
The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018                                                       157 

 

Effective and Efficient Utility Mining Technique for 

Incremental Dataset 

Kavitha JeyaKumar
1
,
 
Manjula Dhanabalachandran

1
, and Kasthuri JeyaKumar

2 

1
Department of Computer Science and Engineering, Anna University, India 

2
Department of Electronics and Communication Engineering, Sri Ramaswami Memorial University, India 

Abstract: Traditional association rule mining, which is based on frequency values of items, cannot meet the demands of 

different factors in real world applications. Thus utility mining is presented to consider additional measures, such as profit or 

price according to user preference. Although several algorithms were proposed for mining high utility itemsets, they incur the 

problem of producing large number of candidate itemsets, results in performance degradation in terms of execution time and 

space requirement. On the other hand when the data come intermittently, the incremental and interactive data mining 

approach needs to be processed to reduce unnecessary calculations by using previous data structures and mining results. In 

this paper, an incremental mining algorithm for efficiently mining high utility itemsets is proposed to handle the above 

situation. It is based on the concept of Utility Pattern Growth (UP-Growth) for mining high utility itemsets with a set of 

effective strategies for pruning candidate itemsets and Fast Update (FUP) approach, which first partitions itemsets into four 

parts according to whether they are high-transaction weighted utilization items in the original and newly inserted transactions. 

Experimental results show that the proposed Fast Update Utility Pattern Tree (FUUP) approach can thus achieve a good 

trade between execution time and tree complexity.  
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1. Introduction 

In the traditional data mining techniques, finding 

association rules [1, 2, 3, 11, 12, 13, 14, 21, 22, 23, 24] 

in transactional databases is most commonly seen. In 

the past, most of the algorithms for mining association 

rules based on Apriori algorithm [1]. The mining 

process first finds frequent itemsets based on user 

defined support threshold and then generates 

association rules from the frequent itemsets based on 

user defined confidence threshold. This level-by-level 

approach cause iterative database scans and high 

computational costs. 

On the contrary, the pattern-growth approaches 

construct tree structures to recursively find association 

rules without generating candidate itemsets. One of the 

most important is Frequent-Pattern Tree (FP-Tree) 

mining algorithm [14]. The construction process was 

executed tuple by tuple from the first transaction to the 

last one. After that, a recursive mining procedure called 

Frequent-Pattern Growth (FP-Growth) was executed 

to derive frequent patterns from the FP-Tree. They 

showed the approach could have better performance 

than Apriori. 

The above mentioned approaches are based on 

frequency values of items, which cannot meet the 

demands of different factors like profit or price in real 

world applications. Utility mining [5, 29, 30] was 

proposed to solve the above mentioned problem by 

considering the factors like cost, profit or other scales 

of user preference. Thus the issue of high utility 

itemsets mining is raised and many studies [4, 9, 17, 

19, 20, 25,26, 27] have addressed this problem. Liu et 

al. [19, 20] proposed the two phase utility mining 

algorithm for efficiently extracting all high utility 

itemsets based on the downward closure property. 

Although, two phase algorithm reduces search space, 

it still generates too many candidates and requires 

multiple database scans. To overcome this problem, Li 

et al. [17] proposed an Isolated Items Discarding 

Strategy (IIDS) to reduce the number of candidates. 

To efficiently generate High Transaction Weighted 

Itemsets (HTWI’s) and to avoid multiple scans, 

Ahmed et al. [4] proposed a tree based algorithm 

named Incremental High Utility Pattern (IHUP). 

Although, IHUP achieves better performance than 

IIDS and two-phase, it still produces too many 

HTWI’s in phase 1. As advancement, Tseng et al. [27] 

proposed Utility Pattern Growth (UP-Growth) for 

mining high utility itemsets with a set of effective 

strategies for pruning candidate itemsets. 

In real world applications, the problem of 

discovering the frequent itemsets becomes more time 

consuming if the dataset is incremental in nature. This 

may introduce new frequent itemsets and some 

existing itemsets would become invalid. Several 

approaches [6, 7, 8, 10, 11, 15, 18, 28] are proposed to 

address this issue. Thus, designing an efficient 

algorithm that can maintain association rules as a 

database grows is thus critically important. One 
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noticeable incremental mining algorithm was the Fast-

Updated Algorithm (FUP) which was proposed by 

Cheung et al. [6] for avoiding shortcomings mentioned 

above. It primary calculates frequent itemsets from new 

transactions and compares them with the previous 

found frequent itemsets from the original database. 

Different procedures are then done according to the 

comparison results. For some cases, FUP can avoid or 

reduce the number of re-scanning the original database, 

thus saving computation time in incremental mining. 

