
The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018 167

Splay Thread Cooperation on Ray Tracing as a

Load Balancing Technique in Speculative

Parallelism and GPGPU

Suma Shivaraju
1
 and Gopalan Pudur

2

1
Department of Computer Scienc, Bharathiar University, India

2
Department of Computer Applications, National Institute of Technology, India

Abstract: The introduction of the speculative parallelism into any models can improve the performance and provides

significant benefits and increases the Instruction level parallelism (ILP) and Thread level Parallelism (TLP). A General

Purpose Graphics Processing Unit (GPGPU) is the future computing technology working with both Graphics Processing Unit

(CPU) and GPU to solve many real-world problems not only the graphics problems but also the general purpose applications.

As GPU uses data parallelism tasks, the dynamic memory creation and the splay trees which are self adjusting allows for the

increase in throughput and load balancing. The frequently used nodes near to the root are an advantage for finding locality of

threads as well as for caching and garbage collection. A technique used to render and to study complex scenes into images

and to render color, intensity of pixels, distance between pixels is referred as Ray tracing. Multithreading is a promising

technique which increases the performance of the computer systems by increasing the instruction level parallelism and thread

level speculation. In this paper a new technique is proposed for workload balancing on the Graphics processors and CPU that

can be implemented on the graphics processors along with the CPU which provides the optimal result with the speculation

techniques and Lorentz Transformation, which is used to determine color and brightness of the ray which are refracted or

reflected and also the relative distance between the thread spawning which results in time dilation and contraction. A

Graphics Processing Unit Ocelot (GPUOCELOT) is a compilation framework, a simulator used for the execution of the

programs which has resulted in the increase in the performance of the instructions which uses the amortized cost.

Keywords: Load balancing, graphics processors, splay trees, optimization, instruction level parallelism, thread level

speculation. amortized cost, speculative multithreading, ray tracing, lorentz transformation.

Received September 26, 2014; accepted February 10, 2015

1. Introduction

Increase in the clock rate, exploiting the Instruction

Level Parallelism (ILP) through pipelining, out-of-

order execution and multithreading are the techniques

which results in reducing the dependencies and

increase in the efficiency and performance of the

microprocessors. Speculation techniques are

implemented in the modern micro architectures to

improve performance and to utilize the computer

resources as well as the scheduling of the instructions

based on the optimization techniques [1, 6]. The

general purpose computing on graphics processing

units handles the computations executed on the

graphics processor or in kernels. The graphics

processing units are computing on the data parallelism

with fast access to memory and high throughput on

parallel tasks. Since CPU’s performs well on task

parallelism and GPU’s performs well on data

parallelism. The memory systems are designed to

stream data when the pattern can be accessed linearly

and that can be prefetched [5, 14].The combined

technology of speculative execution on graphics

processors still increases the performance and

efficiency of the execution of the programs.

Jaikrishnan Menon, Marc de Kruijf, Karthikeyan

Sankaralingam proposed iGraphics Processing Unit

(iGPU) architecture executing the idempotent regions

Load balancing is a method for distributing the

workloads across the processors [9].The sharing of the

workload across CPU and GPU needs to be balanced

as the architectural designs of the CPU and GPU

differs. Christian Lauterback, Qi Mo, Dinesh Manocha

proposed explicit balancing on the GPU’s and dynamic

work Distribution [8]. In this model the hybrid

architecture of CPU and GPU together holds threads of

processing units and CPU does the task parallelism and

GPU does the data parallelism [3, 13]. Distributing

work across GPU and CPU processor’s is an

intellectual task so that the performance, scalability

and tolerance factors of the processor is reduced

instead of increase in the processor performance in ILP

and Thread Level Parallelism (TLP). Many

Researchers’ worked on the parallel ray tracing on the

hybrid architectures with thread level speculation.

Architectures are proposed to increase the performance

through dynamic load balancing, reducing

communication time, and reducing memory latencies,

predicting value reuse, speculative computation reuse

168 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

techniques between the CPU and GPU. But the overall

speedup of computation, performance considerably is

the linear speedup and the overheads incurred,

granularity of the code presented a major focus of

issue. GPU supports fine grained parallelism over the

data but the CPU works on the Coarse grained

parallelism as the tasks. Transferring of the data and

control values from CPU to GPU memory is

challenging. Though with the speculative

parallelization the state of the system is not altered, if

the speculation fails, the normal execution of the task

is carried out by the nonspeculative thread to recover

the system state to safe. To efficiently distribute the

workload across the graphics processors a new

technique is proposed which is a hybrid of CPU and

GPU. A self adjusting splay tree provides load

balancing on the GPU.

