
The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018 157

Effective and Efficient Utility Mining Technique for

Incremental Dataset

Kavitha JeyaKumar
1
,

Manjula Dhanabalachandran

1
, and Kasthuri JeyaKumar

2

1
Department of Computer Science and Engineering, Anna University, India

2
Department of Electronics and Communication Engineering, Sri Ramaswami Memorial University, India

Abstract: Traditional association rule mining, which is based on frequency values of items, cannot meet the demands of

different factors in real world applications. Thus utility mining is presented to consider additional measures, such as profit or

price according to user preference. Although several algorithms were proposed for mining high utility itemsets, they incur the

problem of producing large number of candidate itemsets, results in performance degradation in terms of execution time and

space requirement. On the other hand when the data come intermittently, the incremental and interactive data mining

approach needs to be processed to reduce unnecessary calculations by using previous data structures and mining results. In

this paper, an incremental mining algorithm for efficiently mining high utility itemsets is proposed to handle the above

situation. It is based on the concept of Utility Pattern Growth (UP-Growth) for mining high utility itemsets with a set of

effective strategies for pruning candidate itemsets and Fast Update (FUP) approach, which first partitions itemsets into four

parts according to whether they are high-transaction weighted utilization items in the original and newly inserted transactions.

Experimental results show that the proposed Fast Update Utility Pattern Tree (FUUP) approach can thus achieve a good

trade between execution time and tree complexity.

Keywords: Data mining, utility mining, incremental mining.

Received January 30, 2014; accepted October 14, 2014

1. Introduction

In the traditional data mining techniques, finding

association rules [1, 2, 3, 11, 12, 13, 14, 21, 22, 23, 24]

in transactional databases is most commonly seen. In

the past, most of the algorithms for mining association

rules based on Apriori algorithm [1]. The mining

process first finds frequent itemsets based on user

defined support threshold and then generates

association rules from the frequent itemsets based on

user defined confidence threshold. This level-by-level

approach cause iterative database scans and high

computational costs.

On the contrary, the pattern-growth approaches

construct tree structures to recursively find association

rules without generating candidate itemsets. One of the

most important is Frequent-Pattern Tree (FP-Tree)

mining algorithm [14]. The construction process was

executed tuple by tuple from the first transaction to the

last one. After that, a recursive mining procedure called

Frequent-Pattern Growth (FP-Growth) was executed

to derive frequent patterns from the FP-Tree. They

showed the approach could have better performance

than Apriori.

The above mentioned approaches are based on

frequency values of items, which cannot meet the

demands of different factors like profit or price in real

world applications. Utility mining [5, 29, 30] was

proposed to solve the above mentioned problem by

considering the factors like cost, profit or other scales

of user preference. Thus the issue of high utility

itemsets mining is raised and many studies [4, 9, 17,

19, 20, 25,26, 27] have addressed this problem. Liu et

al. [19, 20] proposed the two phase utility mining

algorithm for efficiently extracting all high utility

itemsets based on the downward closure property.

Although, two phase algorithm reduces search space,

it still generates too many candidates and requires

multiple database scans. To overcome this problem, Li

et al. [17] proposed an Isolated Items Discarding

Strategy (IIDS) to reduce the number of candidates.

To efficiently generate High Transaction Weighted

Itemsets (HTWI’s) and to avoid multiple scans,

Ahmed et al. [4] proposed a tree based algorithm

named Incremental High Utility Pattern (IHUP).

Although, IHUP achieves better performance than

IIDS and two-phase, it still produces too many

HTWI’s in phase 1. As advancement, Tseng et al. [27]

proposed Utility Pattern Growth (UP-Growth) for

mining high utility itemsets with a set of effective

strategies for pruning candidate itemsets.

In real world applications, the problem of

discovering the frequent itemsets becomes more time

consuming if the dataset is incremental in nature. This

may introduce new frequent itemsets and some

existing itemsets would become invalid. Several

approaches [6, 7, 8, 10, 11, 15, 18, 28] are proposed to

address this issue. Thus, designing an efficient

algorithm that can maintain association rules as a

database grows is thus critically important. One

158 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

noticeable incremental mining algorithm was the Fast-

Updated Algorithm (FUP) which was proposed by

Cheung et al. [6] for avoiding shortcomings mentioned

above. It primary calculates frequent itemsets from new

transactions and compares them with the previous

found frequent itemsets from the original database.

Different procedures are then done according to the

comparison results. For some cases, FUP can avoid or

reduce the number of re-scanning the original database,

thus saving computation time in incremental mining.

In this paper we focus on incremental utility mining.

An incremental mining Fast Update Utility Pattern

(FUUP) tree algorithm for efficiently mining high

utility itemsets is proposed to handle the above mention

situation. It is based on the concept of UP-Growth for

mining high utility itemsets with a set of effective

strategies for pruning candidate itemsets and FUP

approach, which first partitions itemsets into four parts

according to whether they are high-transaction

weighted utilization items in the original and newly

inserted transactions. Experimental results show that

the proposed FUUP tree approach can thus achieve a

good trade between execution time and tree complexity.

The remainder of this paper is organized as follows.

Related works are reviewed in section 2. High utility

pattern mining problem definition described in section

3. The proposed incremental FUUP mining algorithm is

described in section 4. An example to illustrate the

proposed algorithm is described in section 5.

Experimental results for showing the performance of

the proposed approach are provided in section 6.

Conclusion is finally given in section 7.

