclipse-ant 161 35 1754

2 EIRC 54 11 588

3 Java Netbeans-Javadoc 97 14 972

4 Eclipse-jdtcore 582 148 7383

5 JHotDraw 5.4b1 233 40 2399

6 Spule 50 13 420

7 J2sdk-swing 414 204 10971

The effectiveness of clone detection by any tool is

basically measured by two key parameters namely,

 Recall: Fraction of actual clones identified as

candidates

 Precision: Fraction of candidates that are actually

clones

5.2. Results

In Table 6, the third column is the clone type-1, which

has the no. of clones detected and the no. of clone

clusters. Column 4, 5, and 6 has the same set of data

for type 2, 3, and 4 respectively.

From the Table 6 results we observed that J2sdk-

swing with only 204,000 of lines have 27559 clones in

total. This shows that the no. lines are not directly

propositional to the no. of clones in the code.

We can notice that there is significantly more

function cloning in our open source Java. On average,

about 15% of the methods in open source Java

Method-level Code Clone Detection for Java through Hybrid Approach 919

programs are type-1 clones-those with no changes at

all (except changes in formatting, whitespace and

comments). After detecting clones we noticed this in

large part due to the large number of small accessor

and iterator methods in Java programs.

Table 6. No. of detected clones and clone clusters for all the
datasets.

S.

No
Projects

Type-1 Type-2 Type-3 Type-4

Clones
Clone

Clusters
Clones

Clone

Clusters
Clones

Clone

Clusters
Clones

Clone

Clusters

1
eclipse-

ant
363 92 372 96 426 119 10 4

2 EIRC 117 35 119 35 149 47 6 3

3

Java

Netbeans-

Javadoc

193 80 199 83 304 110 8 3

4
eclipse-

jdtcore
1427 323 5573 587 4378 660 15 7

5
JHotDraw

5.4b1
291 137 299 142 598 208 10 4

6 spule 60 11 69 14 113 19 4 2

7
j2sdk-

swing
8115 516 8205 558 11209 843 30 14

When we plot the percentage of type-1 clones, we

can see that Java show similar percentages of clones

for similar clone sizes. While it is difficult to provide

the exact statistics for the types of smaller methods for

all the systems, we manually examined the small

clones of the systems and found that there are in fact

many accessor methods in Java systems.

It is interesting to notice that most systems have

significantly fewer clone classes than clone pairs,

indicating the fact that there are many pairs of

functions in the systems that are similar to each other

with higher numbers for Java systems. It is also

interesting to see that while average number of clone

pairs per clone class is more or less consistent for Java

systems for different clone types.

5.3. Evaluation of CloneManager Tool with

Parameters

In comparison with a reference set obtained from

the standard set of results gathered from the other

detection tools the precision (PREC) and recall

(REC) of the tool for all 4 type of clones has been

estimated as in Tables 7, 8, 9, and 10.

The Table 7 shows the precision and recall of

type1 clones for all the projects. The column 2

holds [A] the number of actual clones detected

for all the datasets. The column 3 holds [D] the

number of detected clones by our tool

CloneManager. The column 5 holds [C] the

number of correctly detected clones by our tool.

These values are used to calculate the two

parameters precision and recall for evaluation.

The formula to calculate Precision=[C]/[D]*100

and Recall=[C]/[A]*100.

From the above calculated values for precision and

recall as shown in Figures 4 and 5, we come to know

that our system shows high values in precision and

recall. Thus our tool proves to provide high in

precision and recall, which are the best parameters for

the evaluation of clone detection tools. Finally, we are

able to get results for the J2sdk-swing system also

which is larger in size. This proves that our system is

also scalable.

Table 7. Precision and recall of type-1 clones for all the projects.

Project
Actual

Clones [A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision % Recall %

Eclipse-ant 382 374 363 97 95

EIRC 124 117 117 100 94

Java
Netbeans-

Javadoc

196 205 193 94 98

Eclipse-
jdtcore

1603 1585 1427 90 89

JHotDraw

5.4b1
303 296 291 98 96

Spule 61 60 60 100 98

Table 8. Precision and recall of type-2 clones for all the projects.

