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Abstract: This paper presents a novel swam intelligence optimization algorithm that combines the evolutionary method of 

Particle Swarm Optimization (PSO) with the filled function method in order to solve the evacuation routing optimization 

problem. In the proposed algorithm, the whole process is divided into three stages. In the first stage, we make use of global 

optimization of filled function to obtain optimal solution to set destination of all particles. In the second stage, we make use of 

the randomicity and rapidity of PSO to simulate the crowd evacuation. In the third stage, we propose three methods to manage 

the competitive behaviors among the particles. This algorithm makes an evacuation plan using the dynamic way finding of 

particles from both a macroscopic and a microscopic perspective simultaneously. There are three types of experimental scenes 

to verify the effectiveness and efficiency of the proposed algorithm: a single room, a 4-room/1-corridor layout, and a multi-

room multi-floor building layout. The simulation examples demonstrate that the proposed algorithm can greatly improve upon 

evacuation clear and congestion times. The experimental results demonstrate that this method takes full advantage of multiple 

exits to maximize the evacuation efficiency. 
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1. Introduction 

Emergency evacuation plans are developed to ensure 

the safest and most efficient evacuation time of all 

expected residents of a structure or region [4, 10, 14]. 

With the increasing complexity of buildings and 

frequency of disasters, the evacuation routing 

optimization problem has become a hot topic in the 

area of emergency evacuation planning. The problem 

can be divided into the microscopic and the 

macroscopic perspectives. To better characterize crowd 

behaviors for egress analysis, microscopic pedestrian 

models have been developed during recent decades 

where an evacuee’s behavioral/psychological status can 

be modeled and simulated. Parlak et al. [9] considered 

motivational force, psychological repulsive tendencies, 

compression, viscous damping, personal force and 

sliding friction in the simulation of specific emergency 

evacuations. The motion of individuals was governed 

by the social-force model to investigate the effect of 

crowd evacuation. Manley and Kim [8] considered an 

agent-based approach to estimate formation of 

bottlenecks during urgent evacuation. The work of 

Zheng et al. [18, 19, 20] focused on evacuees’ 

cooperative and competitive behaviors by using a close 

analogy to the Chicken-type game Tanimoto et al. [15] 

proposed a deductive approach to analyze the 

bottleneck problems of pedestrian evacuation by using 

a close analogy to the saint&temptation reciprocity 

game. Shi and Wang [13] proposed a microscopic 

framework to research crowd dynamics based on the  

 
modified lattice gas model by using snowdrift game 

theory. Ha and Lykotrafitis [2] proposed an Agent-

based modeling of a multi-room multi-floor building 

emergency evacuation. Particle Swarm Optimization 

(PSO) [5, 11, 21] is a multi-agent based simulation 

method that can simulate complex behaviors of 

individuals in an urgent evacuation. However, such 

microscopic models only take the evacuees’ local 

behavior into account, omitting other factors which 

may be of equal importance for them. In addition, 

microscopic simulations are computationally complex, 

making it difficult to be used directly for optimizing 

evacuation strategies. On the other hand, some 

researchers have studied evacuation planning from a 

macroscopic perspective. Chooramun et al. [1] 

developed an evacuation model utilizing hybrid space 

discretization, which uses a mixture of three basic 

techniques for space discretization, namely coarse 

networks, fine networks, continuous networks.. 

However, these methods only considered the global 

evacuation plan and ignored the influence of the 

behavior of individuals while simulating the 

evacuation behavior. Modeling the dynamic way 

finding of evacuees with respect to both the 

macroscopic and microscopic perspectives 

simultaneously is rare. Therefore, the present study 

proposes a novel PSO algorithm to optimize 

evacuation routing from these two perspectives 

simultaneously.  

This study addresses two issues. The first is how to 

optimize particles’ competitive behaviors. The second 
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issue is how to determine optimal evacuation routes for 

particles. We present the Global/Local Particle Swarm 

Optimization (GLPSO) algorithm for multi-exit 

evacuation, intended to plan an optimal egress route 

based on global and local optimum nodes. The main 

contribution of this method provides a new perspective 

to understand the optimal control of emergency 

evacuation. The proposed method can improve 

evacuation clearance time and decrease crowd density 

in determining emergency evacuation strategies. In 

addition, it can take full advantage of multiple exits in 

order to obtain the safest evacuation route.  

