The Shuffle on Trajectories of Infinite Arrays

Devi Velayutham
Department of Mathematics, Hindustan College of Arts and Science, India

Abstract: In this paper authors study and investigate the shuffle on trajectories on infinite array languages. Like finite array languages this approach is applicable to concurrency providing a method to define parallel composition of processes. It is also applicable to parallel computation. The operations are introduced using a uniform method based on the notion of \(\omega \)-trajectory. Authors introduce an Array Grammar with Shuffle on Trajectories (AGST) and compare it with other array grammars for generative purposes. Authors prove closure properties for different classes of array languages with respect to the shuffle on trajectories.

Keywords: Büchi two-dimensional online tessellation automaton, \(\omega \)-trajectory, \(\omega \)-recognizable array language, column shuffle \(\omega \)-recognizable array language.

Received April 16, 2015; accepted May 22, 2016

1. Introduction

Infinite arrays are digitized images of symbols occupying a quadrant of a plane. They can be thought of as extensions of infinite words to two dimensions. The motivation for considering infinite arrays lies in the fact that pictures of functions can be considered as infinite digitized images. An early work in this direction is done by Nakamura and Ono in [13]. Also authors study \(\omega \)-languages and automata in [15, 19] and authors refer [1, 10, 14, 17, 18] for initiating this work. Infinite arrays is an array with infinite number of columns and rows.

Shuffle on trajectories is an interesting tool for the generation of languages of finite words as authors introduce infinite words. It is found in [4, 5, 6, 12]. Parallel composition of words and languages appears as a fundamental operation in parallel computation and in the theory of concurrency. This operation is modeled by shuffle operation or restrictions of this operation such as literal shuffle and inserton. A trajectory is a segment of a line in a plane starting in the origin of axes. Continuing parallel with the axes OX and OY. The line can change its direction only in points of non negative integers. In [16] trajectory plays an important role. The shuffle of two words has a natural geometrical interpretation related to lattice points in the plane [11]. On the other hand theoretical models for generating two dimensional arrays authors propose in [9]. Shuffle operation on finite arrays with trajectories has been introduced in [8]. To develop the study on parallel contextual array grammars [2]. Based on the study of [3] authors consider the shuffle on trajectories as a tool for obtaining various infinite array languages.

The paper is organized as follows. In section 2, authors review necessary notions related to infinite arrays, trajectories and shuffle on trajectories. In section 3 authors give the notion of shuffle operation to infinite array languages and proved closure and associative properties for \(\omega \)-recognizable languages. In section 4 authors study the literal shuffle for infinite array languages and obtain an interesting result.

2. Preliminaries

In this section authors recall some necessary notions and definitions for infinite arrays languages. For finite or infinite array considered in this paper the bottom most row is the first row and the left most column is the first column.

- **Definition 1.** An infinite word is a mapping from \(\mathbb{N} \) to \(\Sigma \). The set of all finite (respectively infinite) words on \(\Sigma \) is denoted by \(\Sigma^* \) (respectively \(\Sigma^\omega \)). A \(\omega \)-language \(L \) is a subset of \(\Sigma^\omega \).

- **Definition 2.** Let \(\alpha = a_0^i a_1 a_2 ... \), where \(a_i \in \Sigma \), for all \(i \geq 0 \) be an \(\omega \)-word over \(\Sigma \). A run of \(\mathcal{A} \) on \(\alpha \) is a sequence of states \(s = s_0 s_1 s_2 ... \), such that \(s_0 = q_0 \) and \((s_i, a_i, s_{i+1}) \in \delta \), for all \(i \geq 0 \). The run is successful if and only if \(\inf(s) \cap F \neq \emptyset \) (where \(\inf(s) \) is the set of all states which repeat infinitely many times in \(s \)). \(\alpha \) is accepted by \(\mathcal{A} \) if and only if there exists a successful run of \(\mathcal{A} \) on \(\alpha \).

