
44 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Efficient Parameterized Matching Using Burrows-

Wheeler Transform

Anjali Goel
1
, Rajesh Prasad

2
, Suneeta Agarwal

3
, and Amit Sangal

4

1
Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, India

2
Department of Computer Science and Engineering, Yobe State University, Nigeria

3
Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology,

India
4
Department of Computer Science and Engineering, Sunder Deep Engineering College, India

Abstract: Two strings P[1, ..., m] and T[1, ..., n] with m≤n, are said to be parameterized match, if one can be transformed into

the other via some bijective mapping. It is used in software maintenance, plagiarism detection and detecting isomorphism in a

graph. In recent year, Directed Acyclic Word Graph (DAWG). Backward DAWG Matching (BDM) algorithm for exact string

matching has been combined with compressed indexing technique: Burrows Wheeler Transform (BWT), to achieve less search

time and small space. In this paper, we develop a new efficient Parameterized Burrows Wheeler Transform (PBWT) matching

algorithm using the concept of BWT indexing technique. The proposed algorithm requires less space as compared to existing

parameterized suffix tree based algorithm.

Keywords: Suffix array, burrow-wheeler transform, backward DAWG matching and parameterized matching.

Received January 9, 2014; accepted December 23, 2014

1. Introduction

String matching is a problem of finding all the

occurrences of a pattern P [1, ..., m] in the text T[1, ...,

n], m≤n, over some finite alphabet set ∑. It has direct

applicability to real world problems such as: DNA

subsequence matching, digital libraries, multimedia

and intrusion detection [3]. Parameterized string

matching [1, 9] is a type of string matching, where

symbols of text and patterns are consistently renamed.

This renaming is done with the help of a one-one

mapping. It is broadly used in software maintenance,

plagiarism detection and detecting isomorphism in

graph [8].

Baker [1] developed an algorithm for parameterized

string matching. Her algorithm mainly uses the concept

of suffix tree and has primarily been used in software

maintenance.

Suffix Array (SA) [6], one of the indexing

techniques which work on suffixes of a text T. It sorts

the suffixes of text in lexicographical order [7].

Burrows-Wheeler Transformation (BWT) [3] is a

reversible, lossless compression and indexing

technique. It is reversible in nature because it is simply

permutation of the letters of the text string. So, original

text can be reconstructed from compressed text without

loss of the information.

Directed Acyclic Word Graph (DAWG). Backward

DAWG Matching (BDM) [5] is an average-optimal

on-line string matching algorithm which performs

matching from backward direction in the m-length text

window. In succinct backward-DAWG-matching [5],

BDM has been combined with BWT to achieve less

search time and small space for exact matching. In

2009, BDM algorithm for exact string matching has

been combined with BWT to achieve less search time

and small space [5].

In this paper, we develop a new efficient

Parameterized Burrows-Wheeler Transformation

(PBWT) matching algorithm using the concept of

BWT indexing technique. The proposed algorithm

requires less space as compared to existing

parameterized suffix tree based algorithm [1]. The

proposed algorithm is also applicable for handling the

multiple patterns simultaneously. To the best of our

knowledge, BWT has not been applied on the

parameterized matching in the past.

The Running time of our proposed algorithm is

O(nm), which for large text length, is almost

compatible to parameterized matching based on suffix

tree indexing technique but it consumes O(m
2
) space

which, for large text and small pattern, is very much

less in comparison to parameterized suffix tree existing

based approach (O(n)).

The paper is organized as follows. In the next

section we describe related concepts. In section 3, we

present our proposed algorithm: PBWT. Section 4

presents experimental setup and results. Finally, last

section concludes the paper.

Efficient Parameterized Matching Using Burrows-Wheeler Transform 45

2. Related Concepts

2.1. Burrows-Wheeler Transform

BWT [3] is an indexing and compression algorithm

which achieves high lossless compression ratio. BWT

is reversible in nature because it is simply permutation

of the letters of the text string. So, original text can be

reconstructed from compressed text without loss of the

information. BWT forms the cyclic rotations of text

string after appending $ at the end of the text.