The reminder of this paper is organized as follows. 

Section 2 introduces the state of the art in evacuation 

planning. Section 3 presents the result of the 

optimization. Section 4 concludes this paper and 

describes the outlook on future studies. 

2. The Description of PSO Algorithm 

The PSO algorithm is based on swarm intelligence [2]. 

The movements of the particles are determined by their 

own best known position in the search-space as well as 

the entire swarm's best known position. An improved 

PSO algorithm is then: 

Algorithm 1: The improved PSO algorithm. 

1. Initialization 

     Initialize the particles’ positions randomly with a uniform 

probability. Initialize the particles’ best known positions to 

their initial positions. Initialize the particles’ velocities. 

2. Get destination node 

     Compute destination node of each particle by a filled 

function (described in Section 2.1).  

3. Global optimum node and Local optimum node 

      Compute the global optimum node of each particle using the 

destination node. Compute the local optimum node of each 

particle according to the global optimum node. 

4. Update velocity 

     Update the velocity of each particle: 

        1

1 2

k k k k k k

id id id id id idv v c l x c g x         

     If 1 max 1 max,k k

id id id idv v v v    

     If 1 1 max0,k k

id id idv v v    

5. Conflict detection 

     Predict the particle's position: 1 1k k k

id id idx x v    

     Calculate the distance d between two particles. Determine 

whether the positions conflict. If d<2r, then go to Step 6, else 

go to Step 7. 

6. Conflict resolution 

     According to distance d, the GLPSO model optimizes 

conflicts by locating each particle’s position using three 

methods: ConflictMethod1, ConflictMethod2 or 

ConflictMethod3 (described in Section 2.3). 

7. Update position 

      Update all particles’ position. 

8. Terminal condition 

     If a particle moves to the next neighbor node, then go to Step 

3, if a particle passes through an exit, then the termination 

criterion of that particle is met. Else go to Step 4. 

The flowchart of the solution process is presented in 

Figure 1. 
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Figure 1. The flow chart of improved PSO model. 

2.1. Particle Destination Nodes 

In this paper, the concept of a filled function [12, 17] 

is introduced. This method is designed to obtain the 

particles’ destination node. First, we treat all the 

evacuees of a node (e.g., a room) as a “whole entity” 

and assign them to each exit by formulas 1. According 

to the evacuee distribution, the length of the escape 

routes and the maximum flow rate, an estimate of 

evacuation clearance time must be taken into account 

with an expectation of the reaction of other evacuees 

at the same exits. We obtain the destination of 

particles with the following formula: 

1 2

1

min ( , , , ) ( / * / )*(1 )

. .0 , ;

i

n
xi

n jam i i i i n

i

i i

T x x x T x r d x S e

s t x P i n x P





   

   

 




 

min represents the minimizing function value and 

“subject to” is abbreviated by “s.t.”.  

ix  is the number of particles in the i
th
 exit.  

ir  is the maximum flow rate of the i
th
 exit. 

id  is the distance from current node to the i
th
 exit. 

/i nx S  is average speed. 
i

jamT  is congestion time. 

Equation (2) is the transformation formulation of the 

minimum evacuation clearance time to reduce the 

computational complexity. 
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We obtain the optimal evacuation plan using this filled 

function method, which is an approach to solve 
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unconstrained global minimization problems. The filled 

function handles formulas 1 to arrive at the global 

minimum by breaking the algorithm into a two-step 

process. 

We obtain the optimal evacuation plan using this 

filled function method, which is an approach to solve 

unconstrained global minimization problems. The filled 

function handles formulas 1 to arrive at the global 

minimum by breaking the algorithm into a two-step 

process. 