2. Review of Related Works

In this section, some related researches are briefly

reviewed. They are the FUP algorithm and the concept

of mining high utility itemsets.

2.1. The FUP Algorithm

In real-world application, data mining is used to extract

the useful patterns or rules from a large number of

database for making the important decisions or

strategies. One common type of data mining is to

discover association rules from transaction data, such

that the presence of certain items in a transaction

implies the presence of some other items. In the past,

[1,2] then proposed several mining algorithms to find

association rules in a level-wise mining procedure. In

addition, [14] the FP-Tree algorithm for efficiently

mining frequent itemsets without generation of

candidate itemsets.

 In real world applications, transactions in a database

do not usually remain a stable condition. Some new

association rules may be generated and some old ones

may become invalid. Conventional batch-mining

algorithms solve this problem by re-processing the

entire updated database when new transactions are

inserted into the original database. They, however,

require lots of computational time and waste existing

discovered knowledge. Cheung et al. [6] proposed the

FUP algorithm to effectively update the discovered

association rules in incremental mining. Considering

an original database and some new transactions, the

following four cases (illustrated in Figure 1) may

occur:

 Case 1. An itemset is frequent (large) both in an

original database and in newly inserted

transactions.

 Case 2. An itemset is frequent (large) in an original

database but not frequent (small) in newly inserted

transactions.

 Case 3. An itemset is not frequent (small) in an

original database and but frequent (large) in newly

inserted transactions.

Figure 1. Four cases when new transactions are inserted into

existing database.

 Case 4. An itemset is not frequent (small) both in

an original database and in newly inserted

transactions.

Since itemsets in case 1 are frequent (large) in both the

original database and the new transactions, they will

still be frequent (large) after the weighted average of

the counts .Similarly, itemsets in case 4 will still be

non-frequent (small) after the new transactions are

inserted. Thus cases 1 and 4 will not affect the final

frequent (large) itemsets. Case 2 may remove existing

frequent (large) itemsets, and case 3 may add new

frequent (large) itemsets. Based on the FUP approach,

the cases 1, 2, and 4 are more efficiently handled than

conventional batch mining algorithms.

2.2. Mining High Utility Itemsets

In the Past, several mining algorithms were proposed

for efficiently discovering high utility itemsets. Yao et

al. [29] proposed an algorithm for efficiently mining

high utility itemsets based on mathematical properties

of utility constraints. Two pruning strategies based on

utility upper bounds and expected utility upper bounds

respectively were adopted to reduce the search space.

These pruning strategies were then incorporated into

Effective and Efficient Utility Mining Technique for Incremental Dataset 159

the mining approach Umining and its heuristic

successor, Umining_H [30]. Liu et al. [19, 20] designed

a two phase algorithm for efficiently discovering all

high utility itemsets. It consisted of two phases to

generate and test high utility was first used as effective

upper bound of each candidate itemset in the

transaction such that the “transaction-weighted

downward closure property” could be kept in the search

space to decrease the number of candidate itemsets. An

additional database scan was then performed to find out

the real utility values of the remaining candidates and

identifies the high utility itemsets.

Although, two phase algorithm reduces search space,

it still generates too many candidates and requires

multiple database scans. To overcome this problem, Li

et al. [17] proposed an IIDS to reduce the number of

candidates. To efficiently generate HTWI’s and to

avoid multiple scans, Ahmed et al. [4] proposed a tree

based algorithm named IHUP. Although IHUP

achieves better performance than IIDS and Two-phase,

it still produces too many HTWI’s in phase I. Such a

large number of HTWUI’s will degrade the mining

performance in phase I substantially in terms of

execution time and memory consumption.

As stated above, the number of generated HTWUI’s

is a critical issue for the performance of algorithms. As

advancement, Tseng et al. [27] proposed UP-Growth

for mining high utility itemsets with a set of effective

strategies for pruning candidate itemsets.

Correspondingly, a compact tree structure, called UP-

Tree, was designed to maintain the important

information of the transaction database related to the

utility patterns. High utility itemsets are then generated

from the UP-Tree efficiently with only two scans of the

database. Four strategies mentioned in Table 1, are used

for efficient construction of UP-Tree and the processing

in UP-Growth. By these strategies, the estimated

utilities of candidates can be well reduced by discarding

the utilities of the items which are impossible to be high

utility or not involved in the search space. The

strategies can not only efficiently decrease the

estimated utilities of the potential high utility itemsets

but also effectively reduce the number of candidates.

Table 1. Four strategies of UP-Growth.

Strategies Explanation

DGU

Discarding global unpromising items and their actual utilities
from transactions and transaction utilities of the database.

DGN

Decreasing global node utilities for the nodes of global up-tree

by actual utilities of descendant nodes during the construction

of global UP-Tree.

DLU

Discarding local unpromising items and their estimated utilities

from the paths and path utilities of conditional pattern bases.

DLN

Decreasing local node utilities for the nodes of local up-tree by
estimated utilities of descendant nodes during the construction

of global UP-Tree

3. Problem Definition

In this section, we first give some definition similar to

those presented in the previous works [19, 29, 30] and

define the problem of utility mining. Let I={i1, i2, …,

ij, …, im} be a set of items and D be a transaction

database {T1, T2, …, Tk, …, Tn} where each

transaction DTi is a subset of I.The calculations are

done according to the according to the original

database and utility given in Tables 2 and 3.