The \(\omega \)-language recognized by \(\mathcal{A} \) is \(L(\mathcal{A}) = \{ \alpha \in \Sigma^\omega \mid \alpha \text{ is accepted by } \mathcal{A} \} \). An \(\omega \)-language \(L \) is referred to as \(\omega \)-regular or Büchi recognizable if and only if there exists a Büchi automaton \(\mathcal{A} \) such that \(L(\mathcal{A}) = L \).

- **Definition 3.** An infinite array has an infinite number of rows and an infinite number of columns. The collection of all infinite arrays over \(\Sigma \) is denoted by \(\Sigma^\omega \). If an array \(p \in \Sigma^\omega \) has entry \(a_{ij} \) in the \(i \)th row and \(j \)th column, \(a_{ij} \in \Sigma \) then authors write \(p=(a_{ij}) \), \(i=1, 2, ..., j=1, 2, ... \). For \(p \in \Sigma^\omega \), \(\hat{p} \) is the infinite array obtained by placing a row of
boundary symbol # below the first row of p and to the left of the first column of p.

- **Definition 4.** A Büchi automaton is a quintuple \(\mathcal{A} = (\Sigma, Q, q_0, \delta, F) \), where \(\Sigma \) is the input alphabet; \(Q \) is a finite set of states; \(q_0 \in Q \) is the initial state; \(\delta \) is the transition relation, \(\delta \subseteq Q \times \Sigma \times Q \), and \(F \subseteq Q \) is the set of final states.

- **Definition 5.** A non-deterministic Büchi Two-Dimensional Online Tessellation Automaton (2DBOTA) is \(\mathcal{A} = (\Sigma, Q, Q_0, F, \delta) \) where \(\Sigma \) is an input alphabet, \(Q \) is the finite set of states, \(Q_0 \subseteq Q \) is a set of initial states, \(F \subseteq Q \) is a set of final states and \(\delta : Q \times \Sigma \times Q \rightarrow 2^Q \) is a transition function.

A computation by a 2DBOTA on an infinite array \(p \) with

\[
\hat{p} = \begin{array}{cccc}
\# & \ldots & \ldots & \# \\
\# & a_{11} & a_{21} & \# \\
\# & a_{12} & a_{22} & \#
\end{array}
\]

where \(a_{ij} \in \Sigma \) and \(\# \notin \Sigma \) is done as follows:

At time \(t=0 \), an initial state \(q_0 \in Q_0 \) is associated with all the positions of \(\hat{p} \) holding \#. At time \(t=1 \), a state from \(\delta(q_0, q_0, a_{11}) \) is associated with the position \((1,1)\) holding \(a_{11} \). At time \(t=2 \), states are associated simultaneously with the positions \((1,2)\) and \((2,1)\) respectively holding \(a_{12} \) and \(a_{21} \). If \(s_{11} \) is the state associated with the position \((1,1)\), then the state associated with the position \((2,1)\) is an element of \(\delta(s_{11}, q_0, a_{21}) \) and to the position \((1,2)\) is an element of \(\delta(q_0, s_{11}, a_{12}) \). Authors then proceed to the next diagonal. The states associated with each position \((i,j)\) by the transition function \(\delta \) depends on the states already associated with the positions \((i-1,j),(i,j-1)\) and the symbol \(a_{ij} \). Let \(s_j \) be the state associated with the position \((i,j)\) where the entry is \(a_{ij} \). A run (or a computation) of an infinite array is an element of \(Q^\omega \). A run for an infinite array is a sequence of states \(s_{11}, s_{12}, s_{21}, s_{31}, s_{22}, s_{32}, s_{33}, \ldots \) and it is denoted by \(r(p) \).

If \(\mathcal{A} \) is non-deterministic, a run for an infinite array is a set of sequences of states containing only one sequence of state, but in the deterministic case it is a singleton set. If \(p \in \Sigma^\omega \), the set of runs of \(p \) is denoted by \(\text{Run}(p) \).

The language of infinite arrays recognized by the non-deterministic Büchi online tessellation automaton \(\mathcal{A} \) is \(L^\omega(\mathcal{A}) = \{ p \in \Sigma^\omega : \inf(r(p)) \cap F \neq \emptyset, \text{ for some } r(p) \in \text{Run}(p) \} \).