Project
Actual

Clones [A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision % Recall %

Eclipse-ant 448 426 426 100 95

EIRC 161 152 149 98 92

Java

Netbeans-

Javadoc

304 330 304 92 100

Eclipse-

jdtcore
4864 4378 4378 100 90

JHotDraw

5.4b1
643 629 598 95 93

Spule 126 113 113 100 89

J2sdk-swing 12052 12737 11209 88 93

Table 9. Precision and recall of type-3 clones for all the projects.

Project
Actual

Clones [A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision % Recall %

Eclipse-

ant
10 10 10 100 100

EIRC 6 6 6 100 100

Java

Netbeans-

Javadoc

9 8 8 100 88

Eclipse-

jdtcore
17 17 15 88 88

JHotDraw

5.4b1
11 11 10 90 90

Spule 4 4 4 100 100

J2sdk-

swing
31 32 30 92 95

Table 10. Precision and recall of type-4 clones for all the projects.

Project
Actual

Clones [A]

Detected

Clones [D]

Correctly

Detected

Clones [C]

Precision % Recall %

Eclipse-ant 379 422 372 88 98

EIRC 126 132 119 90 94

Java

Netbeans-

Javadoc

207 199 199 100 96

Eclipse-

jdtcore
6057 5686 5573 98 92

JHotDraw
5.4b1

321 299 299 100 93

Spule 71 73 69 94 96

920 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

Figure 4. Precision in % for all the projects.

Figure 5. Recall in % for all the projects.

5.4. Comparison with Existing Tools

The first tool considered for analysis is the CLAN

clone detection with metrics based clone detection

technique developed by Mayland et al. [19] with the

method-level granularity. The second is NICAD [23], a

parser-based, language specific, lightweight approach

using simple text -line comparison which finds

functional clones with the aid of TXL. Even though

there are number of tools developed for clone

detection, we chose only these two existing tools

because they detect the functional clones as our

CloneManager tool does.

In case of Eclipse-ant we have obtained 1171

clone pairs for type 1, 2, and 3 altogether using our

standardization and normalization techniques while

Merlo has obtained only 88 match clone fragments.

Moreover we have also classified the clones as clone

clusters and detected the type 4 clones. The results

obtained by these tools are computed as in the Table

11. NICAD having obtained 1154 of clone fragments.

Table 11. Clone fragments and clone clusters for eclipse-ant.

TYPE
CLAN Nicad CloneManger

CF CF CC CF CC

Type1 10 363 92 363 92

Type2 54 365 94 372 96

Type3 24 426 119 426 119

Type4 - - - 10 4

Total 88 1154 305 1171 311

Nicad tool did not classify the clones types 1, 2, or 3

as specified in the literature. Instead of that, the tool

fixed some threshold value. If the threshold value is

0.0 then exact matches (type-1) and it starts matches

with threshold value 0.10, 0.20, 0.30. It means 10%,

20%, 30% of dissimilarity in the clones. It is able to

detect near-missed clones (type-3) but fails to detect

type-2 clones. We have compared the results of all the

projects with these two existing tools like eclipse-ant.

Table 12. Comparison of run-time with NICAD.

Projects NICAD in minutes CloneManager in minutes

Eclipse-ant 1.57 1.35

Java Netbeans-

Javadoc
0.42 0.38

Eclipse-jdtcore 17.43 16.02

JHotDraw 5.4b1 2.48 2.05

J2sdk-swing 35.24 30.37

From the Table 12 we compared the run-time of our

with the NICAD tool. Second and third column shows

the results for time taken by NICAD in minutes and by

our tool CloneManager respectively. It is easier to

notice from the table that the time taken by our tool is

lesser than NICAD. Thus our tool proves to have good

time complexity.

Table 13 shows the comparison of the precision and

recall parameters of the tool CLAN with our tool

CloneManager. We have taken only the projects which

have precision and recall data from the standard

benchmark created by bellon et al. [3]. Moreover, the

data was available for type-1, 2, and 3 alone. From the

table we observed that our tool is very high in

precision and recall.

Table 13. Comparison of the tool CLAN with the tool
CloneManager.