In this paper we focus on incremental utility mining. 

An incremental mining Fast Update Utility Pattern 

(FUUP) tree algorithm for efficiently mining high 

utility itemsets is proposed to handle the above mention 

situation. It is based on the concept of UP-Growth for 

mining high utility itemsets with a set of effective 

strategies for pruning candidate itemsets and FUP 

approach, which first partitions itemsets into four parts 

according to whether they are high-transaction 

weighted utilization items in the original and newly 

inserted transactions. Experimental results show that 

the proposed FUUP tree approach can thus achieve a 

good trade between execution time and tree complexity. 

The remainder of this paper is organized as follows. 

Related works are reviewed in section 2. High utility 

pattern mining problem definition described in section 

3. The proposed incremental FUUP mining algorithm is 

described in section 4. An example to illustrate the 

proposed algorithm is described in section 5. 

Experimental results for showing the performance of 

the proposed approach are provided in section 6. 

Conclusion is finally given in section 7. 

2. Review of Related Works  

In this section, some related researches are briefly 

reviewed. They are the FUP algorithm and the concept 

of mining high utility itemsets. 

2.1. The FUP Algorithm 

In real-world application, data mining is used to extract 

the useful patterns or rules from a large number of 

database for making the important decisions or 

strategies. One common type of data mining is to 

discover association rules from transaction data, such 

that the presence of certain items in a transaction 

implies the presence of some other items. In the past, 

[1,2] then proposed several mining algorithms to find 

association rules in a level-wise mining procedure. In 

addition, [14] the FP-Tree algorithm for efficiently 

mining frequent itemsets without generation of 

candidate itemsets. 

 In real world applications, transactions in a database 

do not usually remain a stable condition. Some new 

association rules may be generated and some old ones 

may become invalid. Conventional batch-mining 

algorithms solve this problem by re-processing the 

entire updated database when new transactions are 

inserted into the original database. They, however, 

require lots of computational time and waste existing 

discovered knowledge. Cheung et al. [6] proposed the 

FUP algorithm to effectively update the discovered 

association rules in incremental mining. Considering 

an original database and some new transactions, the 

following four cases (illustrated in Figure 1) may 

occur: 
 

 Case 1. An itemset is frequent (large) both in an 

original database and in newly inserted 

transactions. 

 Case 2. An itemset is frequent (large) in an original 

database but not frequent (small) in newly inserted 

transactions. 

 Case 3. An itemset is not frequent (small) in an 

original database and but frequent (large) in newly 

inserted transactions. 

 

 
 

Figure 1. Four cases when new transactions are inserted into 

existing database. 

 

 Case 4. An itemset is not frequent (small) both in 

an original database and in newly inserted 

transactions. 

 

Since itemsets in case 1 are frequent (large) in both the 

original database and the new transactions, they will 

still be frequent (large) after the weighted average of 

the counts .Similarly, itemsets in case 4 will still be 

non-frequent (small) after the new transactions are 

inserted. Thus cases 1 and 4 will not affect the final 

frequent (large) itemsets. Case 2 may remove existing 

frequent (large) itemsets, and case 3 may add new 

frequent (large) itemsets. Based on the FUP approach, 

the cases 1, 2, and 4 are more efficiently handled than 

conventional batch mining algorithms. 

2.2. Mining High Utility Itemsets 

In the Past, several mining algorithms were proposed 

for efficiently discovering high utility itemsets. Yao et 

al. [29] proposed an algorithm for efficiently mining 

high utility itemsets based on mathematical properties 

of utility constraints. Two pruning strategies based on 

utility upper bounds and expected utility upper bounds 

respectively were adopted to reduce the search space. 

These pruning strategies were then incorporated into 
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the mining approach Umining and its heuristic 

successor, Umining_H [30]. Liu et al. [19, 20] designed 

a two phase algorithm for efficiently discovering all 

high utility itemsets. It consisted of two phases to 

generate and test high utility was first used as effective 

upper bound of each candidate itemset in the 

transaction such that the “transaction-weighted 

downward closure property” could be kept in the search 

space to decrease the number of candidate itemsets. An 

additional database scan was then performed to find out 

the real utility values of the remaining candidates and 

identifies the high utility itemsets.  

Although, two phase algorithm reduces search space, 

it still generates too many candidates and requires 

multiple database scans. To overcome this problem, Li 

et al. [17] proposed an IIDS to reduce the number of 

candidates. To efficiently generate HTWI’s and to 

avoid multiple scans, Ahmed et al. [4] proposed a tree 

based algorithm named IHUP. Although IHUP 

achieves better performance than IIDS and Two-phase, 

it still produces too many HTWI’s in phase I. Such a 

large number of HTWUI’s will degrade the mining 

performance in phase I substantially in terms of 

execution time and memory consumption. 