A language of infinite arrays is called a \(\omega \)-array language. A \(\omega \)-array language \(K \) is called recognizable if there exists a Büchi online tessellation automaton \(\mathcal{A} \) such that \(L^\omega(\mathcal{A}) = K \).

2.1. Shuffling on Trajectories over Infinite Arrays

In this section authors prove that the shuffling of two \(\omega \)-recognizable languages is again \(\omega \)-recognizable array language.

- **Definition 6.** The column shuffle operation on an infinite array denoted by \(u^\omega \) is defined recursively by

\[
P \ u^\omega = (A \bigtriangleup X)(B \bigtriangleup Y)
\]

Where \(P = A \bigtriangleup X \) and \(Q = B \bigtriangleup Y \), where \(P, Q \in \Sigma^\omega \), \(A \) is the first column of array \(P \) and \(B \) is the first column of array \(Q \). If \(A \) is empty then \(X = P \). Likewise if \(B \) is empty then \(Y = Q \). Also \(P \ u^\omega \ A = \Lambda \ u^\omega P = P \).

- **Definition 7.** The row shuffle operation on an infinite array denoted by \(v^\omega \) is defined recursively by

\[
P \ v^\omega = (A \bigtriangleup X)(B \bigtriangleup Y)
\]

Where \(P = A \bigtriangleup X \) and \(Q = B \bigtriangleup Y \), \(P, Q \in \Sigma^\omega \), \(A \) is the first row of array \(P \) and \(B \) is the first row of array \(Q \). Also \(P \ v^\omega \ A = \Lambda \ v^\omega P = P \).

Let \(V_i = \{ r, u \} \) and \(V_\omega = \{ t, d \} \) be the set of versors in the plane. \(t, r, u \) and \(d \) stand for the left, right, up and down directions respectively. A trajectory is an element \(t \in V_i \bigcup V_\omega \).

- **Definition 8.** Let \(\Sigma \) be a finite alphabet, \(v \in \{ r, u \} \), \(t \in \{ r, u, d \} \) and \(P, Q \in \Sigma^\omega \). The column shuffle of \(P \) with \(Q \) on the trajectory \(vt \), denoted by \(P \ v^\omega_Q \) is recursively defined as follows:

If \(P = A \bigtriangleup X \) and \(Q = B \bigtriangleup Y \) where \(A, B, X, Y \in \Sigma^\omega \), \(A \) and \(B \) are the first columns of \(P \) and \(Q \) respectively, then

\[
P \ v^\omega_Q = (A \bigtriangleup X)(B \bigtriangleup Y) = \begin{cases}
A \bigtriangleup (X \ v^\omega_Q (B \bigtriangleup Y)) & \text{if } v = r, \\
B \bigtriangleup ((A \bigtriangleup X)(B \bigtriangleup Y)) & \text{if } v = u.
\end{cases}
\]

If \(P = \Lambda \), \(\Lambda \ v^\omega_Q (B \bigtriangleup Y) = \begin{cases}
\emptyset & \text{if } v = r \\
B \bigtriangleup (\Lambda \ v^\omega_Q (B \bigtriangleup Y)) & \text{if } v = u
\end{cases} \)

If \(Q = \Lambda \), \((A \bigtriangleup X)(\Lambda \ v^\omega_Q) = \begin{cases}
A \bigtriangleup (X \ v^\omega_Q \Lambda) & \text{if } v = r \\
\emptyset & \text{if } v = u
\end{cases} \)

and \(\Lambda \ v^\omega_Q \Lambda = \begin{cases}
\Lambda & \text{if } t = \Lambda \\
\emptyset & \text{otherwise}
\end{cases} \)