 Definition 1: The quantity of item ij in transaction

Tk called local transaction utility or internal utility

value, represented as l(ij, Tk). For eg., l(A, T3).

 Definition 2: The unit profit value of each item ij

called external utility P(ij). For eg., P(B)=150.

 Definition 3: The utility for an item ij in transaction

Tk is the quantitative measure of Equation 1.

 u(ij, Tk)=l(ij, Tk)×P(ij)

For eg., a(A, T3)=3×3=9.

 Definition 4: The utility of an itemset X in

transaction Tk, is defined by Equation 2.

),(),(k

Xi

jk TiuTXu
j

Where, X is the set of k distinct items {i1, i2, …, ik}, X
 Tk, ij I, 1≤j≤k, k is the length of X. An itemset with

length k is called k-itemset.

For eg., u(AB, T1)=3×3+2×150=9+300=309.

 Definition 5: The utility of an itemset X is defined

by Equation 3.

DT Xi

kj

k j

TiuXu),()(

For eg., u(AB)=u(AB, T1)+u(AB, T6)+u(AB, T7)=309+

303+ 456= 1068.

Table 2. An original database in the example.

TID A B C D E F tu

1 3 2 0 3 0 0 459

2 2 0 0 4 2 0 406

3 3 0 5 0 0 3 74

4 1 0 3 0 1 2 146

5 1 0 0 3 2 0 353

6 1 2 0 4 0 0 503

7 2 3 2 0 1 1 578

8 0 0 0 0 0 2 40

9 0 0 3 3 0 0 153

10 3 0 0 4 0 0 209

Table 3. The utility table.

Item Profit($)

A 3

B 150

C 1

D 50

E 100

F 20

 Definition 6: The accumulated utility value of the

items in each transaction Tk, is the transaction

utility (tu) is defined by Equation 4.

kj Ti

kjk TiuTtu),()(

(1)

(2)

(3)

(4)

160 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

For eg., tu(T1)= u(A, T1)+ u(B, T1)+ u(D, T1)=3×3+

2×150+ 3×50= 9+ 200+ 150= 459.

 Definition 7: The minimum utility threshold λ given

by the percentage of total transaction utility values of

the database. In Table 3, the summation of all the

transaction utility values is 2921. If λ is 35%, then

the minimum utility count is defined as Equation 5.

DT

k

k

Ttumuc 35.1022292135.0)(

 Definition 8: An itemset X is a high utility itemset if

the following condition in Equation 6 satisfied.

 u(X)>=muc

For eg., u(AB)=1068(≥1022.35).

AB is a high utility itemset.

 Definition 9: The Transaction-Weighted Utility

(TWU) of an itemset X is the summation of all

Transaction Utility (tu) containing X in Equation 7.

 () ()
k

X T Dk

twu X tu T

For eg., twu(AB)= tu(T1)+ tu(T6)+ tu(T7)= 459+ 503+

578= 1540.

 Definition 10: An itemset X is a high transaction

weighted utilization itemset if Equation 8 satisfied.

 twu(X)>=muc

For eg., twu(AB)=1540(≥1022.35).

AB is a High Transaction Weighted Utilization

itemset (HTWU). The downward closure property can

be maintained using transaction weighted utilization.

For any itemset X, if X is not a HTWU, any superset of

X is a low utility itemset.

4. The Proposed Incremental FUUP Mining

Algorithm

An FUUP tree must be built in advance from the

initially original database before new transactions

come. Its initial construction is similar to that of an UP

tree according to the strategy of Discarding Global

Unpromising (DGU) and DGN. The database is first

scanned to find the items with their TWU larger than a

minimum utility threshold, which called promising

items. Other items are called unpromising. Next, the

promising items are sorted in descending order and

reorganized transaction utility is evaluated. At last, the

reorganized transaction is scanned again to construct

the tree according to the sorted order of promising

items. The construction process is executed tuple by

tuple, from the first transaction to the last one. After all

transactions are processed, the final UP tree for the

original database is completely constructed.

When new transactions are added, the proposed

incremental maintenance algorithm will process them

to construct the FUUP tree. The new transactions are

first scanned to find the promising and unpromising

items according to the TWU of newly inserted

transactions. Then, it partitions items into four parts

according to whether they are large or small in the

original database and in the new transactions. Each

part is then processed in its own way. The Header-

Table and the FUUP tree are correspondingly updated

whenever necessary.

In the process for updating the FUUP tree, item

deletion is done before item insertion. When an

originally large item becomes small, it is directly

removed from the FUUP tree and its parent and child

nodes are then linked together. On the contrary, when

an originally small items becomes large, it is added to

the end of the header-table and then inserted into the

leaf nodes of FUUP tree. It is reasonable to insert the

item at the end of the header-table since when an

originally small item becomes large due to the new

transactions, its updated support is usually only a little

larger than the minimum support. The FUUP tree can

thus be least updated in this way, and the performance

of the proposed incremental algorithm can be greatly

improved. The entire FUUP tree can be re-constructed

in a batch way when a sufficiently large number of

transactions are inserted. The details of the proposed

algorithm are described below.