As stated above, the number of generated HTWUI’s 

is a critical issue for the performance of algorithms. As 

advancement, Tseng et al. [27] proposed UP-Growth 

for mining high utility itemsets with a set of effective 

strategies for pruning candidate itemsets. 

Correspondingly, a compact tree structure, called UP-

Tree, was designed to maintain the important 

information of the transaction database related to the 

utility patterns. High utility itemsets are then generated 

from the UP-Tree efficiently with only two scans of the 

database. Four strategies mentioned in Table 1, are used 

for efficient construction of UP-Tree and the processing 

in UP-Growth. By these strategies, the estimated 

utilities of candidates can be well reduced by discarding 

the utilities of the items which are impossible to be high 

utility or not involved in the search space. The 

strategies can not only efficiently decrease the 

estimated utilities of the potential high utility itemsets 

but also effectively reduce the number of candidates. 
 

Table 1. Four strategies of UP-Growth. 
 

Strategies Explanation 

DGU 

Discarding global unpromising items and their actual utilities 
from transactions and transaction utilities of the database. 

DGN 

Decreasing global node utilities for the nodes of global up-tree 

by actual utilities of descendant nodes during the construction 

of global UP-Tree. 

DLU 

Discarding local unpromising items and their estimated utilities 

from the paths and path utilities of conditional pattern bases. 

DLN 

Decreasing local node utilities for the nodes of local up-tree by 
estimated utilities of descendant nodes during the construction 

of global UP-Tree 

3. Problem Definition 

In this section, we first give some definition similar to 

those presented in the previous works [19, 29, 30] and 

define the problem of utility mining. Let I={i1, i2, …, 

ij, …, im} be a set of items and D be a transaction 

database {T1, T2, …, Tk, …, Tn} where each 

transaction DTi  is a subset of I.The calculations are 

done according to the according to the original 

database and utility given in Tables 2 and 3. 

 Definition 1: The quantity of item ij in transaction 

Tk called local transaction utility or internal utility 

value, represented as l(ij, Tk). For eg., l(A, T3).  

 Definition 2: The unit profit value of each item ij
 

called external utility P(ij). For eg., P(B)=150. 

 Definition 3: The utility for an item ij in transaction
 

Tk is the quantitative measure of Equation 1.  
 

                            u(ij, Tk)=l(ij, Tk)×P(ij) 
                

For eg., a(A, T3)=3×3=9. 
 

 Definition 4: The utility of an itemset X in 

transaction Tk, is defined by Equation 2. 
 

                           
),(),( k
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Where, X is the set of k distinct items {i1, i2, …, ik}, X
 Tk, ij I, 1≤j≤k, k is the length of X. An itemset with 

length k is called k-itemset. 

For eg., u(AB, T1)=3×3+2×150=9+300=309. 
 

 Definition 5: The utility of an itemset X is defined 

by Equation 3. 
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For eg., u(AB)=u(AB, T1)+u(AB, T6)+u(AB, T7)=309+ 

303+ 456= 1068. 
 

Table 2. An original database in the example. 
 

TID A B C D E F tu 

1 3 2 0 3 0 0 459 

2 2 0 0 4 2 0 406 

3 3 0 5 0 0 3 74 

4 1 0 3 0 1 2 146 

5 1 0 0 3 2 0 353 

6 1 2 0 4 0 0 503 

7 2 3 2 0 1 1 578 

8 0 0 0 0 0 2 40 

9 0 0 3 3 0 0 153 

10 3 0 0 4 0 0 209 

Table 3. The utility table. 
 

Item Profit($) 

A 3 

B 150 

C 1 

D 50 

E 100 

F 20 

 Definition 6: The accumulated utility value of the 

items in each transaction Tk, is the transaction 

utility (tu) is defined by Equation 4. 





kj Ti
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(1) 

(2) 

(3) 

(4) 
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For eg., tu(T1)= u(A, T1)+ u(B, T1)+ u(D, T1)=3×3+ 

2×150+ 3×50= 9+ 200+ 150= 459. 
 

 Definition 7: The minimum utility threshold λ given 

by the percentage of total transaction utility values of 

the database. In Table 3, the summation of all the 

transaction utility values is 2921. If λ is 35%, then 

the minimum utility count is defined as Equation 5. 
 

      




DT

k

k

Ttumuc 35.1022292135.0)(  

 Definition 8: An itemset X is a high utility itemset if 

the following condition in Equation 6 satisfied.  
 

                                     u(X)>=muc  

For eg., u(AB)=1068(≥1022.35).  