The row shuffle of \(P \) with \(Q \) on the trajectory \(vt \), \(v \in \{ t, d \} \) and \(t \in \{ t, d \} \) is defined in a similar way with \(r, u \) replaced by \(t, d \) and the catenation \(\odot \) is replaced by \(\bigtriangleup \) catenation. Also if \(|P| \neq |t| \) or \(|P| \neq |u| \) then \(P \ v^\omega_Q = \emptyset \). Similarly if \(|P| \neq |t| \) or \(|Q| \neq |t| \) then
be three infinite arrays in $\Sigma^{\omega\omega}$. In P, the entries in the $(i, j)^{th}$ positions $1 \leq i \leq n, 1 \leq j \leq m$ are “a” whereas in other places the entries are “b”. In Q the $(i, j)^{th}$ positions $i \geq 1, 1 \leq j \leq m$ are “a” whereas in other places the entries are “b”. In R, the entries in the $(i, j)^{th}$ positions $j \geq 1, 1 \leq i \leq n$ are “a” whereas in other places the entries are “b”. Now for $t = (ru)^\omega$.

$P \cdot \mu_\omega^r R = \begin{array}{cccccccc}
 a & a & a & a & a & a & a & a \\
 b & b & b & b & b & b & b & b \\
 a & a & a & b & b & b & b & b \\
 a & a & a & a & a & b & b & b \\
 a & a & a & a & a & a & b & a \\
 a & a & a & a & a & a & a & b \\
 \end{array}$

Similarly $t = (fd)^\omega$, $P \cdot \mu_\omega^r Q = \begin{array}{cccccccc}
 a & a & b & b & b & b & b & b \\
 a & a & a & a & a & a & a & a \\
 b & b & b & b & b & b & b & b \\
 a & a & a & a & a & a & a & a \\
 a & a & a & a & a & a & a & a \\
 a & a & a & a & a & a & a & a \\
 \end{array}$

Now, authors give a result concerning the shuffle of two $\omega\omega$-recognizable array languages. If $L_1, L_2 \subseteq \Sigma^{\omega\omega}$, then $L_1 \cdot \mu_\omega^a L_2 = \{ P \cdot \mu_\omega^r Q | P \in L_1, Q \in L_2 \}$ and $L_1 \cdot \mu_\omega^a L_2 = \{ P \cdot \mu_\omega^r Q | P \in L_1, Q \in L_2, t \in T \}$

Theorem 1. If L_1 and L_2 are $\omega\omega$-recognizable array languages then $L_1 \cdot \mu_\omega^a L_2$ is a $\omega\omega$-recognizable array language.

Proof. Let L_1 and L_2 be two $\omega\omega$-recognizable array languages over the same alphabet Σ. Let $A_1 = (\Sigma, Q_1, Q_1^0, F_1, \delta_1)$ be a Büchi online tessellation automaton such that $L(A_1) = L_1$, $i = 1, 2$. Authors define a Büchi online tessellation automaton $A = (\Sigma, Q, Q_0, F, \delta, F)$ such that $L(A) = L_1 \cdot \mu_\omega^a L_2$ as follows: $Q = Q_1 \times Q_2 \times \{0, 1, 2\}$. Elements in Q are denoted as (q_1^1, q_1^2, k) where $q_1^1 \in Q_1, q_1^2 \in Q_2$ and $0 \leq k \leq 2$. The initial state is $q_0 = (q_1^1, q_1^2, 0)$ and the set of final states is $F = Q_1 \times Q_2 \times \{2\}$. The transition function δ is defined in such a way that it simulates non-deterministically on the first component, the automaton A_1 or on the second component, the automaton A_2. The third component of a state is used to record an occurrence of a final state from F_1 if the value 1 is stored. The value 2 is stored if at some stage later a final state from F_2 does occur. The value 0 is stored in the third component whenever the first two components are not the final states.

Formally, δ is defined as follows:

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (0, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 0), \}$

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (0, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 1), \}$

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (1, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 1), \}$

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (2, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 0), \}$

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (0, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 1), \}$

$\delta((q_1^1, q_1^2), (q_2^1, q_2^2), (1, a)) = \{ (\delta_1((q_1^1, q_1^2), a), q_1^2, 0), \}$

Clearly $L(\mu_\omega^a L_2) \subseteq L_1 \cdot \mu_\omega^a L_2$.