Algorithm sorts cyclic rotated strings of text in

lexicographical order. Last column of the sorted strings

will be BWT compressed text.

Various BWT based compressors like bzip and szip

are available [3]. Its computation function is similar to

SA but consumes less memory so it has been adopted

by various software as Bowtie, BWA, and SOAP2 [2].

2.2. Backward DAWG Matching (BDM)

BDM is an average-optimal on-line string matching

algorithm which performs matching from backward

direction (from right to left) in the m-length text

window, where m is the pattern length. In this

algorithm pattern pre-processing occur using DAWG.

Algorithm form the DAWG for the reversed pattern.

Using DAWG, we search longest suffix of the reversed

pattern (prefix of original pattern) in the text window.

BDM remembers longest suffix of the pattern, not the

whole pattern. Detail is available in [5].

2.3. Parameterized Matching

Two strings P and T are said to be parameterized

match [1, 9], if one can be transformed to other via

some bijective mapping. This matching works on two

disjoint alphabet sets: ∑, the fixed alphabet set and ,

the parameterized alphabet set. During matching,

symbols from ∑ remains the same while symbols from

 may be consistently renamed. For example, let us

assume the text T=XAXXAXAXA and P=XAXAXA

with ={X} and ∑={A}. Prev-encoding of pattern and

text are prev(P)=0A2A2A and prev(T)=0A21A2A2A

respectively. In prev encoding all ∑ set symbols

remains same while set symbols renamed with non-

negative integers. Parameterized matching is used to

find all parameterized occurrences of a pattern in the

text.

3. Proposed PBWT Algorithm

3.1. For Single Pattern

In [4], BDM algorithm for exact string matching has

been combined with compressed indexing technique:

BWT [3] to achieve less search time and small space.

In this section, we propose a new algorithm: PBWT for

single and multiple pattern parameterized matching

algorithm using BDM algorithm and BWT indexing

technique.

In the pre-processing step, we calculate prev-

encodings of the pattern P (prev(P)) and the text T

(prev(T)). Now append $ at the end of prev(P) as end

of the file symbol, calculate the BWT compressed

pattern and store in an array „L‟. We use the variables s

representing the starting row in BWT matrix and

variable e representing the ending row in a BWT

matrix.

 Working of the Algorithm is as Follows: We start

reading the last character (c) of the m-length text

window (from right to left). Find corresponding

prev-encoded value of (c) from prev(T). If this

character belongs to set ∑ then check the occurrence

of all possible combination of current sub-string

read so far in the BWT matrix. But, if the character

(c) belongs to the set then check the occurrence of

substrings starting from actual and lowest

parameterized value present in BWT matrix. Find

the minimum starting index (s) for current substring

in BWT matrix from both the indexes (calculated

from actual and lowest parameterized value) and

maximum ending index (e) in BWT matrix

(calculated from actual and lowest parameterized

value) where this string found in matrix. For each

substring, find the starting index row and ending

index row in BWT matrix. From the above founded

starting indexes, choose minimum starting index (s).

Similarly from the above founded ending index,

store the maximum ending index (e) where current

substring found in matrix. From compressed pattern

array „L‟, check the position of $ symbol and store

its index in variable „p‟. If p is in the range (s≤ p≤

e), it shows that the current substring is an exact

prefix of one of the suffix of prev(P) and hence it

confirms the occurrence of the current sub-string as

a factor of the pattern. Otherwise, for certain sub-

string, no match is found as a prefix in the pattern.

Similarly we will match every current substring of

text as a prefix in the pattern. If no match is found

till the beginning of the window, then the particular

substring is not a factor of the pattern. Therefore, we

shift the window completely. If match is found then

shift the window by last founded longest suffix of

the text. Examples 1 and 2 illustrate the algorithm.