2. Splay Trees

Splay trees are the data structures where the binary

search trees are self adjusting. Whenever we access a

node of the tree, whether for retrieval, insertion or

deletion a newly accessed node becomes the root of the

modified tree. In splay trees the nodes which are

frequently accessed move towards the root whereas the

infrequent ones moves far away from the root. The

different splaying steps which use the bottom-up

approach are similar to the rebalancing operations on

Adelson-Velskii and Landis (AVL) and Red-Black

trees. The cases for the splaying are ZIG-ZIG and ZIG-

ZAG. In Zig-Zig, the splaying a node X which is a

inside grandchild and it is a double rotation. In Zig-

Zag, the splaying a node X which is a outside

grandchild Where the grandchild is pulled to become

the root of the sub tree [12].

2.1. Speculative Work Load Balancing

In this paper an algorithm is proposed where splaying

steps happens for the threads in a block. The

architecture of the speculatively parallelized graphics

processors where the computations which are

massively parallel in nature can be executed on both

CPU and GPU, where the nonspeculative thread starts

executing tasks on the CPU. The speculative threads

execute tasks on the GPU. Another technique is

proposed in this paper to balance the work load of the

threads on the graphic processors.

The locality of reference to the code blocks on the

graphic processors is scheduled using an algorithm

where each thread of the block of a graphic processor

is represented in the form of the nodes on a binary

search tree. The splaying steps are applied on the tree

of nodes such that the threads which are active and

processing the computations are rotated near to the root

node of the tree, which are always accessed frequently.

The different types of threads are running to balance

the work load i.e., some threads are in

a. Active state.

b. Passive state.

c. Squashed state.

d. Misspeculation state.

Some threads are at the initialization state. Some

threads are waiting for some event.

The threads in the block are checked for the status.

The different states the nodes are determined as nodes

which are active, passive, nodes under initialization

and miss peculation nodes.

2.2. Splaying on GPU’s

On the graphic processor, the splaying operation is

carried out, where root node is the nonspeculative

thread and other child nodes are speculative threads.

We apply splaying steps on these threads and

determine whether the node is in what state i.e., threads

on the GPU. Initially the current thread accessed is its

states are determined based on the priority.

If the thread is active, its priority is high and that

thread is right rotated and made as the child node of

the nonspeculative thread. Successive access to a node

newly increases the efficiency and locality of

referencing to the nodes becomes easier. If the status of

the node is determined, based on the status of the

nodes the active nodes are moved towards the node

and the nodes which are miss peculated/passive are

moved away from the root node. Only active nodes

become the children of the nonspeculative thread such

that the load can be balanced between active nodes.

Other nodes are squashed or eliminated from the

binary search tree.

Figure 1. Diagrammatic representation of splaying operation on

Threads on GPU.

Figure 1 describes the steps such that the state of the

thread is determined based its locality of reference

after splaying.

2.3. Design Methodology

The general algorithm for the splaying data structure is

CPU

Speculative

thread

BST tree

representatio

n

Splaying on

trees

Squashed node

moved far

from root

Nodes

initialization

Near to root

Nonspeculative

thread

CPU

Splay Thread Cooperation on Ray Tracing as a Load Balancing Technique in ... 169

Algorithm 1: The general algorithm for the splaying data

structure.

Algorithm SplaySpec ()

This algorithm works on the CPU.

Step 1. Initialize the structure which holds elements

 No, left, right and the size of the nodes on the

 tree representation where each node

 represents the threads on the GPU.

Step 2. Function to create treeofthreads ()

Step 3. If tree is empty,

Step 4.Create the threadsoftree.

Step 5.Print the tree

Step 6. Print the each node of the thread of trees.

Algorithm 2: The Algorithm for the splaying operations.

#include<stdio.h>

#include<cuda.h>

define NUM_BLOCKS 20;

Step 1. Structure for the tree.

Typedef struct splay_node splay;

Struct splay node {

 Splay *r,*l;

 Int info;

 }

_device_int * ptr [NUM_BLOCKS];

Step 2. Memory Allocation.

_global void allocate memory ()

{

If (threadID.x==0)

ptr [blockIdx.x]=(int *) malloc(blockDim.x*4);

-syncthreads ();

If (ptr[blockIdx.x]==NULL)

Return;

ptr[blockIdx.x][threadIdx]=0

}

_global void memalloc()

{

 Int ptr1=ptr[blockIDx.x];

 If (ptr 1!=NULL)

 Ptr1(threadIDX.X] +=threadIDX.X

}

Step 3. Function splay tree manipulation.