Definition 9. A column shuffle $\omega\omega$-array language over Σ is the set $C = \{ u_1 \ldots u_m | u_i \in \Sigma^{\omega\omega}, r, k, m \geq 1 \}$ and row shuffle array language over Σ is the set $R = \{ u_1 \omega u_2 \ldots u_m | u_i \in \Sigma^{\omega\omega}, c, k, m \geq 1 \}$.

Definition 10. An array grammar with shuffle on trajectories (AGST) is a construct $G = (\Sigma, B, C, R, T_C, T_R)$ where Σ is an alphabet, B is a finite subset of $\Sigma^{\omega\omega}$ called the base of G, C and R are called column and row shuffle array languages over Σ respectively. $T_C \subseteq \Sigma^{\omega\omega}$ and $T_R \subseteq \Sigma^{\omega\omega}$ are sets of trajectories over the column and row shuffle array language of C and R respectively.

The direct derivation with respect to G is a binary relation $\Rightarrow \omega\omega$ where $X, Y \in \Sigma^{\omega\omega}$ if and only if $X = X \omega \Rightarrow \omega \omega$. U with $U \in C$ or $Y = X \omega \Rightarrow \omega \omega$ if $U \in R$. $\Rightarrow \omega\omega$ is the reflexive transitive closure of $\Rightarrow \omega\omega$.

The language generated by G, denoted as $L(G)$ is defined as follows

$L(G) = \{ Y \in \Sigma^{\omega\omega} | X \in B \text{ such that } X \Rightarrow \omega \omega Y \}$

The family of all languages generated by AGST is denoted by AGST. AGST$_{REG}$, AGST$_{CF}$, AGST$_{CS}$
denote the family of all languages generated by AGST grammars with regular, context free and context sensitive languages of trajectories respectively.

Authors now give some examples from the family AGST\textsubscript{REG}.

- **Example 2.** Consider the infinite array in $\Sigma^{\omega \omega}$

 \[
 \begin{array}{cccccccc}
 b & b & b & b & b & \cdots \\
 p = & b & b & b & b & b & \cdots \\
 a & a & a & b & b & b & \cdots \\
 a & a & a & a & b & b & \cdots
 \end{array}
 \]

 In P, the entries in the $(i, j)^{th}$ positions $1 \leq i \leq 3$, $1 \leq j \leq 3$ are a whereas in other places the entries are b. P is generated by the following AGST of AGST\textsubscript{REG}. $G = (\Sigma, B, C, R, T_c, T_R)$ where $B = \begin{bmatrix} a & a & a \\ a & a \end{bmatrix}$

 \[
 R = \{(b)^n / n \geq 3\}, C = \{(b)^n / n \geq 4\}
 \]

 $T_R = \{r^u / n \geq 3\}$, $T_c = \{r^u / n \geq 4\}$

 A sample derivation is shown below:

 \[
 \begin{array}{cccccccc}
 a & a & a & a & a & a & a & a \\
 a & a & a & a & a & a & a & a \\
 \Rightarrow r^u
 \end{array}
 \]

 Repeatedly applying row shuffle and column shuffle operations authors get the infinite array language.

 - **Theorem 2.** The AGST\textsubscript{REG} intersects (R:R)AG.

 - **Proof.** The L-token of all sizes of a fixed proportion is generated by (R : R)AG. In fact $G = (V, I, P, S)$ where $V = V_1 \cup V_2$, $V_1 = \{S\}$, $V_2 = \{A, B\}$, $I = \{a, b\}$ and $P= P_1 \cup P_2$ generates L-tokens of all sizes, the ratio beta author the two arrays of L is 1.