 Example 1: Let us assume the text

T=XAXXAXAXA and P=XAXAXA on ={X}

and ∑={A}. Pattern length (m=6) and text length

(n=9). Prev-encoding of pattern and text are

prev(P)=0A2A2A and prev(T)=0A21A2A2A

respectively. To calculate the BWT of prev(P)$, we

need to rotate the string left circularly upto length of

prev(P)$ as shown in Figure 1 and then sort these

rotated strings in lexicographical order as shown in

Figure 2. We calculate the BWT of prev(P)$ shown

above and store the last column of sorted string

matrix in an array L=A$AA220. Position of $ in

46 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

p=2. Initialize variables i=1, shift=6. These

variables will be updated at every window shift.

Last character of the 6-length text window is X, its

corresponding prev(T) value is 2.

0A2A2A$

A2A2A$0

2A2A$0A

A2A$0A2

2A$0A2A

A$0A2A2

$0A2A2A

Figure 1. Unsorted strings.

1 $0A2A2A

2 0A2A2A$

3 2A$0A2A

4 2A2A$0A

5 A$0A2A2

6 A2A$0A2

7 A2A2A$0

Figure 2. Sorted strings.

This character belongs to set , therefore, we check

the occurrence of substring starting from lowest

parameterized value 0 present in BWT matrix and

actual parameterized value 2. For each substring

starting from both of the parameterized value, we find

the minimum starting index row and maximum ending

index row in BWT matrix. Update the variables for

substring (0): s=2, e=2, for the substring (2): s=3, e=4,

minimum s=2, maximum e=4 and Shift=5 (because

character X is proper suffix of the pattern). Now check

the second last character of the window which is A, it

belongs to set ∑, so we check all locations where

current substring (A2 and A0) found in BWT matrix.

Update variable for substring (A2): s=6, e=7, and

substring A0 is not found. This substring (AX) is not

proper suffix of the pattern, so, variable Shift will not

be updated. In a similar fashion, check occurrence of

all characters in BWT upto mismatch or beginning of

window is found. When we read fourth character (from

right) of the text window, mismatch is found. So, shift

the window from the last updated shift variable value

which is 3 after adding value of variable i which is

initially 1. Now update all variables: i=4, shift=6, s=1

and e=7, because window is changed. Now start

reading the last character of 6-length text window

which is A, it belongs to set ∑, so we check all

locations where substring found in BWT matrix.

Update the variables: s=5, e=7. This substring (A) is

not proper suffix of pattern. So, variable Shift will not

be updated. Check another second last character is X,

so check all locations where substring (0A and 2A) is

found in BWT matrix. Update variables for substring

(0A): s=2, e=2 and for substring (2A): s=3, e=4,

minimum s=2, maximum e=4, shift=4 (because

substring (XA) is proper suffix of the pattern).

Similarly, check another character A, so we check all

locations where substring found in BWT matrix.

Update variables: s=6, e=7. This substring is not

proper suffix of the pattern so shift variable will not be

updated. Similarly we will check till the beginning of

window or mismatch found. Finally, in the end of this

window pattern match with shift=3.

 Example 2: Let us assume the Text T=XABXXABX

and Pattern P=XABX on the Π={X} and ∑={A, B},

where |P|=4, |T|=8, prev(P)$=0AB3$ and

prev(T)=0AB31AB3. Calculate BWT of prev(P)$

and store the compressed pattern in the array L as

calculated (3$B0A). Position of $ in p=2. Initialise

the variables i=1 and shift 4, these variables will be

shifted at every window shift. Now start reading

with the last character of the window that is T[4]=

X, take Π values and check the occurrence of

current substring starting from 0 and 3. Then

calculate the “s” and “e” values as 2, 3 respectively,

shift will be updated by 3 because this substring is

the proper suffix of our pattern. Subsequently check

occurrences of all the variables in this window.

Proper match will be found at starting position 1 and

4 with updated shift variable for further match in the

same text. Algorithm 3 and Figure 3 illustrates the

program in C and flowchart respectively.