Projects

CLAN CloneManager

Precision % Recall % Precision % Recall %

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Eclipse-ant 11 9 0 5 20 0 97 88 100 95 98 95

Java Netbeans-
Javadoc

7 6 6 33 9 13 94
10
0

92 98 96 100

Eclipse-jdtcore 4 4 0.8 4 53 12 90 98 100 89 92 90

J2sdk-swing 7 7 0.2 69 25 1 99 92 88 92 94 93

6. Conclusions

In this paper we have proposed a light-weight

technique to detect method-level clones for both

textual similarity and functional similarity types with

the computation of metrics combined with simple

textual analysis technique. We could improve the

precision and reducing the total comparison cost by

avoiding the exponential rate of comparison by using

the metrics. Since the string matching/textual

comparison is performed over the short-listed

candidates, a higher amount of recall could be

obtained. The early experiments prove that this

method can do atleast as well as the existing systems in

finding and classifying the function clones in Java.

As a future work we have planned to enhance the

technique for web static pages. Secondly, we also

80
85
90
95

100
105

Type 1

Type 2

Type 3

Type 4

80

85

90

95

100

105

Type 1

Type 2

Type 3

Type 4

Method-level Code Clone Detection for Java through Hybrid Approach 921

planned to enhance the tool for clone modification by

using the refactoring technique. Finally, we have

planned to detect the clones in incremental process for

next revision of projects.

References

[1] Baker.B.S., “Parameterized Duplication in

Strings: Algorithms and an Application to

Software Maintenance,” Society of

Industrial And Applied Mathematics, vol.

26, no. 5, pp. 1343-1362, 1997.

[2] Bellon S., http://www.bauhaus-

stuttgart.de/clones, Last Visited 2013.

[3] Bellon S., Koschke R., Antoniol G., Krinke J.,

and Merlo E., “Comparison and Evaluation of

Clone Detection Tools,” IEEE Transactions on

Software Engineering, vol. 33, no. 9, pp. 577-

591, 2007.

[4] Bettenburg N., Shang W., Ibrahim M., Adams B.,

Zou Y., and Hassan A., “An Empirical Study on

Inconsistent Changes to Code Clones at the

Release Level,” Science of Computer

Programming, vol. 77, no. 6, pp. 760-776, 2012.

[5] Cataldo M., Mockus A., Roberts A., and

Herbsleb D., “Software Dependencies, Work

Dependencies and Their Impact on Failure,”

IEEE Transactions on Software Engineering, vol.

35, no. 6, pp. 864-878, 2009.

[6] Demeyer S., Ducasse S., and Nierstrasz O.,

Object-Oriented Reengineering Patterns, Morgan

Kaufmann and DPunkt, 2002.

[7] Ducasse S., Nierstrasz O., and Rieger M., “On

the Effectiveness of Clone Detection by String

Matching,” Journal of Software Maintenance and

Evolution, vol. 18, no.1, pp. 37-58, 2006.

[8] Evans W., Fraser C., and Ma F., “Clone

Detection via Structural Abstraction,” Software

Quality Journal, vol. 17, no. 4, pp. 309-330,

2009.

[9] Evans W. and Fraser C., “Clone Detection via

Structural Abstraction,” Technical Report MSR-

TR-2005-104, 2005.

[10] Fowler M. and Beck K., Refactoring: Improving

the Design of Existing Code, Addison Wesley,

1999.

[11] Gabel M., Jiang L., and Su Z., “Scalable

Detection of Semantic Clones,” in Proceeding of

30
th
 International Conference on Software

Engineering, Leipzig, pp. 321-330, 2008.

[12] Godfrey W. and Zou L., “Using Origin Analysis

to Detect Merging and Splitting of Source Code

Entities,” IEEE Transactions on Software

Engineering, vol. 31, no. 2, pp. 166-181, 2005.

[13] Greenan K., “Method-Level Code Clone

Detection on Transformed Abstract Syntax Trees

using Sequence Matching Algorithms,” Student

Report, 2005.

[14] Hariharan S., “Automatic Plagiarism Detection

Using Similarity Analysis,” The International

Arab Journal of Information Technology, vol. 9,

no. 4, pp. 322-326, 2012.