 Step1. According to Wolfe-Powell conditions, we 

get the local minimum x1 of the function T(x1, x2, ..., 

xn) using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) [6, 16] algorithm, which approximates 

Newton's method in multiple dimensions efficiently. 

The BFGS method is a standard iterative method for 

solving unconstrained nonlinear optimization 

problems using the following procedure. 

Algorithm 2: The BFGS method 

1. Initialization 

     Set the initial point x0, define a positive definite matrix H0，
the tolerance Ɛ>0，and an iterator k=0. 

2. Terminal condition 

      If ||gk||≤Ɛ, then xk is the optimal solution. 

3. Linear search 

a. Compute the search direction dk= -Hkgk. 

b. Calculate the factor ak of the step length using a linear    

search，and set xk+1=xk+akdk. 

c.  Correct Hk to get Hk+1, set k=k+1, and go to Step 2.  

The iteration solution formula of H is given by 

                    k+1=
T T T

k k k k k k

kT T T

k k k k k k

H I H I
     

     

   
     

   
        

Where, δk=xk+1-xk,γk=gk+1-gk. 

 Step 2. Here, x1 is the outcome of Step 1, which 

yields a local minimum of T(x1, x2, ..., xn). We 

construct a filling function fill(x) on the local 

minimum x1, and take random a point as the initial 

point in the neighborhood of x1. If there is a field 

below x1, xm is a point in the field found by 

minimizing fill(x). Then go to Step1, using the xm 

which minimizes T(x1, x2, ..., xn) as the initial point 

to get a new local minimum value x2, and iterate, 

each time using a different local minimum as the 

initial point.   

Algorithm 3: The global minimum method 

1. Initialization 

Read parameter values, Ɛ>0, 0<δ<1, a>0, nS R . Ɛ is 

allowable error, δ is a point with an offset, a is the parameter 

of the filled function, and S is a region containing all the 

minima of 
1 2( , , , )nT x x x . 

2. Local minimum point 

Set x’∈S as the initial point, then use Algorithm 1 to arrive 

at a local minimum point x1 of T(x1, x2, ..., xn). 

3. Construct filling function 

Set fill(x) as the filled function of 
1 2( , , , )nT x x x  near the 

local minimum x1.  

Set initial point using the rule 

0 1 1
[ ]

2

( 1)i

i ix x e    ,i=1,2,…,2n.Where, ei(i=1, 2, ... ,n) is 

the i
th
 unit vector. 

4. Terminal condition 

If minimizations of the filled function traverse all of the 

iteration points for any given initial point in the region S, 

then the algorithm terminates, and x1 is the global optimum 

of
1 2( , , , )nT x x x .  

We assume that yk is a randomly point in the lower area, 

when the iteration point yk meet any of following condition. 

Set x’=yk, and go to Step 5. 

a.  1 0T

k kd v y   ， 1

T

kd   is the search direction of yk-1. 

b.    1 0
T

k ky x fill y    

c.  kv y     

d.    1kf y f x  

5. Minimization function 

Set x’ as initial point to get a new local minimum value x2. 

If f(x2) <= f(x1), then set x1=x2 and go to Step 3, or else set 

a=10a and go to Step 4. 

GLPSO sets the destination of each particle in the node by 

the result of function T(x1, x2, ..., xn). 

2.2. Global Optimum Node and Local 

Optimum Node 

Each particle's movement is influenced by both its 

local best position and global best position. The global 

best position is equal to the local best position in a 

global optimum node. The Global optimum node is 

the neighbor node of the current location in the 

shortest path to the destination. The local best position 

is guided toward the best positions (such as exit and 

door) with the global optimum node in the search-

space of the current node.  

Lee and Kwan [7] proposed a Node Relation 

Structure (NRS) to represent buildings’ internal 

structure. NRS abstracts the complex topological 

relationships among 3D features to a logical network 

structure. However, this model can’t describe rooms 

or corridors containing exits. Since the presence of 

these exits can affect particles’ behavior in their 

emergency response, obtaining optimal evacuation 

routes with such a 3D network analysis is difficult. We 

improved NRS to add exit and door nodes for 

obtaining the global optimum node and the local 

optimum node. We represent the architectural 

structure with a hierarchical undirected graph G = (V, 

E), consisting of a finite set V of particles (nodes) and 

a finite set E of edges. 