Algorithm 1: Incremental FUUP Mining

Input: D, Utility table, λ, , d

Output: FUUP tree

for each ij

in Tk

find u(ij, Tk),tu(Tk)

find muc
d
, twu

d
(X)

if(twu
d
(X)> muc

d
)

 put X in HTWUI
d

for each X in both HTWUI
D

and HTWUI
d

 update twu
u
(X) and put in HTWUI

U

for each X in HTWUI
D

and not in HTWUI
d

 update twu
u
(X)

 If twu
u
(X)>muc

U
 put in HTWUI

U

 Else remove X from FUUP tree

for each X not in HTWUI
D

and in HTWUI
d

 Rescan X in D and update twu
u
(X)

 If twu
u
(X)>muc

U
 put in HTWUI

U
and Rescan items

Sort X in Rescan items

Reorganize and insert at the end of FUUP tree

 Explanation:

 Input: An original database D, its corresponding

Header-table storing the High Transaction

Weighted Utility Items and UP-Tree (HTWUI
D
), an

utility table (each of all items with profit value), a

minimum utility threshold (λ), minimum utility

count of original database muc
D
, and a set of d new

transactions.

 Output: A new FUUP tree for the updated database

by using the algorithm.

 Step 1. Calculate the utility value u(ij, Tk) of each

item ij

in each transaction Tk and find out the

corresponding transaction utility tu(Tk).

(5)

(6)

(7)

(8)

Effective and Efficient Utility Mining Technique for Incremental Dataset 161

 Step 2. Calculate the minimum utility count of new

transactions (()d

k
T dk

muc tu T

).

 Step 3. Calculate the twu from the new transactions

as the summation of the utilities of the new

transactions

dTX

k

d

k

TtuXtwu)()(.

 Step 4. Check whether the twu
d
(X) of each items

from the new transactions is larger than are equal to

the Minimum Utility Count (muc
d
) in the new

transactions. If X satisfied the condition, put it in the

set of HTWUI
d
 from the new transactions.

 Step 5. For each item X in the set of HTWUI
D
 from

the original database, if it also appears in the set of

HTWUI
d
 in the new transactions, do the following

substeps (Case 1):

1. Set the updated transaction–weighted utility of

item X in the header-table as (X)=twu
D
(X)+

twu
d
(X). Where, twu

d
(X) is the TWU items X in

the original database HTWUI
D
 and twu

d
(X) is the

TWU items X in the new transactions HTWUI
d

respectively.

2. Put X in the set of updated HTWUI
U
, which will

be processed in Step 8.

 Step 6. For each item X in the set of HTWUI
D
 from

the original database, if it does not appear in the set

of HTWUI
d
 in the new transactions, do the following

substeps (Case 2):

1. Set the updated TWU of item X as twu
u
(X)=

twu
D
(X) + twu

d
(X).

2. Check the condition that whether the updated

twu
u
(X) is larger than or equal to the updated

minimum utility count(muc
D
+muc

d
).

3. If X satisfied the above condition (ie., item X still

large after the database is updated), put it in the

set of updated HTWUI
U
 and update the twu of X

in the headear-table.

4. Otherwise if X does not satisfy the condition (ie.,

item X will become small after the database is

updated), remove X from the header-table.

Connect each parent node of X directly to the

corresponding child node of X and remove X from

the FUUP tree.

 Step 7. For each item X, if it does not appear in the

set of HTWUI
D
 from the original database, but

appears in the set of HTWUI
d
 in the new

transactions, do the following substeps (Case 3):

1. Rescan the original database to determine the

Transaction-Weighted Utility (TWU
D
) of item X .

2. Set the updated transaction–weighted utility of

item X as twu
u
(X)= twu

D
(X) + twu

d
(X).

3. Check the condition that whether the updated

twu
u
(X) is larger than or equal to the updated

Minimum Utility Count (muc
D
+muc

d
). If X

satisfied the above condition, item X will be large

after the database is updated. Add item X both in

the set of updated High Transaction Weighted

Utility Itemset in Updated database (HTWUI
U)

and in the set of Rescan-item and put the

transaction ID’s with item X in the set of rescan-

transactions.

 Step 8. Sort the items in the Rescan-items in a

descending order of their updated twu.

 Step 9. Insert the items in the Rescan-items to the

end of the header-table according to the descending

order of their twu.

 Step 10. Find the re-organized transaction

according to the HTWUI
U

in the Rescan

transactions and find corresponding tu.

 Step 11. For each original transaction in the re-

organized rescan-transactions with an item X

existing in the rescan-items, if X has not been at the

corresponding branch of the FUUP tree for the

transactions, insert X at the end of the branch and

set its node utility as tu, node count as 1; otherwise,

if node X already existing, add 1 to the count of the

node X and add tu with the previous value.

 Step 12. Find the re-organized transaction

according to the HTWUI
U
 in the new transactions

and find the corresponding tu.

 Step 13. For each re-organized transaction new

transactions with an item X existing in the

HTWUI
U
, if X has not been at the corresponding

branch of the FUUP tree for the new transaction;

insert X at the end of the branch and set its node

utility as corresponding tu, node count as 1;

otherwise, update the existing node utility of X and

corresponding branch nodes according to the DGN

strategy and also increase the node count by 1.

In step 6, a parent node may have the same child

nodes after deletion. In this case child nodes are

merged and their node utility and counts are summed

up. In step 11, a corresponding branch is the branch

generated from the large items in a transaction and

corresponding to the order of items appearing in the

Header-table. After step 13, the final updated FUUP

tree is constructed; the new transaction can then be

integrated into the original database. Based on the

FUUP tree, the desired association rules can then be

found by the UP-Growth mining approach (Tseng et

al. [27]).