Algorithm 3: PBWT (P, T)

P is a patter, of length m and T is a text of length n

#C [] is an array holding current substring

#verify()= verifies the current substring is proper suffix of the

pattern

#l[k]is an array for checking the last character of m- length text

window

PREVT[]= represent the prev-encoding of the text

shift= movement of window by last founded suffix of the text

$= end of the file symbol

while(l[k]!='$')

{

k++; p=k+1;

while(i<=n-m+1)

{

h=0;

 j=m;

shift=m;

s=1;

e=m+1

while((s<=e)&&j>0)

{

c=PREVT[i+j-2];

C[h++]=c;

C[h]='\0'

verify();

j=j-1;

if(s<=p && p<=e)

{

if (j>0)

shift=j;

else

print("Report Match at

Position i”);

}

 else i=i+ shift;

 }

 }

 }

 }

Efficient Parameterized Matching Using Burrows-Wheeler Transform 47

Figure 3. Flow chart showing the working of the algorithm PBWT.

 Analysis: The running time of our proposed

algorithm is O(nm), but it consumes O(m
2
) space

which, for large text and small pattern, is very much

less in comparison to parameterized suffix tree

existing based approach (O(n)). For single pattern,

experimental results show that increase in pattern

size and file size, running time increases.

3.2. For Multiple Patterns

The algorithm proposed in section 3.1 works for

multiple patterns also. The new algorithm is called as

MPBWT. As a pre-processing step: we calculate prev-

encodings of all the patterns: P1, P2, …, Pn. (where n>0)

in prev(P1), prev(P2), …, prev(Pn) and of the text T

(prev(T)). Now append $ at the end of each prev-

encoded patterns as end of the file symbol and

concatenate each patterns to get prev(P1$), prev(P2$),

…, prev(Pn$). We calculate the BWT compressed

pattern of prev(P) and store in an array „L‟, whose

length is r(m+1), m being the pattern length and r

being the number of patterns. We use the variables s

representing the starting row in BWT matrix and

variable e representing the ending row in a BWT

matrix.

Working of the algorithm is follows: we start

reading the last character (c) of the m-length text

window (from right to left). Find corresponding prev-

encoded value of (c) from prev(T). If this character

belongs to set ∑ then check the occurrence of all

possible combination of current sub-string read so far

in the BWT matrix. But, if the character (c) belongs to

the set then check the occurrence of substrings

starting from actual and lowest parameterized value

present in BWT matrix (as done in single pattern). Find

the minimum starting index (s) for current substring in

BWT matrix from both the indexes (calculated from

actual and lowest parameterized value) and maximum

ending index (e) in BWT matrix (calculated from

actual and lowest parameterized value) where this

string found in matrix. For each substring, find the

starting index row and ending index row in BWT

matrix. From the above founded starting indexes,

choose minimum starting index (s). Similarly from the

above founded ending index, store the maximum

ending index (e) where current substring found in

matrix.

Working of the algorithm is same as the previous

one. We start reading the last character (c) of the m-

length text window (from right to left). Find

corresponding prev-encoded value of (c) from prev(T).

Check the occurrence of all possible combination of

current sub-string read so far in the BWT matrix. For

every substring, check $ is in this range (rank$ (L, e)-

rank$ (L, s-1) >0), it means there exist some prefix of

pattern which occur in this range, Where rank$ (L, e)

represents the total number of occurrences of character

$ in L up to length e and rank$ (L, e) represents the

total number of occurrences of character $ in L up to

length s-1. When $ is in this range it shows that current

substring must match a prefix of one of the suffix of

prev(P) and hence it confirms the occurrence of the

current sub-string as a factor of the pattern. Otherwise,

for certain sub-string, no match is found as a prefix in

the pattern. Similarly we will match every current

substring of the text as a prefix in the pattern. If no

match is found till the beginning of the window, then

the particular substring is not a factor of the pattern.

Therefore, we shift the window completely. If match is

found then shift the window by last founded longest

suffix of the text.

 Analysis: The running time of our proposed

algorithm is O(r n m), but it consumes O(r m
2
)

space which, for large text and small pattern, is very

much less in comparison to parameterized suffix

tree existing based approach (O(n)).

4. Experimental Results

We have implemented our proposed algorithms PBWT

and MPBWT in C (some coding part shown below),

compiled with Borland compiler version 3.0.