There can be emergency evacuations in multi-room 

or multi-floor buildings. We present a hierarchical 

undirected graph model to extend the nodes into a 

subgraph, subsequently abstracting them into a super 

graph. This building has two levels of graphs (see 

Figure 3). 
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For example, consider a two-story building in which 

each story has seven rooms, one hallway, and one 

stairway (see Figure 2-a). Suppose there is an exit in 

the first floor (see Figure 2-b). This building has 18 

enclosures (nine per story), which we label P1 to P16. 

E1 to E17 represent doors, and E8 is the Exit. S1 and 

S2 are stairways. We transform the 3D spatial units to 

2D polygons. Figure 2-b shows all spatial units on the 

first story. 

We construct the node relationships from this 

abstracted layout. The node relationships take the 

center point of each spatial unit as the location of the 

corresponding node. The edges connecting the nodes 

represent the connectivity among the spatial units. The 

extended subgraph presents the first story’s extended 

node relations (see Figure 2-c). If we set hallway P8 as 

a node, the Local optimal node can't accurately 

calculate the path distances according to the route 

length. Thus, we find the intersection point of the door 

centerline and the corridor centerline as an extended 

node to get an accurate distance (such as P81). 

The supergraph comprises two levels of subgraph 

and the stairway represents the connectivity among the 

subgraphs (see Figure 3). A boundary node stands for 

each story’s stairway node or an exit node. 

 
a) A 3D building model. 

 

b) A plane graph of one story. 

P1

P7P6P5

E72E71E6S1E5

E8P86P85P84P83P82P81

E4E3E2E1

P4P3P2

 

c) The node-relation structure model of the simple node relationship with 
extended nodes. 

Figure 2. A 3D building model and its hierarchical relation 

structure.  

 

Figure 3. The abstracted supergraph, with each story abstracted to 

its boundary nodes. 

Here are the relationships: 

SG = (Gc, G) 

G = (G1, G2)  

G1 = (V1, E1), V1 = {s2}, E1 = {○} 

G2 = (V2, E2), V2 = {s1, e8}, E2 = {s1e8} 

Gc = (Vc, Ec), Vc = {s1, s2}, Ec = {s1s2}, 

Where 

SG is supergraph set, Gc is a supergraph, G is a 

subgraph set, and G1 and G2 are subgraphs. 

s1, s2 and e8 are boundary nodes. 

s1s2 is the connectivity between the supergraph’s 

boundary nodes. 

We seek an optimum route whose total distance is 

the minimum to the destination node. The global 

optimum node is the neighborhood node of the current 

location in the optimum route. 

2.3. Conflict Problem Optimization 

In the process of evacuation, there is competitive 

behavior between the particles. The perception of 

hazards can stress people in crowds, evoke their 

competitive response, and trigger blocking as they 

attempt to pass through narrow passages [3] (e.g., a 

small exit) simultaneously. We propose a 

mechanism to manage competitive behavior in three 

manners as shown in Figure 4. 

A B

d d d

r r

Conflict1               Conflict2             Conflict3
 

Figure 4. Three competitive behaviors between the particles. 

We determine three types of conflict with the distance 

between the particles. r is radius of particle and d is 

the distance between the center of a circle of two 

particles. That is 

      

0 / 2, Conflict 1

/ 2 5 / 4 Conflict 2

5 / 4 2 , Conflict 3

if d r then Method

if r d r then Method

if r d r then Method

 


 
  

，          
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a. ConflictMethod1: There are five particles to    

compete a position in the first type of conflict 

problem (see Figure 5). The red balls are evacuees 

and the yellow circle is an empty location. We put 

forward six strategies to solve the conflict between 

the particles as shown in Figures 5-a, 5-b, 5-c, 5-d, 

5-e, and 5-f). 