Tree *splay (int i ,tree *s)

{

 Tree n,*l,*r,*y;

If (t==NULL) return t;

For (;;)

{

 If (i<t->info)

 { if (2t+1)==NULL) break;

 If (i < (2t+1).info)

 { z=2t+1

 2t+1=2t+2

 2t+2=z

 t=z

 }

 If(2t+1)==NULL) break;

}

 r.2t+1=t

 r=t

 t=2t+1

} else if (i > t.info)

{ if ((2t+2)==NULL) break ;

 If (i >2t+2.info)

{ z=2t+2

 2t+2=2t+1

2t+1=t

t=z

}

If ((2t+2)==NULL) break;

l.2t+2=t

l=t

t=2t+2

Else

{break ;}}

l.2t+2=2t+1

2t+1=2t+2

2t+2=n.2t+1

2t+1=m.2t+2

Return t

}

Initially, the memory is allocated dynamically using

the functions allocatememory () and memalloc ()

functions [10]. The function splay () uses this array’s

and does the splaying by swapping the left child nodes

to the right to balance the tree. Since the

implementation of linked lists concept in GPU is little

difficult as the memory allocation becomes difficult, a

proposal to use the dynamic array is implemented for

the splaying operation. Dynamic arrays are the

growable arrays consisting of variable sized data

structure where the addition and deletion happens and

supported by the many of the modern programming

languages.

The dynamic arrays are constructed using the

geometric expansion of doubling in the size of the

fixed array while it is used for reversed use such that n

elements take O(n) time such that each insertion takes

amortized constant time.

These types of dynamic arrays are supported by the

GPU’s also. Compute Unified Device Architecture

(CUDA) supports dynamic allocation of memory for a

thread or a block. The performance issue relates to the

dynamic array are that it includes Locality of reference

and data cache utilization and it is random access also.

The dynamic arrays supports for the faster indexing

also [10]. Since the Amortized cost definitely

guaranteed for the worst case analysis and performance

than the speculation of the states in the program

structure.

2.4. Splaying Transformations

The Figure 2 below shows the transformations on the

splaying rotations of the threads in zigzag and zig-

zig.Consider the threads on the GPU, each of the

blocks of the threads holds 8 small threads inside

numbered from 0 to 7 and each thread is identified by a

threadID. The computations are allocated to the block

of threads instead of individual threads on the block.

Each block’s threads are referred by the ThreadIDs and

Blocks are represented by the BlockID’s. BlockID=0

BlockID=1 BlockID=20 to 7 ThreadID’s.

Suppose a computation is assigned to the

BlockID=0. There are 7 threads whose synchronization

is carried out using splaying zig-zag or zig-zig

170 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

rotations as these threads are represented in the binary

search tree.

The Zig-Zig rotation is carried out for checking the

Activeness, passiveness, initialization of nodes and

misspeculated nodes. Consider BlockID=0 which

consists of ThreadID’s from 0 to 7.

The Zig-Zig operation on this BlockID is that the

thread 0, 1, 3, 5 are active, 6 is inactive, 7 is squashed

and 2, 4 are misspeculated threads.

Figure 2. The binary search tree of threads of a single block.

The Figure 3 describes the tree of threads

constructed from the 8 threads of the single block.

If t is a node considered for splaying opération.

Parent(t)=(t-1)/2 if t !=0.

Left child (t) =2t+1 if 2t+1 <=n.

Right child=2t+2 if 2t+2 <=n.

Left Sibling (t) = t-1 if t is even.

Right Sibling (t) =t+1 if t is odd and t+1 <=n [4, 15].

Figure 3. The tree after the splaying operation.

Since it is a self adjusting tree, the nodes which are

active are moved near to the root and other nodes are

moved to the end. Table 1 represent the identification

of the parent and child threads on the GPU such that

after splaying operation nodes are self adjusted.

Table1. Illustrates the parent and child node relationship.

 0 1 2 3 4 5 6 7 8

Parent p - 0 0 1 1 2 2 3 3

Left Child LC 1 3 5 7 - - - - -

Right Child RC 2 4 6 8 - - - - -

Left Sibling LS - - 1 - 3 - 5 - 7

Right Sibling RS - 2 - 4 - 6 - 8 -

To transfer the data to the speculative threads the

table is referred to check for the parent and child

threads on the GPU.

At the next level the same operation can be

extended to the block level also since the blocks are

numbered as the B0, B1, B2 the splaying operation can

bring the blocks which are active to the nearer to the

root by self adjustment that saves the memory as well

as theCollection also.