[15] Kamiya T., Kusumoto S., and Inoue K.,

“CCFinder: A Multi-Linguistic Token-based

Code Clone Detection System for Large Scale

Source Code,” IEEE Computer Society

Transactions on Software Engineering, vol. 28,

no. 7, pp. 654-670, 2002.

[16] Kapser C. and Godfrey W., “Cloning Considered

Harmful: Patterns of Cloning in Software,”

Empirical Software Engineering, vol. 13, no. 6,

pp. 645-692, 2008.

[17] Kapser J. and Godfrey W., “Supporting the

Analysis of Clones in Software Systems:

Research Articles,” Journal of Software

Maintenance: Research and Practice, vol. 18, no.

2, pp. 61-82, 2006.

[18] Liu C., Chen C., Han J., and Yu P., “GPLAG:

Detection of Software Plagiarism by Program

Dependence Graph Analysis,” in Proceeding of

12
th
 ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining,

Philadelphia, pp. 872-881, 2006.

[19] Mayland J., Leblanc C., and Merlo E.,

“Experiment on the Automatic Detection of

Function Clones in a Software System Using

Metrics,” in Proceeding of International

Conference of Software Engineering, Monterey,

pp. 244-253, 1996.

[20] Nguyen H., Nguyen T., Pham H., Al-Kofahi J.,

and Nguyen N., “Clone Management for

Evolving Software,” IEEE Transactions on

Software Engineering, vol. 38, no. 5, pp. 1008-

1026, 2011.

[21] Pate J., Tairas R., and Kraft N., “Clone

Evolution: a Systematic Review,” Journal of

Software Maintenance: Research and Practice,

vol. 25, no. 3, pp. 261-283, 2013.

[22] Petersen H., “Clone Detection in Matlab

Simulink Models,” Master‟s thesis Technical

University of Denmark, 2012.

[23] Roy C. and Cordy J., “NICAD: Accurate

Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code

Normalization,” The 16
th
 IEEE International

Conference on Program Comprehension,
Amsterdam, pp. 172-181, 2008.

[24] Roy C., Cordy J., and Koschke R., “Comparison

and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach,”

Science of Computer Programming, vol. 74, no.

7, pp. 470-495, 2009.

[25] Satta G. and Stock O., “Bidirectional Context-

Free Grammar Parsing for Natural Language

Process,” Artificial Intelligence, vol. 69, no. 1,

pp. 123-164, 1994.

http://www.cis.uab.edu/tairasr/
http://steel.cs.ua.edu/~nkraft/

922 The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017

[26] Thummalapenta S., Cerulo L., Aversano L., and

Penta M., “An Empirical Study on the

Maintenance of Source Code Clones,” Empirical

Software Engineering, vol. 15, no. 1, pp. 1-34,

2009.

[27] Zibran M. and Roy C., “Conflict-Aware Optimal

Scheduling of Code Clone

Refactoring,” Institution of Engineering and

Technology Software, vol. 7, no. 3, pp. 167-186,

2013.

Egambaram Kodhai is currently

working as Associate Professor in

the Department of Computer

Science and Engineering at Sri

ManakulaVinayagar Engineering

College affiliated to Pondicherry

University, Puducherry, India.

She has completed her M.C.A from Cauvery

College for women, Trichy affiliated to

Bharathidasan University, Trichy and M.E. in

Computer Science and Engineering from

Vinayaka Mission‟s KirupanandaVariyar

Engineering College, Salem. She has completed

her Ph.D from Pondicherry Engineering College

affiliated to Pondicherry University, Puducherry,

India. She has more than 16 years of experience in

teaching in various engineering colleges. Her

Research interests include Software Clones. She

has published more than 50 papers in international

conference and journals. She is a member of

ISTE, India.

Selvadurai Kanmani received her

BE and ME degree in Computer

Science and Engineering from

Bharathiar University and PhD from

Anna University, Chennai. She has

been the faculty of the Department

of Computer Science and

Engineering, Pondicherry Engineering College since

1992. She has published about 150 papers in

international conferences and journals. Her research

interests are software engineering and data mining

techniques. She is a member of Computer Society of

India, ISTE and Institute of engineers, India.