 
Evacuees position 

   
a) P1 to P0, P2 to p1 b) P3 to P0, P2 to P3 c) P4 to P0 

   
d) P2 to P0 e) P3 to P0, P5 to P3 f) P5 to P0 

Figure 5. Study of the competitive behavior of ConflictMethod1. 

P1…, P5 are five conflict particles in Figure 5, and 

their movement strategies comply with the following 

combination rules in Table 1. 

Table 1. Constraint pattern for conflict method1 

Constraint Description 

When P2 or P5 move to position 

empty location. 
P1, P3 and P4 stay in the same place 

When P1 or P4 move to position 

empty location. 

The optimal position for P2 and P5 

are P1’ position and P4’ position, 
respectively. 

When P3 move to position empty 

location. 
P2 or P5 move to P3’position. 

We calculate the probability of each particle and 

form a probability table for each movement strategy. 

We tabulate the probability according to particle 

velocity s and particle number d behind the current 

particle. The probability function can be written as: 

                           , *i i i ip s d P s P d         (5) 

                               

 

1,

i
i n

j

j i j

s
P s

s
 




                               (6)

  

                             
 

1

/
n

i i j

j

P d d d


          (7)
                                       

 

According to the probability table, we adopt the 

minimum entropy principle to decide which strategy to 

utilize. Conflict Method1 sets S={S1, S2, ... , Sn} as a 

collection of mutually exclusive natural states. The 

collection of subjective probability distributions is 

defined as i. 1{ ( , , ) | Pr ( ) , 1, , ;i in i j ijS P p p s p i m       

j=1, ..., n}. This is a finite set, where Pri(sj) is the i
th
 

subjective probability about strategy sj. The modeling 

process consists of the following four steps. 

1. Compute information entropy, which is given by 

1

( ) ln , 1,2, ,
n

i ij ij

j

H P p p i m


     

2. If
0 0

1
min ( .) ( .)(1 )i i

i m
H P H P i m

 
   , then 

0i
P  is outcome

；  

     If
11

min ( .) ( .) ( .) ( 2).
ri i i

i m
H P H P H P s r

 
      then 

compute 
0

1

. /
r

i

k

P Pik r


  

3. If 
0

( )iH P s , Pi0 is outcome; 

     If 
0

( ) lnis H P s r   , then randomly choose it and 

set Pit as outcome in i1， i2…ir(1≤t≤r). 

4. Set movement strategy of particles with outcome 

and combination rules. 

b. ConflictMethod2：PSO calculates the movement 

positions of the particles in the next iteration. When 

the predicted position of two particles meet a 

collision condition, ConflictMethod2 first evaluates 

their priority according to the fitness distance, then 

computes the optimal position of the particles.  

In Figure 6, Pa and Pb are two particles, r is the particle 

radius, Pb’ is the predicted position of Pb. r1 is the 

fitness distance, r2 equals 2r, r4 equals the velocity of 

particle Pb’, and r3 equals the difference between r4 

and r. The points (c, d) and (e, f) are the centers of the 

circle of two particles. S is the particle's center in non-

conflict movement area. The ConflictMethod2 is the 

following. 

Algorithm 4: The ConflictMethod2 

1. Initialization 

The coordinates for Pa and Pb are C (c,d) and D (e,f) 

respectively.  

Set (a,b) as point M. 

The radius of the purple circle is r1. 

Read parameter values, particle radius r, and particle 

velocity v. 

2. Optimal coordinate 

Get point coordinates (a,b) for the shortest distance 

between the particle and the Exit. The point at the particle’s 

center is a distance “r” from the boundary of the Exit. 

3. Point of intersection  

    Define A(x1, y1) and B(x2, y2) as the two points of 

intersection       between Pa’ and S. Then  

                      

   

   

2 2 2

2

2 2 2

3

x c y d r

x e y f r

    


   
          

A point’s coordinates E are     1 2 1 2/ 2, / 2x x y y  . 

4. Negotiation rounds 

Calculate the distance 
2

)()( 2121

22
yyxx    between 

A and B. 
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(a)Calculate the angle   between AD and DE. If 0< <

r

yyxx

3

22

2
arcsin

)()( 2121   , then A is the optimal point. 