3. Ray Tracing Using Splaying

In computer graphics, Ray Tracing is a technique for

generating an image by tracing the path of the light

through pixels in an image plane and simulating the

effects of its encounters with virtual objects. In Ray

Tracing problem, we send a ray from the eye/camera

through each pixel on the virtual screen to compute the

color of the pixel. Some light could also have been

reflected or refracted by this object. The other light ray

is blocked by another object. If the multiple reflections

or refractions we trace recursively the reflected or

refracted rays until they do not hit any object. Finally,

the energy contributions of all rays used to get the

color of the screen pixel.

Figure 4 describes the ray tracing technique. Ray

tracing can be efficiently solved by the technique of

speculative parallelization and multithreading.

Speculative parallelism technique is a promising

technique used in current technologies to enhance the

instruction level parallelism and thread level

speculation. Speculative multithreading uses

speculative Architectural threads where it has two

threads. A non speculative thread and a set of

speculative threads. A non speculative thread starts

executing the program and at the spawning point where

the program or loop and instructions can be

parallelized. In the Speculative Architectural Thread

paradigm, the technique is to execute the different

parts of the program in parallel in different sections.

The execution of the program results in correct, if the

values are computed by the speculative threads and the

code executed by them need not be reexecuted by the

main thread. Considering the Ray tracing techniques,

the execution of the loop or instruction where the ray is

being traced or send is traced by the nonspeculative

thread. Once the ray is reflected or refracted, the point

of reflection or refraction is termed as spawning point

or spawning pair [15].

Figure 4. Ray tracing technique.

Feng et al. [3] have developed the augmented

design for the indicating the dynamic data structures

with speculative parallelism, and also have designed

scheduling policies for cross-iteration dependences as

well as irregular control flows.

Reinhard and Jansen [11] have discussed about data

driven and demand driven tasks for good load

balancing and spreading communication evenly in the

network. Kobayashi et al. [7] proposed hierarchical

multiprocessor system for dynamic load balancing with

the static one.

1

0

2

3 4 5 6

7

1

0

5

3 4 2 6

7

Virtual screen eye
object

Refracted ray

Splay Thread Cooperation on Ray Tracing as a Load Balancing Technique in ... 171

Hence from the spawning point or spawning pair,

the non speculative thread spawns the speculative

thread, the speculative thread starts tracing the ray

which is either reflected or refracted. All the rays are

traced by the speculative threads and the energy is

calculated and passed onto the nonspeculative thread.

Each time a ray is refracted or reflected, a speculative

thread is spawned and a ray suggests that a

nonspeculative thread executes the entire program.

T(n) is the time taken for the sequential execution.

Figure 5. Process of spawning threads.

When speculative threads are tracing the path of a

ray, then non speculative thread initializes all the live

in variables and initial values to the consumer threads

i.e., speculative threads. Figure 5 describes the process

of spawning threads. After the proper live in values are

propagated to the consumer threads, the consumer

threads determines the energy of the rays or the color

of the rays. If the value determined by the speculative

thread if it is correct, the state of the thread is stored

and the values are moved to the producer thread. If the

speculation is wrong, the thread is squashed and the

nonspeculative thread starts executing normally.

When the speculative thread is spawned by the

nonspeculative thread the tracing of the refracted ray is

carried out by speculative thread. Then the ray of light

passes as it is not hitting the object. The eye/camera is

kept at a fixed frame and the ray of the light is moving

either in refracted/reflected. i.e., it is in the moving

frame. The relativity between the fixed frame and the

object moving frame related through the

transformations called the lorentz transformation [10].

3.1. Lorentz Transformation

It is a linear transformation. This transformation

measures the relative distances between the space and

the time, the ordering of the events, elapsed time and

preserves the space time interval between the two

events [10]. In our paper we apply Lorentz

transformation to determine the elapsed time, relativity

between the nonspeculative and speculative threads.

The time dilation when the speculative threads are

spawned.

The eye/camera where the ray of light is spawned is

referred as fixed frame. From the fixed frame the co-

ordinates are taken as fixed reference values as (x1,y1).

Once the ray is passed through the virtual screen, the

ray is traced and if it touches any object the ray gets

either refracted or reflected. i.e., the ray is in the

moving frame. When an observer from the fixed frame

is observing the tracing of the ray from a fixed frame,

the moving frame, the time dilation happens. The

coordinate of the moving frame are treated as (x2, y2).

∆t1 is the time taken for the ray to move from fixed

frame. Using this logic we are determining the

spawning time of the thread and the thread distance

between the speculative thread and the non speculative

thread.

When the light ray touches the object the ray gets

refracted, the light ray is in the moving frame. The

moving frame is moving with velocity v in the x and y

directions with respect to the reference frame (fixed

frame).