5. An Example

Considering there is an example to show the original

database in Table 2. It consists of ten transactions and

six items, denoted {A} to {F}. Assume the minimum

high utility threshold is set at 35%, and also assume

the user-defined profit values for the items are given

in a utility table shown in Table 3. The minimum high

utility count is first calculated as total utility multiply

a user-specified minimum utility threshold, which is

162 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

2921*0.35 (=1022.35). The UP-Tree is constructed for

the original database, shown in Figure 2 and its

corresponding high transaction weighted utilization and

actual utilities given in Table 4. Now, the incremental

FUUP algorithm is used efficiently to update the high

utility itemsets for record insertion. The new

transactions to be inserted are shown in Table 5. It

consists of 5 transactions and also 6 items, denoted {A}

to {F}.

 Step 1. The utility value of each item occurring in

each new transaction in Table 5 is calculated. Take

the first transaction as an example to illustrate the

process. The items with quantities in the first

transaction are (A:3, C:4, D:8). The profits for items

{A}, {C}, and {D} are 3, 1, and 50, respectively,

from Table 3. The transaction utility for the first

transaction in Table 4 is thus calculated as

tu(T11)=(3*3)+(4*1)+(8*50), which is 413. The

transaction utilities for the other four transactions in

Table 5 can be calculated in the same way. After

Step 1, the results are shown in Table 5 itself.

Figure 2. Final UP tree of original database.

Table 4. The high transaction-weighted utility items and their actual
utility values for the original database.

Items High Transaction-Weighted Utility Actual Utility

{A} 2728 48

{B} 1540 1050

{D} 2083 1050

{E} 1483 600

Table 5. Five newly inserted transactions and its transaction utilities

in the example.

TID A B C D E F tu

11 3 0 4 8 0 0 413

12 3 0 3 7 0 0 362

13 3 0 2 6 0 0 311

14 1 0 0 0 1 1 123

15 4 3 0 0 0 0 462

Table 6. The transaction-weighted utility values of the items in the
new transactions.

Items twu

{A} 1971

{B} 462

{C} 1086

{D} 1086

{E} 123

{F} 123

Table 7. The high transaction-weighted utilization items for the
updated database.

Items twu

{A} 4399

{D} 3169

 Step 2. The minimum utility count for new

transactions is then calculated. In Table 5, the total

utility in the new transactions is calculated as

(413+362+311+123+462), which is 1671. The

Minimum Utility Count (muc
d
) in the new

transactions is then calculated as (1671*0.35),

which is 584.85.

 Step 3. The TWU of items in the new transactions

are first calculated. Take item {A} as an example to

illustrate the process. The item {A} appears in the

transactions from 11 to 15, the twu
 d

 (A) is

calculated as (413+362+311+123+ 462), which is

1671. The other items for {B}, {C}, {D}, {E}, and

{F} are calculated in the same way. After that, the

results are then shown in Table 6.

 Step 4. The transaction-weighted utilization items

in Table 6 are then checked against the MUC
d
 in

the new transactions, which is 584.85. In this

example, only three items {A}, {C}, and {D}

satisfied the condition, and put them in the set of

High Transaction-Weighted Utility Items

(HTWUI
d
) in the new transactions.

 Step 5. For each item in the set of high transaction

weighted utilization 1-itemsets HTWUI
D
 in the

original database, and also appears in the set of

HTWUI
d
 in the new transactions are then

processed. In this example, the two items {A} and

{D} are then processed. Take item {A} as an

example to illustrate the process. The TWU of {A}

in the original database is twu
D
({A}) (=2728),

which was shown in Table 4. The TWU of {A} in

the new transactions is twu
d
({A}) (=1671). The

updated transaction-weighted utility twu
u
({A}) for

the updated database of {A} is then calculated as

(2728+1671), which is 4399. The item {D} is also

processed in the same way. The items {A} and {D}

are then put in the set of high transaction-weighted

utilization items for the updated database HTWUI
U
,

Which will be processed in step 8. The updated twu

of items {A} and {D} are also updated in the

header-table. The results are then shown in Table 7.

 Step 6. For each item in the set of high transaction

weighted utilization items HTWUI
D

in the original

database, but does not appear in the set of high

transaction-weighted utilization items HTWUI
d
 in

the new transactions are then processed. In this

example, the two items {B} and {E} are then

processed. Take item {B} as an example to

illustrate the process. The TWU of item {B} in the

original database is twu
D
({B}) (=1540). The

transaction- weighted utility of {B} in the new

transactions is twu
d
({B}) (=462). The updated

TWU of item {B} is calculated as (1540+462),

which is 2002. The item {E} is also processed in

the same way. After that, the results for transaction-

weighted utilization 1-itemsets for the updated

database are then shown in Table 8.

Effective and Efficient Utility Mining Technique for Incremental Dataset 163

Table 8. The transaction-weighted utilization items for the updated
database.

Items twu

{B} 2002

{E} 1606

Table 9. The transactions with their id in the rescan_transactions.

Transaction No Items

3 (A, 3), (C, 5), (F, 3)

4 (A,1), (C, 3), (E, 1), (F, 2)

7
(A, 2), (B, 3), (C, 2), (E, 1),

(F, 1)

9 (C, 3), (D, 3)

The updated minimum utility count for the updated

database is calculated as (1022.35 + 584.85), which is

1607.2. In this example, however, only the item {B}

satisfied the condition. The item {B} is thus considered

as the high transaction- weighted utilization item for the

updated database and put in the set of high transaction-

weighted utilization items for the updated database.