(b)Calculate the angle   between CD and DB. If 

r

yyxx

3

22

2
arcsin

)()( 2121   < <

r

yyxx

3

22

2
arcsin2

)()( 2121   , then B is 

optimal point. 

5. Point of tangency 

If A and B are not the optimal points, then ConflictMethod2 

derives the tangency point N(xn,yn) between S and the purple 

circle. The tangency point N is the optimal point as shown 

         

   

       

2 2 2

3

2 2 2 2

3

n n

n n

x e y f r

x a y b r a e b f

    

        

         (9) 

S

(c,d) 

(e,f)

Exit

 (a,b)

r1

r3

r4r3

Pb

Pb’
r2

Pa’

Par

 

Figure 6. Study of the competitive behavior of ConflictMethod2. 

c. ConflictMethod3: We set a yellow circle at the 

position of the fixed particle Pa. Pb’ is the optimized 

location of Pb. The fitness value of Pa is less than that 

of Pb. The particle center coordinates for Pa and Pb 

are A (a,b) and B (c,d), respectively.  

L

R

(c,d)

(a,b)

Pa

Pb’

Pb

r

r

r

 

Figure 7. Study of the competitive behavior of ConflictMethod3. 

As shown in Figure 7, L is a straight line joining A 

and B, and R is tangent to Pa and perpendicular to L. 

Particle Pb’ is tangent to particle Pa and line R, whose 

center coordinate is on line L. 

Algorithm 5: The ConflictMethod3 

1. Initialization 

Read parameter values A and B. 

2. Tangent coordinates 

Compute the tangent coordinates (x1, y1). 

                          

 

 
 

   

1 1

2 2 2

1 1

a c
y x a b

b d

x a y b r

 
   




   

    (10) 

3. Optimized coordinates 

Compute the center coordinates  1 12 ,2x a y b   of Pb’ 

based on the results of Step 2. 

3. Discussion and Results 

Numerical testing is presented using three scenarios. 

The first scenario uses a single room to compare our 

GLPSO model with the PSO [18] and Agent [6] 

strategies. This experiment explained the different 

evacuation times estimated by three evacuation 

methods in microscopic simulations. The second 

scenario uses a larger layout and compares our 

optimization-based strategies with the strategy using 

PSO [18] based on the nearest exits and Game theory 

[8]. The third scenario uses a multi-room multi-floor 

building to compare our evacuation planning with 

PSO for crowed movement [18]. 

 Scenario 1. This example studies an egress scenario 

in which a group of pedestrians is guided to exits 

within a single room (as shown in Figure 8). 

 

Figure 8. The single room. 

10 20 30 40 50 60 70 80 90 100 110

48

52

56

60

64

68

72

76

80

E
v

ac
u

at
io

n
 t

im
e 

(s
ec

o
n

d
)

Evacuee

 Evacuation time of GLPSO

 Evacuation time of traditional PSO

 Evacuation time of Agent

 

Figure 9. The evacuation time vs. evacuee. 

This experiment is to test the validity of the 

evacuation time. Figure 9 shows the evacuation time 

of each method. The black curve is the average 

evacuation time for the GLPSO method. The red curve 

is the average evacuation time for the Agent method. 

The blue curve is the average evacuation time for the 

traditional PSO method. With the increase of the 

number of evacuees, the average evacuation time for 

the GLPSO model is obviously smaller than the other 

two algorithms.  

 Scenario 2. This scenario studies an egress scenario 

in which four groups of people are guided to three 

exits within a small planar layout (as shown Figure 

10). 



886                                                   The International Arab Journal of Information Technology, Vol. 14, No. 6, November 2017 

 

 

Figure 10. Exiting pattern for a 4-room/1-corridor layout. 

140 145 150 155 160 165 170 175

0

20

40

60

80

100

120

140

160

180

200

220

P
a
rt

ic
le

Time (second)

 Exit1

 Exit2

 Exit3

 Sum

 

Figure 11. Optimal allocation of particle to the three exit by GLPSO. 
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Figure 12. Optimal allocation of particle to the three exit by the 

nearest exits. 