 Here $P_1 \rightarrow \{S \rightarrow (S A) B\}$, $R = \{(b)^n / n \geq 3\}$, $C = \{(b)^n / n \geq 4\}$ and $P_2 = \begin{bmatrix} a & a & a & a & a & a & a & a \\ a & a & a & a & a & a & a & a \\ \end{bmatrix}$

 A sample derivation is shown below.

 \[
 \begin{array}{cccccccc}
 a & a & a & b & b & b & b & b \\
 a & a & a & a & b & b & b & b \\
 \Rightarrow b & b & b & b & b & b & b & b \\
 \end{array}
 \]

 Repeatedly applying row and column shuffle operations authors get the infinite array language. This language is also generated by a AGST of AGST\textsubscript{REG}.

 Now authors have a result with respect to two $\omega \omega$-array languages L_1 and L_2 and a regular language T.

 - **Theorem 3.** Let $T \subseteq \{r, u\}^\omega \cup \{\ell, d\}^\omega$ be a set of trajectories. For all recognizable $\omega \omega$-array languages L_1 and L_2, the array language $L_1 \cap T \cap L_2$ is $\omega \omega$-recognizable.

 - **Proof.** Let T be a regular language. L_1, L_2 are two recognizable $\omega \omega$-array languages over the same alphabet Σ. Let $A_i = (\Sigma, Q, \delta_i, q_0, F_i)$ be a deterministic two direction Buchi online tessellation automaton such that $L(A_i) = L_i$ for $i=1, 2$. Also $A_T = (\{r, u, \ell, d\}, Q_T, \delta_T, q_{T0}, F_T)$ be a deterministic finite state automaton such that $L(A_T) = T$.

 Authors define a Buchi online tessellation automaton $A=(\Sigma, Q, \delta, Q_0, F)$ such that $L(A) = L_1 \cap T \cap L_2$. Formally A on an input $p \in \Sigma^{\omega \omega}$ simulates non deterministically A_1 or A_2 or from A_2 to A_1. Each change determines a transition in A_T as follows: a change from A_1 to A_2 is interpreted as u or d and a change from A_2 to A_1 is interpreted as r or ℓ respectively.

 The input p is accepted by A if and only if each of A_1, A_2, and A_T accepts L_1, L_2 and T respectively.

 Formally $Q_Q=Q_0 \cdot Q_1 \cdot Q_2 \cdot \{0, 1, 2\}$. Elements of Q are denoted as (q_{i1}, q_{i2}, q_i, k) where $q_i \in Q_1$, $q_i \in Q_2$ and $0 \leq k \leq 2$, $q_0 \in (q_0, q_1, q_0, 0)$ and the set of final states is $F = (Q_1 \cdot Q_2 \cdot Q_3 \cdot \{2\})$. The transition function δ is defined as follows: $\delta : Q \times Q \times \Sigma \rightarrow 2^Q$. The transition function is defined in such a way that it simulates non-deterministically in the first component, the automaton A_1 or on the second component the automaton A_2. The third component of a state is record an occurrence of a final state from F_1 if the value 1 is stored. The value 2 is stored if at some stage later a final state from F_2 does occur. The value 0 is stored in the third component whenever the first two components are not the final states. Now for $t = (ru)^w$ where $t \in T$, δ is defined as follows.

 \[
 \begin{align*}
 \delta((q_i, q_{i1}, q_i, q_{i2}, q_i, 0, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(q_i, r, q_i, 0)), (q_i, q_{i1}, q_i, q_{i2}, (q_i, q_i, a), 0)) \\
 \delta((q_i, q_{i1}, q_i, q_{i2}, q_i, 0, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(q_i, r, q_i, 1)), (q_i, q_{i1}, q_i, q_{i2}, q_i, a, 0)) \\
 \delta((q_i, q_{i1}, q_i, q_{i2}, a, 1, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(0, q_i, q_i, 1)), (q_i, q_{i1}, q_i, q_{i2}, (q_i, q_i, a), 1)) \\
 \delta((q_i, q_{i1}, q_i, q_{i2}, a, 1, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(0, q_i, q_i, 1)), (q_i, q_{i1}, q_i, q_{i2}, q_i, a, 1)) \\
 \delta((q_i, q_{i1}, q_i, q_{i2}, q_i, 0, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(0, q_i, q_i, 1)), (q_i, q_{i1}, q_i, q_{i2}, q_i, a, 2)) \\
 \delta((q_i, q_{i1}, q_i, q_{i2}, q_i, 0, a)) &= ((\delta_1(q_{i1}, q_{i2}, a), \delta_2(0, q_i, q_i, 1)), (q_i, q_{i1}, q_i, q_{i2}, q_i, a, 2)) \\
 \end{align*}
 \]
Similarly for \(t = (fd) \) authors can prove the above result.