AB is a high utility itemset. 
 

 Definition 9: The Transaction-Weighted Utility 

(TWU) of an itemset X is the summation of all 

Transaction Utility (tu) containing X in Equation 7. 
 

                        ( ) ( )
k

X T Dk

twu X tu T
 

 

 
For eg., twu(AB)= tu(T1)+ tu(T6)+ tu(T7)= 459+ 503+ 

578= 1540. 
 

 Definition 10: An itemset X is a high transaction 

weighted utilization itemset if Equation 8 satisfied. 
 

                                     twu(X)>=muc 
      

For eg., twu(AB)=1540(≥1022.35). 

AB is a High Transaction Weighted Utilization 

itemset (HTWU). The downward closure property can 

be maintained using transaction weighted utilization. 

For any itemset X, if X is not a HTWU, any superset of 

X is a low utility itemset.  

4. The Proposed Incremental FUUP Mining 

Algorithm 

An FUUP tree must be built in advance from the 

initially original database before new transactions 

come. Its initial construction is similar to that of an UP 

tree according to the strategy of Discarding Global 

Unpromising (DGU) and DGN. The database is first 

scanned to find the items with their TWU larger than a 

minimum utility threshold, which called promising 

items. Other items are called unpromising. Next, the 

promising items are sorted in descending order and 

reorganized transaction utility is evaluated. At last, the 

reorganized transaction is scanned again to construct 

the tree according to the sorted order of promising 

items. The construction process is executed tuple by 

tuple, from the first transaction to the last one. After all 

transactions are processed, the final UP tree for the 

original database is completely constructed.  

When new transactions are added, the proposed 

incremental maintenance algorithm will process them 

to construct the FUUP tree. The new transactions are 

first scanned to find the promising and unpromising 

items according to the TWU of newly inserted 

transactions. Then, it partitions items into four parts 

according to whether they are large or small in the 

original database and in the new transactions. Each 

part is then processed in its own way. The Header-

Table and the FUUP tree are correspondingly updated 

whenever necessary.  

In the process for updating the FUUP tree, item 

deletion is done before item insertion. When an 

originally large item becomes small, it is directly 

removed from the FUUP tree and its parent and child 

nodes are then linked together. On the contrary, when 

an originally small items becomes large, it is added to 

the end of the header-table and then inserted into the 

leaf nodes of FUUP tree. It is reasonable to insert the 

item at the end of the header-table since when an 

originally small item becomes large due to the new 

transactions, its updated support is usually only a little 

larger than the minimum support. The FUUP tree can 

thus be least updated in this way, and the performance 

of the proposed incremental algorithm can be greatly 

improved. The entire FUUP tree can be re-constructed 

in a batch way when a sufficiently large number of 

transactions are inserted. The details of the proposed 

algorithm are described below. 

Algorithm 1: Incremental FUUP Mining  

Input: D, Utility table, λ, , d 

Output: FUUP tree 

for each ij
 
in Tk

 
find u(ij, Tk),tu(Tk)  

find muc
d
, twu

d
(X)  

if(twu
d
(X)> muc

d
) 

     put X in HTWUI
d
 

for each X in both HTWUI
D 

and HTWUI
d
 

    update twu
u
(X) and put in HTWUI

U
 

for each X in HTWUI
D 

and not in HTWUI
d
 

    update twu
u
(X)  

    If twu
u
(X)>muc

U
 put in HTWUI

U 

    Else remove X from FUUP tree 

for each X not in HTWUI
D 

and in HTWUI
d
 

    Rescan X in D and update twu
u
(X)  

     If twu
u
(X)>muc

U
 put in HTWUI

U
and Rescan items 

Sort X in Rescan items 

Reorganize and insert at the end of FUUP tree  

 Explanation: 

 Input: An original database D, its corresponding 

Header-table storing the High Transaction 

Weighted Utility Items and UP-Tree (HTWUI
D
), an 

utility table (each of all items with profit value), a 

minimum utility threshold (λ), minimum utility 

count of original database muc
D
, and a set of d new 

transactions. 

 Output: A new FUUP tree for the updated database 

by using the algorithm. 

 Step 1. Calculate the utility value u(ij, Tk) of each 

item ij
 

in each transaction Tk and find out the 

corresponding transaction utility tu(Tk). 

(5) 

(6) 

(7) 

(8) 
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 Step 2. Calculate the minimum utility count of new 

transactions ( ( )d

k
T dk

muc tu T


   ). 

 Step 3. Calculate the twu from the new transactions 

as the summation of the utilities of the new 

transactions 



dTX

k

d

k

TtuXtwu )()( . 