This experiment is to test the optimal choice for 

multi-exit scenarios. One of the main objectives of 

forecasting evacuation times is the optimization of the 

allocation of people and areas to the various available 

exits. Figures 11, 12, and 13, are the optimal allocations 

of each method in a plan. The evacuation times to Exits 

1, 2, and 3 are shown in the red, blue, and green curves, 

respectively. The black curve is the total evacuation 

time for the GLPSO strategy. 

Figures 11, 12, and 13 show evacuation planning for 

the three algorithms. The results show that the different 

of the optimal allocation of particles between Exit1 and 

other exits increases with increase in the number of 

particles. On the other hand, GLPSO and Game theory 

exhibit a slowly-rising trend as a function of particle 

number. The evacuation time estimated by GLPSO is 

less than Game theory. Therefore, in total, the plan 

made by GLPSO is better than that of the other two 

algorithms. 

142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174

20

40

60

80

100

120

140

160

180

200

P
a
rt

ic
le

Time (second)

 Exit1

 Exit2

 Exit3

 Sum

 

Figure 13. Optimal allocation of particle to the three exit by game 

theory. 

 Scenario 3. This example studies an egress 

scenario in which 780 pedestrians are guided to 

exits within a multi-room, multi-floor building 

(as shown in Figure 16). 
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Figure 14. Evacuation curves of two algorithms. 

Figure 14 shows the evacuation curves of two 

algorithms. For GLPSO, 100% of particles have been 

evacuated out of the building at 170 seconds. 

However, using PSO for Crowd movement model, 

229 seconds elapsed before all particles were 

evacuated. The cumulative number of particles 

evacuated is different between the two models by 112 

seconds. This is a result of GLPSO taking full 

advantage of multiple exits to evacuate particles.  

Figure 15 shows the evacuation time for each exit 

in a plan. In the case of the GLPSO algorithm, the 

simulation output shows an evacuation plan with a 

maximum evacuation time of 170 seconds at Exit 1, 

and a minimum evacuation time of 140 seconds at 

Exit 4. The PSO algorithm results in a maximum 

evacuation time of 230 seconds at Exit 1 and a 

minimum evacuation time of 114 seconds at Exit 4. 

Obviously, a reasonable planning can take full 

advantage of multiple exits and drastically improve 

the evacuation time. The simulation output of GLPSO 

provides a more rational result than PSO for crowd 

movement model because the different values and the 

maximum evacuation times are smaller.  
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a) Graph compares the time to the evacuation number to pass exit1. 
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b) Graph compares the time to the evacuation number to pass exit2. 
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c) Graph compares the time to the evacuation number to pass exit3. 
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d) Graph compares the time to the evacuation number to pass exit4. 

Figure 15. Cumulative evacuees passing through exit (Allocation of 

780 people to four exits). 
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Figure 16. An egress structural layout. 

4. Conclusions 

In summary, we have presented a GLPSO which 

combines the filled function method and the PSO 

algorithm for the evacuation routing optimization 

problem in complex scenarios. This method seeks to 

find the global minimum of the evacuation time using 

filled function methods. The improved NRS method 

obtains a global optimum node and a local optimum 

node with the global optimum particle distribution. 

The two nodes guide particles to their own best-known 

positions in the search-space from a macroscopic point 

of view. We have demonstrated that under different 

scenarios, GLPSO takes full advantage of multiple 

exits to reduce evacuation and congestion times. In 

addition, we proposed three methods to manage the 

competition for space in GLPSO. These methods 

simulate particle movement and optimize competition 

behavior on the micro level. GLPSO has been 

established to examine how the rational evacuation 

planning of the evacuees will affect the evacuation 

process. Our results provide compelling evidence for a 

global/local optimization in emergency evacuation, 

which are effective in maximizing the evacuation 

efficiency and optimized competitive behavior. 

Further works will need to examine the effect of 

familiarity and environmental stimuli as well as 

accident prevention effect on multi-exit selection. 
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