Y

START

L BWT Compressed pattern Prev(P)$

P index of $ in L

n length of Text(T)

m length of Pattern(P)

i=0
i ≤ n-m+1

N

s =1, e = m+1, j = m, shift = m

s ≤ e & j>0

C T [i+j-1]

Find values of “s” and “e” corresponding

to current substring Update j j-1

s ≤ p ≤ e

j > 0

Shift j

Report

Match

i i + shift

STOP

Y

N

N

N
Y

Y

48 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Experiments are performed on Intel(R) Core(TM)2

Duo CPU T6400@2.00 GHz with 3 GB RAM, running

Window 7 Ultimate. We are using DNA database

sequences, random file of 8 English alphabets and

random file of 26 English alphabets for analysis

purpose with varied file size. We are calculating the

time for different pattern size and file size with values

of parameterized alphabet set . The execution time of

algorithms is measured through CPU time

Table 1 shows the running time of PBWT algorithm

on single, varying pattern size and file size on DNA

alphabet. Experimental results show that: increase in

pattern size with file size, running time increases for

single pattern.

Table 1. Running time (in seconds) of PBWT algorithm for various
pattern sizes and file size on DNA alphabet {A, C, G, T}.

File Size Size of
Pattern size =

5

Pattern size =

10

Pattern size =

15

5 KB

=1 0.219780 0.604396 1.373636

=2 0.219780 0.604396 1.318681

=3 0.274725 0.604396 1.318681

=4 0.274725 0.604396 1.263736

10KB

=1 0.384615 1.208791 2.692308

=2 0.494505 1.263736 2.692308

=3 0.439560 1.208791 2.197802

=4 0.494505 1.263736 2.637363

15 KB

=1 0.604396 1.868132 3.846154

=2 0.714286 1.813187 3.846154

=3 0.714286 1.868132 3.956044

=4 0.824176 1.868132 3.846154

20KB

=1 0.714286 2.307692 4.890110

=2 0.834066 2.307692 4.835165

=3 0.879121 2.362637 5.000000

=4 1.043956 2.362637 4.780220

Table 2 shows the running time (in seconds) of

PBWT for multiple patterns with various file size on

DNA alphabet. As pattern size and file size increases,

the time for matching increases. For multiple pattern,

with increase the number of patterns with file size,

running time increases.

Table 2. Running time (in seconds) of MPBWT algorithm for

multiple pattern (fixed size) and various files size on DNA

alphabet.

File Size Size of
No. of Pattern

= 3

No. of Pattern

= 4

No. of Pattern

= 5

5 KB

=1 2.527473 5.274725 8.736264

=2 2.527473 5.274725 8.626374

=4 2.527473 5.329670 8.681319

=8 3.571429 7.692308 12.307692

10KB

=1 5.000000 10.769231 17.417582

=2 5.219780 10.824176 17.802198

=4 5.164835 10.769231 17.472527

=8 6.978022 15.164835 24.725275

15 KB

=1 7.747253 15.934066 26.208791

=2 7.527473 14.120879 25.989011

=4 7.637363 15.769231 26.098901

=8 10.000000 22.747253 37.087912

20KB

=1 9.450549 13.076923 32.087912

=2 9.395604 19.835165 32.362637

=4 9.505495 19.670330 32.197802

=8 13.076923 28.791209 47.417582

5. Conclusions

In this paper, we proposed a new algorithm: PBWT for

single and multiple patterns using BWT indexing

technique. The proposed algorithm asymptotically

requires less space as compared to existing algorithm:

parameterized suffix tree algorithm. Experimental

results in Table 1 show that with increase in pattern

size and file size, running time increases for single

pattern. Table 2 show that with the increase in number

of patterns and file size, running time increases for

multiple patterns. Figure 4 showing the experimental

screenshots of PBWT algorithm for pattern size 5 and

file size 5KB on DNA alphabet {A, C, G, T}. Table 3

shows that the running time of PBWT algorithm

decreases with the increasing alphabet size.