 Step 4. Check whether the twu
d
(X) of each items 

from the new transactions is larger than are equal to 

the Minimum Utility Count (muc
d
) in the new 

transactions. If X satisfied the condition, put it in the 

set of HTWUI
d
 from the new transactions.  

 Step 5. For each item X in the set of HTWUI
D
 from 

the original database, if it also appears in the set of 

HTWUI
d
 in the new transactions, do the following 

substeps (Case 1): 
 

1. Set the updated transaction–weighted utility of 

item X in the header-table as (X)=twu
D
(X)+ 

twu
d
(X). Where, twu

d
(X) is the TWU items X in 

the original database HTWUI
D
 and twu

d
(X) is the 

TWU items X in the new transactions HTWUI
d
 

respectively. 

2. Put X in the set of updated HTWUI
U
, which will 

be processed in Step 8. 
 

 Step 6. For each item X in the set of HTWUI
D
 from 

the original database, if it does not appear in the set 

of HTWUI
d
 in the new transactions, do the following 

substeps (Case 2): 
 

1. Set the updated TWU of item X as twu
u
(X)= 

twu
D
(X) + twu

d
(X). 

2. Check the condition that whether the updated 

twu
u
(X) is larger than or equal to the updated 

minimum utility count(muc
D
+muc

d
). 

3. If X satisfied the above condition (ie., item X still 

large after the database is updated), put it in the 

set of updated HTWUI
U
 and update the twu of X 

in the headear-table. 

4. Otherwise if X does not satisfy the condition (ie., 

item X will become small after the database is 

updated), remove X from the header-table. 

Connect each parent node of X directly to the 

corresponding child node of X and remove X from 

the FUUP tree. 
 

 Step 7. For each item X, if it does not appear in the 

set of HTWUI
D
 from the original database, but 

appears in the set of HTWUI
d
 in the new 

transactions, do the following substeps (Case 3): 
 

1. Rescan the original database to determine the 

Transaction-Weighted Utility (TWU
D
) of item X . 

2. Set the updated transaction–weighted utility of 

item X as twu
u
(X)= twu

D
(X) + twu

d
(X). 

3. Check the condition that whether the updated 

twu
u
(X) is larger than or equal to the updated 

Minimum Utility Count (muc
D
+muc

d
). If X 

satisfied the above condition, item X will be large 

after the database is updated. Add item X both in 

the set of updated High Transaction Weighted 

Utility Itemset in Updated database (HTWUI
U)

 

and in the set of Rescan-item and put the 

transaction ID’s with item X in the set of rescan-

transactions. 
 

 Step 8. Sort the items in the Rescan-items in a 

descending order of their updated twu. 

 Step 9. Insert the items in the Rescan-items to the 

end of the header-table according to the descending 

order of their twu. 

 Step 10. Find the re-organized transaction 

according to the HTWUI
U 

in the Rescan 

transactions and find corresponding tu. 

 Step 11. For each original transaction in the re-

organized rescan-transactions with an item X 

existing in the rescan-items, if X has not been at the 

corresponding branch of the FUUP tree for the 

transactions, insert X at the end of the branch and 

set its node utility as tu, node count as 1; otherwise, 

if node X already existing, add 1 to the count of the 

node X and add tu with the previous value. 

 Step 12. Find the re-organized transaction 

according to the HTWUI
U
 in the new transactions 

and find the corresponding tu. 

 Step 13. For each re-organized transaction new 

transactions with an item X existing in the 

HTWUI
U
, if X has not been at the corresponding 

branch of the FUUP tree for the new transaction; 

insert X at the end of the branch and set its node 

utility as corresponding tu, node count as 1; 

otherwise, update the existing node utility of X and 

corresponding branch nodes according to the DGN 

strategy and also increase the node count by 1. 
 

In step 6, a parent node may have the same child 

nodes after deletion. In this case child nodes are 

merged and their node utility and counts are summed 

up. In step 11, a corresponding branch is the branch 

generated from the large items in a transaction and 

corresponding to the order of items appearing in the 

Header-table. After step 13, the final updated FUUP 

tree is constructed; the new transaction can then be 

integrated into the original database. Based on the 

FUUP tree, the desired association rules can then be 

found by the UP-Growth mining approach (Tseng et 

al. [27]). 

5. An Example 

Considering there is an example to show the original 

database in Table 2. It consists of ten transactions and 

six items, denoted {A} to {F}. Assume the minimum 

high utility threshold is set at 35%, and also assume 

the user-defined profit values for the items are given 

in a utility table shown in Table 3. The minimum high 

utility count is first calculated as total utility multiply 

a user-specified minimum utility threshold, which is 
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2921*0.35 (=1022.35). The UP-Tree is constructed for 

the original database, shown in Figure 2 and its 

corresponding high transaction weighted utilization and 

actual utilities given in Table 4. Now, the incremental 

FUUP algorithm is used efficiently to update the high 

utility itemsets for record insertion. The new 

transactions to be inserted are shown in Table 5. It 

consists of 5 transactions and also 6 items, denoted {A} 

to {F}. 
 