 /cv-1vt/-X1=X2 22
2 2Y2=Y1-vt/ 1-v /c

To locate the ray from the fixed frame the reverse

transformation happens

2 2X2=X1 t/ 1-v /c v

2 2Y2=Y1 t/ 1-v /c v

The time determined as

t’=t-vt/c2/√1-v2/c2

We determine the values of ß and α

Where /c v-11/=ß v/c= 22

The distance conserved under a coordinate rotation is
x'=xcos +ysin y'=-xsin +ycos

2 2 2 2x' +y' =(xcos +ysin) +(-xsin +ycos)
2 2 2 2 2

2

x' +y' =x cos2 +2xycos sin +y sin2 +x

sin2 +2xycos sin +y cos2

2 2 2 2x' +y' = x (cos2 +sin2)+y (sin2 +cos2)

 22 y' x' 22 yx

If the ray of light is refracted/reflected in the reference

frame the ray gets reflects or refracted.

The coordinate values are (t1, x1, y1) (t2, x2, y2).

The speed of the ray of light in the reference frame of

the system are determined as

X'=x2-x1/t2-t1= x/ t

Y'=Y2-Y1/t2-t1= y/ t

The relativity between the different speeds are

tx/ =Ux

= ((x'+v t')/ 1- v2/c2))/((t'+v x'/c2)/ 1- v2/c2))

 = '/ ' /1 '/ ' 2X t v v X t c

 Speculative Time Dilation: The time gap between

the spawning of the speculative thread and the

spawning pair if it happens in the same coordinate

system is referred as correct time of spawning. The

correct time is determined as

Spawns () when refracts

Non

speculative

thread

Specthread1

Specthread2

Specthread3

Specthread4

(2)

(3)

(1)

(4)

(5)

(6)

172 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

t=t2-t1
2 2 2 2=(t2-vx2/c2/ 1- v /c)- (t1-vx1/c2/ 1- v /c)

= 2 2 2 2t2-vx2/c -t1+vx1/ c / 1- v /c

= 2 2t2-t1/ 1- v /c

= 2 2t/ 1-v / c

 Speculative Distance Contraction: The distance

between the spawned speculative thread and the

nonspeculative thread is determined as the

contraction.

The correct distance between the spawned

speculative thread and nonspeculative thread L=x2-x1

2 2 2 2T' = (x2-vt2/ 1-v /)-(x1-vt1/ 1- v /c) c

= 2 2x2-x1/ 1- v /c

2 2/ 1 /L v c

3.2. A Regular Sturm-Liouville’s Equation

The Sturm-Liouville explains a finite dimensional

vector space. We consider the inner product of two

vectors Y3)Y2,(Y1,=Y X3)X2,(X1,=X which

inner product is X.Y=(X, Y)=X1Y1+X2Y2+X3Y3.

The two nonzero vectors X and Y are said Orthogonal

if X.Y=0. A set of nonzero vectors is said to be

orthogonal if any two distinct vectors from this set are

orthogonal. The Sturm-Liouville consists of the

general class of boundary value problems with sets of

solutions that are mutually orthogonal.

A Sturm-Liouville problem is a boundary value

problem on a closed finite interval [a, b] of the form

[() ']' [() ()] 0,p X Y q X r X y a x b

1 () 2 '() 0c Y a c Y a

1 () 2 '() 0d Y b d Y b

Where c1, c2 and at least d1, d2 are nonzero and is a

parameter.

The nonzero solutions of a Sturm-Lioville problem

are called the Eigen functions of the problem and the

values which consist of the nonzero solutions are

referred as Eigen values.

The Eigen values and Eigen functions of the sturm-

lioville problem is defined as

Y’+ λy=0 y(0)=y(π)=0.

This equation is similar to the Equation (8) with

p(x)=1, g(x)=0 r(x)=1.

The boundary conditions a=0 ,b=π with c1=d1=1

c2=d2=0.

Considering the three cases for the solution of the

sturm-lioville solution is:

 Case 1. When λ<0, so λ=α
2
where α > 0.

 the equation becomes y”- α
2
y=0 the solution is

 y=c1 sinh αx+c2cosh αx. When y=0,c2=0 when

y(π)=0 the equation will be 0=c1sinhα π as sinhx

!=0 so there are no nonzero solution.

 Case 2. When λ=0, the solution of the equation is

y=c1x+c2, the boundary conditions c1,c2=0 as there

exists no nonzero solution.

 Case 3. When λ>0, λ= α
2
 and α>0 so the equation

becomes y”+ α
2
y=0. The solution is y=c1cos αx+c2

sin αx. When y(0)=0 then 0=c1cos0+c2 sin0

 so y=c2sin αx.