And also update the updated twu of item {B} in the

Header-Table. But item {E} does not satisfy the

condition. Therefore, item {E} is thus removed from

Header-Table. In this case FUUP tree need to be

processed as well. The updated FUUP tree is shown in

Figure 3.

Figure 3. The header-table and FUUP tree after step 6.

 Step 7. For each item does not appear in the set of

HTWUI
D
 in the original database, but appear in the

set of HTWUI
d
 in the new transactions are then

processed. In this example, item {C} is then

processed. The original database is thus rescanned to

calculate the TWU of item {C}, which is twu
D
({C})

(=951). The TWU of item {C} in the new

transactions was calculated in Table 6, which is

twu
d
({C}) (=1086). The updated TWU of item {C}

is thus twu
u
({C}) (=951+1086) (=2037), which is

larger than the updated minimum utility count muc
U

(=1607.2). The item {C} is thus considered as the

high transaction-weighted utilization item for the

updated database and put in the set of high

transaction-weighted utilization items for the

updated database HTWUI
U
 and in the set of

rescan_items. And also put the transaction ID’s with

item {C} in the set of rescan_transactions. After step

7, HTWUI
U
=({A}, {D}, {B}, {C}), rescan-items

=({C}) and rescan_transactions={3, 4, 7, 9}. The

corresponding transactions with their ID’s in the

rescan_transactions are shown in Table 9.

 Step 8. The items in the set of rescan _items are

sorted in descending order of their updated TWU.

In this example, rescan_items contains only {C},

and no sorting is needed.

 Step 9. The items in the rescan_items are inserted

into the end of the header-table with its

corresponding twu according to descending order.

In this example, {C} is thus inserted.

 Step 10. The re-organized transactions for the items

in the rescan transactions according to the HTWUI
U

and its corresponding transaction utility is given in

Table 10.

Table 10. Re-organized transaction and their transaction utilities.

TID Reorganized Transaction Transaction Utility

11 (A,3), (D,8), (C,4) 413

12 (A,3), (D,7), (C,3) 362

13 (A,3), (D,6), (C,2) 311

14 (A,1) 3

15 (A,4),(B,3) 462

Table 11. The corresponding branches for the original transactions

with item {C}.

TID Items Corresponding Branches

11 A, C, D A, D, C

12 A, C, D A, D, C

13 A, C, D A, D, C

14 A, E, F A

15 A, B A, B

 Step 11. The FUUP tree is updated according to the

re-organized Rescan transactions with an item

existing in the rescan_items. In this example,

rescan_items ={C}. The corresponding branches

for the original transactions with c are shown in

Table 11.

The first branch is then processed. This branch shares

the same prefix {A} as the current FUFP-tree. A new

node ({C}:14, 1) is thus created and linked to

({A}:48, 8) as its child. Note that the transaction

utility and count for item {A} is not increased since

they have already been considered in the construction

of the previous FUUP tree. The same process is then

executed for the other three corresponding branches.

The final results are shown in Figure 4.

 Step 12. The re-organized transactions for the items

in the new transactions according to the HTWUI
U

and its corresponding transaction utility is given in

Table 12.

Figure 4. The header-table and FUUP tree after step 11.

164 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Table 12. Re-organized transaction and their transaction utilities

TID Reorganized Transaction Transaction Utility

3 (A, 3), (C, 5) 14

4 (A, 1), (C, 3) 6

7 (A, 2), (B, 3), (C, 2) 458

9 (D, 3), (C, 3) 153

Table 13. The corresponding branches for the new transactions.

TID Items Corresponding Branches

3 A, C, F A,C

4 A, C, E, F A, C

7 A, B, C, E, F A, B, C

9 C, D D, C

 Step 13. The FUFP-tree is updated according to the

new transactions with items existing in the

HTWUI
U
. In this example, HTWUI

U
=({A}, {D},

{B}, {C}). The corresponding branches for the new

transactions with any of these items are shown in

Table 13.The first branch share the same prefix

({A}, {D}) as the current FUUP tree. A new node

{C}:413, 1) is thus created and linked to the node

{D}. The counts for items ({A}, {D}) and then

increased by 1 since they have not yet counted in the

construction of the previous FUUP Tree and its

transaction utility is updated according to the DGN

strategy. The same process is then executed for the

other four branches. The final results are shown in

Figure 5. Based on the final FUUP tree, the desired

association rules can then be found by the UP-

Growth mining approach.

Figure 5. The final FUUP-Tree after all the new transactions are

processed

6. Experimental Evaluation

A series of experiments was conducted to evaluate the

performance of the batch UP-Tree construction

algorithm and the incremental FUUP Tree mining

algorithm for processing new transactions. When new

transactions came, the batch UP-Tree construction

algorithm integrated new transactions into the original

database and constructed a new UP-Tree from the

updated database. The process was executed whenever

new transactions came. The incremental FUUP Tree

mining algorithm processed new transactions

incrementally in the way mentioned in section 4.

The experiments were implemented in java and

executed on a PC with 2.8 GHz CPU and 3.5 GB

memory. The public IBM data generator was used in

our experiments (IBM Quest Data Mining Project,

1996) [16] to evaluate the performance. In the

experimental evaluation, the average length of maximal

potentially frequent itemsets was represented as I, the

total number of different items was represented as N,

and the total number of transactions was represented

as D, respectively. The batch UP-Tree construction

algorithm and the incremental FUUP Tree mining

algorithm were then made compare the performance.