 Step 1. The utility value of each item occurring in 

each new transaction in Table 5 is calculated. Take 

the first transaction as an example to illustrate the 

process. The items with quantities in the first 

transaction are (A:3, C:4, D:8). The profits for items 

{A}, {C}, and {D} are 3, 1, and 50, respectively, 

from Table 3. The transaction utility for the first 

transaction in Table 4 is thus calculated as 

tu(T11)=(3*3)+(4*1)+(8*50), which is 413. The 

transaction utilities for the other four transactions in 

Table 5 can be calculated in the same way. After 

Step 1, the results are shown in Table 5 itself.  

 

Figure 2. Final UP tree of original database. 

Table 4. The high transaction-weighted utility items and their actual 
utility values for the original database. 

Items High Transaction-Weighted Utility Actual Utility 

{A} 2728 48 

{B} 1540 1050 

{D} 2083 1050 

{E} 1483 600 

Table 5. Five newly inserted transactions and its transaction utilities 

in the example. 
  

TID A B C D E F tu 

11 3 0 4 8 0 0 413 

12 3 0 3 7 0 0 362 

13 3 0 2 6 0 0 311 

14 1 0 0 0 1 1 123 

15 4 3 0 0 0 0 462 

Table 6. The transaction-weighted utility values of the items in the 
new transactions. 

Items twu 

{A} 1971 

{B} 462 

{C} 1086 

{D} 1086 

{E} 123 

{F} 123 

Table 7. The high transaction-weighted utilization items for the 
updated database.  

Items twu 

{A} 4399 

{D} 3169 

 Step 2. The minimum utility count for new 

transactions is then calculated. In Table 5, the total 

utility in the new transactions is calculated as 

(413+362+311+123+462), which is 1671. The 

Minimum Utility Count (muc
d
) in the new 

transactions is then calculated as (1671*0.35), 

which is 584.85. 

 Step 3. The TWU of items in the new transactions 

are first calculated. Take item {A} as an example to 

illustrate the process. The item {A} appears in the 

transactions from 11 to 15, the twu
 d

 (A) is 

calculated as (413+362+311+123+ 462), which is 

1671. The other items for {B}, {C}, {D}, {E}, and 

{F} are calculated in the same way. After that, the 

results are then shown in Table 6. 

 Step 4. The transaction-weighted utilization items 

in Table 6 are then checked against the MUC
d
 in 

the new transactions, which is 584.85. In this 

example, only three items {A}, {C}, and {D} 

satisfied the condition, and put them in the set of 

High Transaction-Weighted Utility Items 

(HTWUI
d
) in the new transactions.  

 Step 5. For each item in the set of high transaction 

weighted utilization 1-itemsets HTWUI
D
 in the 

original database, and also appears in the set of 

HTWUI
d
 in the new transactions are then 

processed. In this example, the two items {A} and 

{D} are then processed. Take item {A} as an 

example to illustrate the process. The TWU of {A} 

in the original database is twu
D
({A}) (=2728), 

which was shown in Table 4. The TWU of {A} in 

the new transactions is twu
d
({A}) (=1671). The 

updated transaction-weighted utility twu
u
({A}) for 

the updated database of {A} is then calculated as 

(2728+1671), which is 4399. The item {D} is also 

processed in the same way. The items {A} and {D} 

are then put in the set of high transaction-weighted 

utilization items for the updated database HTWUI
U
, 

Which will be processed in step 8. The updated twu 

of items {A} and {D} are also updated in the 

header-table. The results are then shown in Table 7. 

 Step 6. For each item in the set of high transaction 

weighted utilization items HTWUI
D 

in the original 

database, but does not appear in the set of high 

transaction-weighted utilization items HTWUI
d
 in 

the new transactions are then processed. In this 

example, the two items {B} and {E} are then 

processed. Take item {B} as an example to 

illustrate the process. The TWU of item {B} in the 

original database is twu
D
({B}) (=1540). The 

transaction- weighted utility of {B} in the new 

transactions is twu
d
({B}) (=462). The updated 

TWU of item {B} is calculated as (1540+462), 

which is 2002. The item {E} is also processed in 

the same way. After that, the results for transaction-

weighted utilization 1-itemsets for the updated 

database are then shown in Table 8. 
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Table 8. The transaction-weighted utilization items for the updated 
database. 