The other boundary condition is c2!=0 then we get sin

α π=0 it has the eigen values as

y1=sinx, y2=sin2x, y3=sin3x…..

According to the 3 cases, considering the values of λ,

when λ<0 and when λ=0 there exists no solution but

when λ>0, there exists solution to the problem and

eigen values also exists.

We consider the sphere equation that provides

quadratic equation as

X=-b+√b
2
 -4ac/2a X=-b-√b

2
 -4ac/2a

It is similar to representing and replacing b
2
 -4ac by

λ and considering the cases for finding the roots of the

equation. According to the sturm-lioville equation,

there exists no solution when λ <0 and λ=0. Because

when λ< 0, λ=0 the Eigen values remains at nonzero

solution. So the ray intersects or passes through the

object when λ>0 as the boundary values for the

solution exists or the solution itself exists [2].

The ray is represented as an origin and direction i.e.,

vector. Origin O=[X0, Y0] Direction D=[Xf, Yf].

The ray consists of points R(K)=O+Xf*K.

The ray object intersection is determined by the

equation f(O+Xf*K)=0.

The ray sphere intersections with center and radius

is determined as (X1-A)
2
+(Y1-B)

2
=R

2
 where A,B,C

are the centres of the Sphere, R is radius and X1,Y1

are the points on the sphere.

The parametric equation for ray are X=X0+Xf*K

Y=Y0+Yf*K where X0,Y0 is the origin of the ray

Xf,Yf are the camera rays direction. To find the

intersection, the ray equation into sphere equation is

(X0+Xf*K-A)
2
+(Y0+Yf*K-B)

2
=R

2
which is equal to

(Xf+Yf)
2
*K

2
+[2[Xf*(X1-A)+Yf*(Y1-B)]]*t+[(Xf-

A)
2
+(Yf-B)

2
-R

2
]=0

The quadratic equation is also in the form

of 2MX +NX+C=0. Where

M= [(Xf2+Yf2)]

N= [2[Xf*(X1-A)+Yf*(Y1-B)]]
2 2 2C= [(X1-A) +(Y1-B) -R]

Considering the sphere equation above b
2
-4ac is

discriminant. Based on the values of the discriminant,

 Case 1. The solution b
2
-4ac <0 it leads to imaginary

value, the ray and sphere do not intersect in real

plane.

 Case 2. The solution b
2
-4ac=0 leads to the boundary

conditions with nonzero solutions.

 Case 3. If b
2
-4ac>0 exists in real roots where ray

and sphere intersect with each other.

(8)

(9)

(10)

(11)

(7)

Splay Thread Cooperation on Ray Tracing as a Load Balancing Technique in ... 173

The intersection point of a ray with the plane surface is

determined as AX+BY+D=0.

The ray equation with the origin and the distance d is

represented into the plane equation as A(X0+Xf*K)

+B(Y0+Yf*K)+D=0.

AX0+AXf*K+BY0+BYf*K+D=0 [2].

In this paper, we substitute the discriminant with the

value λ. considering the 3 cases of the λ from equations

the rays are cast.

Since the discriminant itself is replaced with λ, the

computing one square root, 2 multiplications and one

subtraction is reduced for each and every computation

for computing the color of each pixel in the object

which tremendously reduces the computation

comparatively.

Considering the values of λ is implemented for

tracing the rays. The speculative time dilation and

contraction is also considered for optimizing the

performance.

3.3. Speculative Parallel Ray Tracing

A nonspeculative thread is computing the execution of

the ray tracing program where a ray is cast from the

eye/camera through the scene which is a image file.

If the ray hits an object, the color of the object is

assigned and it gets reflected/refracted. These rays are

called secondary rays. The secondary rays are traced

by speculative threads parallely.

When the secondary rays are traced by speculative

threads, the color of each pixel is not computed but

background color is defined. Hence when the

secondary rays are tracing the rays there is no need to

compute the background colour.

In a speculative parallel ray tracer the algorithm is

divided among number of threads on GPU. Since the

numbers of processsors on GPU are significantly more,

can compute fine grained parallelism to compute the

color of the each of the pixel on the image or object

simultaneously. The data is distributed from the CPU

to the GPU threads. To keep track of the timing events

the start and end of the spawning of the threads on non

speculative threads. Compute Unified Device

Architecture (CUDAEVENT) event to keep track of

the spawned threads to calculate time contraction

between start and end of the event.

Figure 6. Allocation of task by CPU.