Table 3. Running time (in seconds) of PBWT algorithm with

increasing file size (Keeping pattern size = 10 and = 2 fixed).

File Size Alphabet size = 4 Alphabet size = 8 Alphabet size = 26

10KB 1.263736 0.989011 0.879121

15KB 1.868132 1.373626 1.318681

20KB 2.362637 1.813187 1.648352

Figure 4. Experimental screenshots of PBWT algorithm for pattern

size 5 and file size 5KB on DNA alphabet {A, C, G, T}.

The running time of our proposed algorithm PBWT

is O(nm), which for large text length, is almost

compatible to parameterized matching based on suffix

tree indexing technique but it consumes O(m
2
) space

which, for large text and small pattern, is very much

less in comparison to parameterized suffix tree existing

approach, which is O(n).

References

[1] Baker B., “Parameterized Duplication in Strings:

Algorithms and an Application to Software

Maintenance,” SIAM Journal of Computing, vol.

26, no. 5, pp. 1343-1362, 1997.

[2] Beller T., Zwerger M., Gog S., and Ohlebusch E.,

“Space-Efficient Construction of the Burrows-

Wheeler Transform,” in Proceedings of

International Symposium on String Processing

and Information Retrieval, Jerusalem, pp. 5-16,

2013.

[3] Burrows M. and Wheeler D., “A Block-sorting

Lossless Data Compression Algorithm,”

Technical Report 124, DEC Systems Research

Centre, 1994.

Efficient Parameterized Matching Using Burrows-Wheeler Transform 49

[4] Faro S. and Lecroq T., “An Efficient Matching

Algorithm for Encoded DNA Sequences and

Binary Strings,” in Proceedings of Combinatorial

Pattern Matching, Lille, pp. 106-115, 2009.

[5] Fredriksson K., “Succinct Backward-DAWG-

Matching,” Journal of Experimental

Algorithmics, vol. 13, no. 1, pp. 8- 26, 2009.

[6] Goel A. and Prasad R., “Efficient Record

Matching using Indexing Techniques and

Deduplication,” International Journal of

Computational Vision and Robotics, vol. 4, no. 1-

2, pp. 75-85, 2014.

[7] Huynh T., Hon W., Lam T., and Sung W.,

“Approximate String Matching using

Compressed Suffix Arrays,” Theoretical

Computer Science, vol. 352, no. 1-3, pp. 240-

249, 2006.

[8] Mendivelso J., Kim S., Elnikety S., He Y.,

Hwang S., and Pinzon Y., “Solving Graph

Isomorphism Using Parameterized Matching,” in

Proceedings of the 20
th
 International Symposium

on String Processing and Information Retrieva,

Jerusalem, pp. 230-242, 2013.

[9] Prasad R., Sharma A., Singh A., Agarwal S., and

Misra S., “Efficient Bit-Parallel Multi-Patterns

Approximate String Matching Algorithms,”

Scientific Research and Essays, vol. 6, no. 4, pp.

876-881, 2011.

Anjali Goel holds a B. Tech in

Computer Science and Engineering

from Sunder Deep Engineering

College, Ghaziabad, India. She has

completed her M. Tech. in Computer

Science and Engineering from

AKGEC, Ghaziabad, India.

Rajesh Prasad is currently, working

as Professor and Head in the

Department of Computer Science,

Yobe State University, Damaturu,

Nigeria. He received his M. Tech

(SE) and Ph. D (CSE) from MNNIT,

Allahabad, India. He is active

member of IEEE.

Suneeta Agarwal is currently,

working as a Professor in the

Department of Computer Science at

MNNIT, Allahabad, India. She

received BSc, MSc & M.Tech (CS)

degrees in 1973, 1975 and 2007

respectively. She did Ph. D from IIT,

Kanpur in 1980. She is active member of IEEE, ISTE

and CSI.

Amit Sangal received his B. Tech in

Computer Science and Engineering

from Sunder Deep Engineering

College, Ghaziabad, India. He is SIX

Sigma, ISTQB certified and GATE

qualified.