Items twu 

{B} 2002 

{E} 1606 

Table 9. The transactions with their id in the rescan_transactions. 

Transaction No Items 

3 (A, 3), (C, 5), (F, 3) 

4 (A,1), (C, 3), (E, 1), (F, 2) 

7 
(A, 2), (B, 3), (C, 2), (E, 1), 

(F, 1) 

9 (C, 3), (D, 3) 

The updated minimum utility count for the updated 

database is calculated as (1022.35 + 584.85), which is 

1607.2. In this example, however, only the item {B} 

satisfied the condition. The item {B} is thus considered 

as the high transaction- weighted utilization item for the 

updated database and put in the set of high transaction-

weighted utilization items for the updated database. 

And also update the updated twu of item {B} in the 

Header-Table. But item {E} does not satisfy the 

condition. Therefore, item {E} is thus removed from 

Header-Table. In this case FUUP tree need to be 

processed as well. The updated FUUP tree is shown in 

Figure 3.  

 

Figure 3. The header-table and FUUP tree after step 6. 

 Step 7. For each item does not appear in the set of 

HTWUI
D
 in the original database, but appear in the 

set of HTWUI
d
 in the new transactions are then 

processed. In this example, item {C} is then 

processed. The original database is thus rescanned to 

calculate the TWU of item {C}, which is twu
D
({C}) 

(=951). The TWU of item {C} in the new 

transactions was calculated in Table 6, which is 

twu
d
({C}) (=1086). The updated TWU of item {C} 

is thus twu
u
({C}) (=951+1086) (=2037), which is 

larger than the updated minimum utility count muc
U
 

(=1607.2). The item {C} is thus considered as the 

high transaction-weighted utilization item for the 

updated database and put in the set of high 

transaction-weighted utilization items for the 

updated database HTWUI
U
 and in the set of 

rescan_items. And also put the transaction ID’s with 

item {C} in the set of rescan_transactions. After step 

7, HTWUI
U
=({A}, {D}, {B}, {C}), rescan-items 

=({C}) and rescan_transactions={3, 4, 7, 9}. The 

corresponding transactions with their ID’s in the 

rescan_transactions are shown in Table 9. 

 Step 8. The items in the set of rescan _items are 

sorted in descending order of their updated TWU. 

In this example, rescan_items contains only {C}, 

and no sorting is needed. 

 Step 9. The items in the rescan_items are inserted 

into the end of the header-table with its 

corresponding twu according to descending order. 

In this example, {C} is thus inserted. 

 Step 10. The re-organized transactions for the items 

in the rescan transactions according to the HTWUI
U 

and its corresponding transaction utility is given in 

Table 10. 
 

Table 10. Re-organized transaction and their transaction utilities. 

TID Reorganized Transaction Transaction Utility 

11 (A,3), (D,8), (C,4) 413 

12 (A,3), (D,7), (C,3) 362 

13 (A,3), (D,6), (C,2) 311 

14 (A,1) 3 

15 (A,4),(B,3) 462 

Table 11. The corresponding branches for the original transactions 

with item {C}. 

TID Items Corresponding Branches 

11 A, C, D A, D, C 

12 A, C, D A, D, C 

13 A, C, D A, D, C 

14 A, E, F A 

15 A, B A, B 

 Step 11. The FUUP tree is updated according to the 

re-organized Rescan transactions with an item 

existing in the rescan_items. In this example, 

rescan_items ={C}. The corresponding branches 

for the original transactions with c are shown in 

Table 11. 

The first branch is then processed. This branch shares 

the same prefix {A} as the current FUFP-tree. A new 

node ({C}:14, 1) is thus created and linked to 

({A}:48, 8) as its child. Note that the transaction 

utility and count for item {A} is not increased since 

they have already been considered in the construction 

of the previous FUUP tree. The same process is then 

executed for the other three corresponding branches. 

The final results are shown in Figure 4. 

 Step 12. The re-organized transactions for the items 

in the new transactions according to the HTWUI
U 

and its corresponding transaction utility is given in 

Table 12. 

 

Figure 4. The header-table and FUUP tree after step 11. 
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Table 12. Re-organized transaction and their transaction utilities  

TID Reorganized Transaction Transaction Utility 

3 (A, 3), (C, 5) 14 

4 (A, 1), (C, 3) 6 

7 (A, 2), (B, 3), (C, 2) 458 

9 (D, 3), (C, 3) 153 

Table 13. The corresponding branches for the new transactions. 