The steps shown in Figure 6 are as follows. The

primary rays shot by the camera or the viewport are

stored in the buffered array of the CUDA program and

a tree of splay trees are formed and splaying operation

is carried out when the rays which are in the moving

frame of the rays which hits an object are determined

and after splaying operation the rays are traced by the

threads on GPU. The rays which hits an object may

either gets reflected or refracted such that the

speculative threads spawn secondary rays are traced by

them. Each time splaying operation is carried for the

rays that hit an object. Each of the ray traces the path

of the rays and determines the color of the pixels.

For defining the image, Open Graphics Library

(OPENGL) programming and for ray tracing program,

the CUDA is being used. The program is run on

Graphics Processing Unit ocelot (GPUOCELOT), a

parallel programming simulator for CUDA

programming is used for the results and analysis.

The steps for the speculated parallel ray tracer are

provided below in the Figure 7.

Figure 7. Steps for Speculated Parallel ray tracer.

During the execution of the ray tracing program, the

load balancing of the threads is carried out through the

technique of splaying operation on GPU’s which is

discussed in the section 1.1 of this paper. The

algorithm of the speculative parallel ray tracer is

provided.

Algorithm 3: The algorithm for the speculative parallel ray

tracer.

Step1. The image file is created through OPENGL

Step 2. For each pixel of the object

 { color =0;

 For (row=0;row< nrows;row+=blocksize

For (col=0;col<ncols; col+=blocksize

{

Step 3. Construct the primary rays.

Step 4. Call splay transform function.

Step5. The nonspeculative thread spawns speculative threads.

Step 6. The rays intersects the object called object intersection.

Step 7. The rays from the camera either hit or miss the objects.

Step 8. The CUDAEVENT records the speculative time dilation

and contraction.

Step 9. If the rays hit an object, secondary rays are formed and

they either reflect or refract.

Step 10. The GPU processors collect the color of each pixel and

group them, finally the CPU determines the colors of the pixels.

CP

U

U

GP

U

Allocate task to GPU

Sends the color of the pixel

Hits an object

Misses object

Primary rays

Splaying Transformation

rnasformationtransformation

Rays hit/miss

Shadow Rays

raysRaysrays/secondary

Color of each pixel

CPU combines tasks

174 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

}

Algorithm 4: Code for intersection using strum-liouville

Equation.

Step 1. Scene is designed using OPENGL with objects, the

camera and the light sources are set up.

Step 2. Ray tracer function.

__global__void raytracing (start, direct)

{CUDA_EVENT_T begin, end;

 Float M,N,C,D;

CUDA_EVENT CREATE (begin)

CUDA_EVENT RECORD (begin,0)

M= Xf
2
+Yf

2

N=2(Xf[X1-A]+Yf[y1-B])

C=(X1-A)
2
+(Y1-B)

2
-(r*r)

D=N*N-4*M*C

If (D <0)

Return false

Dsqr =sqrt(D)

Dsqr=λ

If (λ>0)

S0=-(N-λ)/2.0

Else

S1=- (N+λ)/2.0

If (λ==0 || λ<0)

Return false

CUDA_EVENT_SYNCHRONIZE (end)

Float executed time

CUDA_EVENT_ELAPSED_TIME (and executed time)

4. Experimental Setup

The algorithm is run on the Inspiron5050 using the

simulator GPUOCELOT simulator. The efficiency of

the algorithm is determined. The amortized complexity

of the algorithm is determined as follows.

4.1. Analysis

Amortized Cost: Many of the online algorithm works

whose time complexities are determined by the

Amortized Time complexities. Amortization is the

process of determining the actual cost involved for

insertions, deletions and rotation operations. The time

complexities remain in O (logn) for the average time

complexities. In the worst time analysis remains to be

amortized. The average time complexity of the

splaying operation follows the Amortized time

complexity of O (logn) instead of O(n) and the cost

incurred for the insertions and deletions remains the

constant or amortized. So this technique is efficiently

balances the load without incurring extra time for any

primitive operations on the tree. Consider an empty

tree and start S splay operations on the tree, the total

time of running is O(S logn) but the average time for

the operation is O (logn).

The total amortized cost for splaying operation is

the sum of all the amortized cost for splay steps.

Amortized cost=∑ cost of splay steps.

 =∑ 3(ra (root)-ra(S))+1

 =∑ 3logn+1

 =O (logn).

ra(root) is the rank of the root node is logn.

ra(S) rank of the node after splaying.

The performance efficiency of the splay operations

on the amortized cost is always O(1) as it is self

balancing, self optimized, no storage of data reducing

memory requirement and it is very efficient with the

uniform accessing of the data.

5. Conclusions

The splay thread cooperation for load balancing results

in good performance comparatively on the graphics

processors. The amortized time complexities reduce

the time of execution task comparatively. The GPU

consist of thousands of threads the application of the

above technique comparatively reduces the memory

access and balancing the work of the active nodes can

be realized through the graph.