The first 200,000 transactions were then generated

(IBM Quest Data Mining Project) [16] to initially

mine the high transaction weighted utilization itemsets

with their actual utility values. The next 2000

transactions were then generated sequentially used

each time as new inserted transactions. The Minimum

Utility threshold (min_util) was set at 0.2% to evaluate

the performance of two compared algorithms. Figure 3

then showed the execution time required by the batch

UP-Tree construction algorithm and the proposed

incremental algorithm FUUP for processing each 2000

new transactions on the T10I4N4KD200K dataset.

It can be observed from Figure 6 that the proposed

incremental algorithm FUUP Tree for record insertion

ran faster than the batch UP-Tree algorithm. The

reason was that the proposed algorithm did not re-

mine the desired high utility itemsets from the last

updated database. The UP-Tree algorithm, however,

had to process the updated database in a batch way

whenever transactions are inserted. Experiments were

then also made to evaluate the efficiency of the

proposed incremental algorithm FUUP Tree in

different minimum utility threshold values and shown

in Figure 7 for the execution time on

T10I4N4KD200K dataset.

Figure 6. The comparison of the execution time for different

numbers of inserted transactions.

Figure 7. The comparison of the execution time at different

minimum utility thresholds.

Effective and Efficient Utility Mining Technique for Incremental Dataset 165

The minimum utility thresholds were then set from

1.0% to 0.2% (decrease 0.2% each time). It can easily

be observed from Figure 7 that the execution time by

the proposed FUUP Tree was much less than that by

the UP-Tree in a batch way for handling record

insertion at different minimum utility thresholds. The

reason was the same as the content mentioned in

previous experiment. In summary, the proposed

incremental algorithm for mining high utility itemsets

was efficiently and effectively than the UP-Tree

algorithm in a batch way to maintain the updated

database for record insertion.

7. Conclusions

In this paper, we have proposed the FUUP Tree mining

algorithm to efficiently and effectively handle new

transaction insertion in data mining. When new

transactions are added, the proposed incremental

mining algorithm processes them to maintain the FUUP

tree. It first partitions items into four parts according to

whether they are large or small in the original database

and in the new transactions. Each part is then processed

in its own way. The header_table and the FUUP tree

are correspondingly updated whenever necessary. It is

reasonable to insert a new large item at the end of the

header-table since when an originally small item

becomes large due to new transactions, its updated

support is usually only a little larger than the minimum

support. Experimental results also show that the

proposed FUUP tree mining algorithm runs faster than

the batch UP-tree construction algorithm for handling

new transactions and generates nearly the same tree

structure as the UP-Tree algorithm. The proposed

approach can thus achieve a good trade-off between

execution time and tree complexity.

References

[1] Agrawal R., Imielinksi T., and Swami A.,

“Mining Association Rules Between Sets of Items

in Large Database,” in Proceedings of ACM

International Conference on Management of

Data, Washington, pp. 207-216, 1993.

[2] Agrawal R. and Srikant R., “Fast Algorithm for

Mining Association Rules,” in Proceedings of the

20
th
 International Conference on Very Large Data

Bases, San Francisco, pp. 487-499, 1994.

[3] Agrawal R., Srikant R., and Vu Q., “Mining

Association Rules with Item Constraints,” in

Proceedings of The Third International

Conference on Knowledge Discovery in

Databases and Data Mining, New Port Beach, pp.

67-73, 1997

[4] Ahmed C., Tanbeer S., Jeong B., and Lee Y.,

“Efficient tree Structures for High Utility Pattern

Mining in Incremental Databases,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 21, no. 12, pp. 1708-1721,

2009.

[5] Chan R., Yang Q., and Shen Y., “Mining High

Utility Itemsets,” in Proceedings of The 3rd

IEEE International Conference on Data Mining,

Melbourne, pp. 19-26,2003.

[6] Cheung D., Han J., Ng V., and Wong C.,

“Maintenance of Discovered Association Rules

in Large Databases: An Incremental Updating

Technique,” in Proceedings of 12
th
 International

Conference on Data Engineering, New Orleans,

pp .106-114, 1996.

[7] Cheung D., Lee S., and Kao B., “A General

Incremental Technique for Maintaining

Discovered Association Rules,” in Proceedings

of the 5
th
 International Conference on Database

System for Advanced Applications, Melbourn,

pp. 185-194, 1997.

[8] Das A. and Bhattacharyya D., “Rule Mining for

Dynamic Databases,” Australasian Journal of

Information Systems, vol. 13, no. 1, Kolkata, pp.

19-39, 2004.

[9] Erwin A., Gopalan R., and Achuthan N.,

“Efficient mining of High Utility Itemises from

Large Datasets,” in Proceedings of Advances in

Knowledge Discovery and Data Mining, Osaka,

pp. 554-561, 2008

[10] Ezeife C. and Su Y., “Mining Incremental

Association Rules with Generalized FP Tree,” in

Proceedings of 15
th
 Canadian Conference on

Artificial Intelligence, Calgary, pp. 147-160,

2002.

[11] Feldman R., Aumann Y., Manilla H., and

Lipshtat O., “Borders: An Efficient Algorithm

for Association Generation in Dynamic

Databases,” Journal of Intelligent Information

System, vol. 12, no. 1, pp. 61-73, 1999.