\[L_1 \cup^{\omega} L_2 \text{ is \(\omega \)-recognizable.} \]

- **Example 3.**

<table>
<thead>
<tr>
<th>L_1</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_2</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

where \(L_1 = \{ a_{m} / n, m \geq 1 \} \). In \(P_{nm} \) the entries in the \((i, j)\)th positions \(1 \leq i \leq n, 1 \leq j \leq m \) are \(a \) and the remaining entries are \(b \). \(L_1 \) is recognizable [5] and \(L(A_1) = L_1 \) where \(A_1 = (\Sigma_1, Q_1, \delta_1, q_0, F_1) \) with \(Q_1 = \{ q_0, q_1, q_2 \} \) and \(F_1 = \{ q_1 \} \). The transition function \(\delta_1 : Q_1 \times Q_2 \times \Sigma \rightarrow 2^Q \) is defined as follows:

\[
\delta_1(q_2, a', a) = q_2^1 \quad (1)
\]

\[
\delta_2(q_2, q_3, a) = q_1 \quad (2)
\]

\[
\delta_3(q_1, q_2, a) = q_2 \quad (3)
\]

\[
\delta_4(q_3, q_4, a) = q_2 \quad (4)
\]

\[
\delta_5(q_0, q_1, q_2, b) = q_2 \quad (5)
\]

\[
\delta_6(q_2, q_1, q_2, b) = q_2^1 \quad (6)
\]

\[
\delta_7(q_2, q_2, q_1, b) = q_2^1 \quad (7)
\]

\[
\delta_8(q_2, q_2, q_1, b) = q_2^1 \quad (8)
\]

\[
\delta_9(q_2, q_2, q_1, b) = q_2^1 \quad (9)
\]

\[
\delta_{10}(q_2, q_2, q_1, b) = q_2 \quad (10)
\]

\[
\delta_{11}(q_2, q_2, q_1, b) = q_2 \quad (11)
\]

Consider another infinite array language \(L_2 \).

<table>
<thead>
<tr>
<th>L_2</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_3</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

where \(L_2 = \{ a_{n} / n \} \geq 1 \). In \(R_a \) the entries in the \((i, j)\)th positions \(j \geq 1, 1 \leq i \leq n \) are \(a \), other entries are \(b \). \(L_2 \) is recognizable in [5]. Since \(L_2 = L(A_2) \) where \(A_2 = (\Sigma_2, Q_2, \delta_2, q_0, F_2) \), \(\Sigma_2 = \{ a, b \} \), \(Q_2 = \{ q_0, q_1, q_2 \} \) and \(F_2 = \{ q_2 \} \). The transition function \(\delta_2 \) is given as follows:

\[
\delta_2(q_0, q_0, a) = q_2 \quad (12)
\]

\[
\delta_2(q_1, q_1, a) = q_2 \quad (13)
\]

\[
\delta_2(q_2, q_1, a) = q_2 \quad (14)
\]

\[
\delta_2(q_2, q_2, a) = q_2 \quad (15)
\]

\[
\delta_2(q_2, q_2, b) = q_2 \quad (16)
\]

\[
\delta_2(q_2, q_2, b) = q_2 \quad (17)
\]

\[
\delta_2(q_2, q_2, b) = q_2 \quad (18)
\]

\[
\delta_2(q_2, q_2, b) = q_2 \quad (19)
\]

\[
\delta_2(q_2, q_2, b) = q_2 \quad (20)
\]