6. Results

Figure 8. Graph of nthreads vs logn.

The above graph Figure 8 describes as the n

number of threads increases for splaying on the GPU’s

the x axis consists of the n threads and y axis consists

of log n resulting in linear speedup Figure

9,10,11,12,13. shows the different stages of Ray

Traced image. Figures 14 and 15 is a snapshot of the

speculative parallel ray tracing algorithm performance

on processors.

Figure 9. Initial scene for Ray tracing.

Figure 10. Scene with transformations.

Splay Thread Cooperation on Ray Tracing as a Load Balancing Technique in ... 175

Figure 11. Reflections and splaying.

Figure 12. Ray tracing image.

Figure 13. Ray traced image.

Figure 14. Performance on processors.

Figure 15. Performance on processors.

References

[1] Aguila J. and Campero K., “An Explicit

Parallelism Study Based On Thread Level

Speculation,” CLEI Electronic Journal, vol. 17,

no. 2, pp. 1-12, 2014.

[2] Asmer N., Partial Differential Equations with

Fourier series and Boundary Value Problems,

Pearson, 2015.

[3] Feng M., Gupta R., and Bhuyan L., “Speculative

Parallelization on GPGPU’s,” in Proceeding of

the 17
th
 ACM SIGPLAN Symposium on

Principles and Practice of Parallel

Programming, Orleans, pp. 293-294, 2012.

[4] Horowitz E., Sahni S., and Freed A.,

Fundamentals of Data Structures in C, Computer

Science Press, 1992.

[5] Han M., Wang Z., and Yuan J., “Mining Closed

and Multi-Supports-Based Sequential Pattern in

High Dimensional Dataset,” The International

Arab Journal of Information Technology, vol. 12,

no. 4, pp. 360-369, 2015.

[6] Kaeli D. and Yew P., Speculative Execution in

High Performance Computer Architectures,

Chapman and Hall/CRC, 2005.

[7] Kobayashi H., Nishimura S., Kubota H.,

Nakamura T., and Shigei Y., “Load Balancing

Strategiesf a Parallel Ray-Tracing System Based

on Constant Subdivision,” The Visual Computer,

vol. 4, no. 4, pp. 197-209, 1988.

[8] Lauterback C., Mo Q, and Manocha D., “Work

Distribution Methods on GPUs,” Technical

Report TR009-16, 2009.

[9] Menon J., Kruijf M., and Sankaralingam K.,

“IGPU: Exception Support and Speculative

Execution on GPUs,” in Proceeding of 39
th

International Symposium on Computer

Architecture, Portland, pp. 72-83, 2012.

[10] NVIDIA Corporation, CUDA C programming

guide PG-02829001-v5.0, NVIDIA Corporation,

2012.

[11] Reinhard E. and Jansen F., “Rendering Large

Scenes Using Parallel Ray Tracing,” Parallel

Computing, vol. 23, no. 7, pp. 873-885, 1997.

[12] Sleator D. and Tarjan R., “Self-Adjusting Binary

Search Trees,” Journal of the Association for

Computing Machinery, vol. 32, no. 3, pp. 652-

686, 1985.

[13] Tian C., Feng M., and Gupta R., “Supporting

Speculative Parallelism in Presence of Dynamic

Data Structures,” in Proceeding of the 31
st
 ACM

SIGPLAN Conference on Programming

Language Design and Implementation, Toronto,

pp. 62-73, 2010.

[14] Uht A., Morano D., Khalafi A., and Kaeli D., “A

Scalable Processor with High IPC,” journal of

instruction level parallelism, vol. 5, pp. 1-28,

2003.

176 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

[15] Wood D., Data Structures, Algorithms, and

Performance, Addison-Wesley, 1993.

Gopalan Pudur, PhD

(IISCBangalore) M.E. (NIT Trichy)

N.P.Gopalan received M.Sc degree

with university rank in Mathematics

from Madras University in 1978,

PhD in Applied Mathematics from

Indian Institute of Science,

Bangalore in 1983.He received M.E degree in

computer Science and Engineering from NIT,

Tiruchirappalli and currently serving as the Professor

of Computer Applications in it. He has authored books

on Web Technology, TCP/IP, Unix Programming,

Data Mining object oriented Programming and Signals

and Systems. His areas of interest includes Algorithms,

Combinatorics, Data Mining, and Distributed

Computing.

Suma Shivaraju, currently pursuing

PhD from Bhartiar University

Coimbatore. Her area of interest

consists of Parallel and Distributed

Computing, Data Structures

Analysis and Design of algorithms,

Automata Theory and Compiler

Design.