[12] Fukuda T., Morimoto Y., Morishita S., and

Tokuyama T., “Mining Optimized Association

Rules for Numeric Attributes,” in Proceedings of

the 5
th
 ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems,

Montreal, pp. 182-191, 1996.

[13] Han J. and Fu Y., “Discovery of Multiple-level

Association Rules from Large Database,” in

Proceedings of the 21
th
 International Conference

on Very Large Data Bases, San Francisco, pp.

420-431, 1995.

[14] Han J., Pei J., Yin Y., and Mao R., “Mining

Frequent Patterns without Candidate Generation:

a Frequent-Pattern Tree Approach,” Data

Mining and Knowledge Discovery, vol. 8, no. 1,

pp 53-87, 2004.

[15] Hong T., Lin C., and Wu Y., “Incrementally Fast

Updated Frequent Pattern Trees,” Expert

Systems with Applications, vol. 34, no. 4, pp

2424-2435, 2008.

166 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

[16] IBM Quest Data Mining Project,” Quest Synthetic

Data Generation Code,” http://www.almaden.

ibm.com/cs/quest/syndata.html, Last visited 2012

[17] Li Y., Yeh J., and Chang C., “Isolated Items

Discarding Strategy for Discovering High Utility

Itemsets,” Data and Knowledge Engineering, vol.

64, no 1, pp. 198-217, 2008.

[18] Lin C., Hsieh Y., Yin K., Hung M., and Yang D.,

“ADMiner: An Incremental Data Mining

Approach Using a Compressed FP-Tree,” Journal

Of Software, vol. 8, no. 8, pp. 2095-2103, 2013.

[19] Liu Y., Liao W., and Choudhary A., “A Fast High

Utility Itemsets Mining Algorithm,” in

Proceedings of the 1
st
 international Workshop on

Utility-Based Data Mining, Chicago, pp. 90-99,

2005.

[20] Liu Y., Liao W., and Choudhary A., “A Two

Phase Algorithm for Fast Discovery of High

Utility of Itemsets,” in Proceedings of the 9
th

Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, Hanoi

pp. 689-695, 2005.

[21] Mannila H., Toivonen H., and Verkamo A.,

“Efficient Algorithm for Discovering Association

Rules,” Technical Report AAAI, 1994.

[22] Park J., Chen M., and Yu P., “Using a Hash-

Based Method with Transaction Trimming for

Mining Association Rules,” IEEE Transactions

on Knowledge and Data Engineering, vol. 9, no.

5, pp. 813-825, 1997.

[23] Srikant R. and Agrawal R., “Mining Generalized

Association Rules,” in Proceedings of The

Twenty-first International Conference on Very

Large Data Bases, San Francisco, pp. 407-419,

1995.

[24] Srikant R. and Agrawal R., “Mining Quantitative

Association Rules in large Relational Tables, ” in

Proceedings of ACM SIGMOD International

Conference on Management of Data, Montreal,

pp. 1-12, 1996.

[25] Shie B., Tseng V., and Yu P., “Online Mining of

Temporal Maximal Utility Itemsets from Data

Streams,” in Proceedings of the 2010 ACM

Symposium on Applied Computing, Switzerland,

pp. 1622-1626, 2010.

[26] Tseng V., Chu C., and Liang T., “Efficient

Mining of Temporal High Utility Itemsets from

Data Streams,” in Proceedings of Workshop on

Utility-Based Data Mining Workshop, pp.18-27,

Philadelphia, 2006.

[27] Tseng V., Wu C., Shie B., and Yu P., “UP-

Growth: An Efficient Algorithm for High Utility

Itemsets Mining,” in Proceedings of the 16
th
 ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, Washington, pp.

253-262, 2010.

[28] Yafi E., Al-Hegami A., Alam A., and Biswas R.,

“YAMI: Incremental Mining of Interesting

Association Patterns,” International Arab

Journal of Information technology, vol. 9, no. 6,

pp.504-510, 2012.

[29] Yao H., Hamilton H., and Butz C., “A

Foundational Approach to Mining Itemset

Utilities from Databases,” in Proceedings of 4
th

SIAM International Conference on data Mining,

florida, pp. 211-225, 2004.

[30] Yao H. and Hamilton H., “Mining Itemset

Utilities from Transaction Databases,” Data and

Knowledge Engineering, vol. 59, no. 3, pp.603-

626, 2006.

Kavitha JeyaKumar, Assistant

Professor. She received the M.Tech.

Degree from the Department of

Computer Science and Engineering

at Anna University, Chennai, in

2009. She is now a Ph.D. candidate

in the Department of Computer

Science and Engineering at Anna University, Chennai.

Her research interests include Data mining, Image

Processing, Cloud Computing.

Manjula Dhanabalachandran,

Associate Professor. She received

her B.E Electronics and

Communications Engineering

degree in 1983 from Thiagarajar

College of Engineering, Madurai

and M.E Computer Science and

Engineering in 1987 and Ph.D (Computer Science and

Engineering) in 2004 from Anna University Chennai.

Her research interests include Data mining, Image

Processing, Cloud Computing, Network security.

Kasthuri JeyaKumar, Assistant

Professor. She received the M.E.

degree from the Department of

Electronics and Communication

Engineering at SRM University,

Chennai, in 2008. She is now a Ph.

D. candidate in the Department of

Electronics and Communication Engineering at SRM

University, Chennai. Her research interests include

Data mining, Image Processing, VLSI.

http://www.alm/