TID Items Corresponding Branches 

3 A, C, F A,C 

4 A, C, E, F A, C 

7 A, B, C, E, F A, B, C 

9 C, D D, C 

 Step 13. The FUFP-tree is updated according to the 

new transactions with items existing in the 

HTWUI
U
. In this example, HTWUI

U
=({A}, {D}, 

{B}, {C}). The corresponding branches for the new 

transactions with any of these items are shown in 

Table 13.The first branch share the same prefix 

({A}, {D}) as the current FUUP tree. A new node 

{C}:413, 1) is thus created and linked to the node 

{D}. The counts for items ({A}, {D}) and then 

increased by 1 since they have not yet counted in the 

construction of the previous FUUP Tree and its 

transaction utility is updated according to the DGN 

strategy. The same process is then executed for the 

other four branches. The final results are shown in 

Figure 5. Based on the final FUUP tree, the desired 

association rules can then be found by the UP-

Growth mining approach. 

 

Figure 5. The final FUUP-Tree after all the new transactions are 

processed 

6. Experimental Evaluation 

A series of experiments was conducted to evaluate the 

performance of the batch UP-Tree construction 

algorithm and the incremental FUUP Tree mining 

algorithm for processing new transactions. When new 

transactions came, the batch UP-Tree construction 

algorithm integrated new transactions into the original 

database and constructed a new UP-Tree from the 

updated database. The process was executed whenever 

new transactions came. The incremental FUUP Tree 

mining algorithm processed new transactions 

incrementally in the way mentioned in section 4. 

The experiments were implemented in java and 

executed on a PC with 2.8 GHz CPU and 3.5 GB 

memory. The public IBM data generator was used in 

our experiments (IBM Quest Data Mining Project, 

1996) [16] to evaluate the performance. In the 

experimental evaluation, the average length of maximal 

potentially frequent itemsets was represented as I, the 

total number of different items was represented as N, 

and the total number of transactions was represented 

as D, respectively. The batch UP-Tree construction 

algorithm and the incremental FUUP Tree mining 

algorithm were then made compare the performance. 

The first 200,000 transactions were then generated 

(IBM Quest Data Mining Project) [16] to initially 

mine the high transaction weighted utilization itemsets 

with their actual utility values. The next 2000 

transactions were then generated sequentially used 

each time as new inserted transactions. The Minimum 

Utility threshold (min_util) was set at 0.2% to evaluate 

the performance of two compared algorithms. Figure 3 

then showed the execution time required by the batch 

UP-Tree construction algorithm and the proposed 

incremental algorithm FUUP for processing each 2000 

new transactions on the T10I4N4KD200K dataset. 

It can be observed from Figure 6 that the proposed 

incremental algorithm FUUP Tree for record insertion 

ran faster than the batch UP-Tree algorithm. The 

reason was that the proposed algorithm did not re-

mine the desired high utility itemsets from the last 

updated database. The UP-Tree algorithm, however, 

had to process the updated database in a batch way 

whenever transactions are inserted. Experiments were 

then also made to evaluate the efficiency of the 

proposed incremental algorithm FUUP Tree in 

different minimum utility threshold values and shown 

in Figure 7 for the execution time on 

T10I4N4KD200K dataset. 

 

Figure 6. The comparison of the execution time for different 

numbers of inserted transactions. 

 

Figure 7. The comparison of the execution time at different 

minimum utility thresholds. 
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The minimum utility thresholds were then set from 

1.0% to 0.2% (decrease 0.2% each time). It can easily 

be observed from Figure 7 that the execution time by 

the proposed FUUP Tree was much less than that by 

the UP-Tree in a batch way for handling record 

insertion at different minimum utility thresholds. The 

reason was the same as the content mentioned in 

previous experiment. In summary, the proposed 

incremental algorithm for mining high utility itemsets 

was efficiently and effectively than the UP-Tree 

algorithm in a batch way to maintain the updated 

database for record insertion. 

7. Conclusions 

In this paper, we have proposed the FUUP Tree mining 

algorithm to efficiently and effectively handle new 

transaction insertion in data mining. When new 

transactions are added, the proposed incremental 

mining algorithm processes them to maintain the FUUP 

tree. It first partitions items into four parts according to 

whether they are large or small in the original database 

and in the new transactions. Each part is then processed 

in its own way. The header_table and the FUUP tree 

are correspondingly updated whenever necessary. It is 

reasonable to insert a new large item at the end of the 

header-table since when an originally small item 

becomes large due to new transactions, its updated 

support is usually only a little larger than the minimum 

support. Experimental results also show that the 

proposed FUUP tree mining algorithm runs faster than 

the batch UP-tree construction algorithm for handling 

new transactions and generates nearly the same tree 

structure as the UP-Tree algorithm. The proposed 

approach can thus achieve a good trade-off between 

execution time and tree complexity. 
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