Let \(T = T_c = \{ (ru)^n \} \) be the trajectory. Clearly \(L(A_1) = T \) where \(A_1 = (T, Q, \delta, q_0, F_1) \) is a finite deterministic automaton such that \(T = \{ q_0, q_1, q_2 \} \) and \(F_1 = \{ q_1 \} \). The transition function \(\delta_1 \) is defined as

\[
\delta_{1}(q_{0}, r) = q_{1}, \quad \delta_{1}(q_{1}, u) = q_{0}, \quad \delta_{1}(q_{1}, r) = q_{1}, \quad \delta_{1}(q_{2}, b) = q_{1}
\]

Now

\[
L(A) = L(A_1) = L(A_2) = \prod_{\omega} \omega \quad \text{and}
\]

\[
\delta : Q \times Q \times \Sigma \rightarrow 2^Q
\]

Clearly \(L(A_1) = L(A_2) = L(A) \) where \(A = (\Sigma, Q, \delta, q_0, F) \) with \(Q = Q_1 \times Q_2 \times Q_3 \), \(\Sigma = \{ q_0, q_1, q_2 \} \), \(F = F_1 \times F_2 \times F_3 \) and

\[
\delta : Q \times Q \times \Sigma \rightarrow 2^Q
\]

The transition function \(\delta \) is given as follows:

\[
\delta(q_0, q_0, q_1, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_1, q_1, q_1, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_2, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_1, q_1, q_2, q_1, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_1, a) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_2, b) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_2, b) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_2, b) = (q_1, q_2, q_1)
\]

\[
\delta(q_2, q_2, q_1, q_2, b) = (q_1, q_2, q_1)
\]
\[\delta((q_1^2, q_1^3, q_2^0), (q_1^0, q_2^0, q_1^2), a) = ((q_1^2, q_2^0, q_1^3), (q_1^0, q_2^0, q_1^2)) \]

\[\delta((q_1^2, q_1^3, q_2^0), (q_1^0, q_2^0, q_1^2), b) = ((q_1^2, q_2^0, q_1^3), (q_1^0, q_2^0, q_1^2)) \]

\[\delta((q_1^2, q_1^3, q_2^0), (q_1^0, q_2^0, q_1^2), b) = ((q_1^2, q_2^0, q_1^3), (q_1^0, q_2^0, q_1^2)) \]

\[\delta((q_1^2, q_1^3, q_2^0), (q_1^0, q_2^0, q_1^2), a) = ((q_1^2, q_2^0, q_1^3), (q_1^0, q_2^0, q_1^2)) \]

Theorem 4. Let \(T \subseteq \{ a, b \}^* \) be a set of \(\omega \)-trajectories. If \(T \) is a context free \(\omega \)-language and \(L_1, L_2 \) are all Regular Languages (RL), then \(L_1 \|_{\omega} L_2 \) is a context free \(\omega \)-language.

Authors construct a pushdown automaton \(A=(\Sigma, \Gamma_1, \Gamma_2, Q, \delta, \delta_1, S, F, F', z_0, \$) \) such that \(L(A)=L_1 \|_{\omega} L_2 \), where \(Q \) is the set of states \(Q=Q_1 \cup Q_2 \cup ... \). \(Q_1 \) is the set of states, \(\Gamma_1 \) is the stack alphabet, \(q_0^0 \in Q_1 \) is the initial state, \(z_0^T \in \Gamma_1 \) is the initial stack symbol, \(\Gamma_1 \subseteq Q_1 \) is the set of states and \(\delta_1 \) is the transition mapping defined as \(\delta_1 : Q_1 \times ((\{ a, b \}^*) \cup \{ \delta \} \times \{ \} \) \times \{ a, b \} \rightarrow 2^{\delta_1, \delta_1} \).

Similarly the transition function for \(T \) is \(\delta_1 : Q \times \{ a, b \} \rightarrow 2^{\delta_1, \delta_1} \) defined as follows.

\[\delta_1(q_1^0, q_2^0, a) = q_1^0 \]

Where \(q_1^i \in Q_1, q_2^i \in Q_2, q_T \in Q_T, \alpha_i \in \{ r, t \}, \alpha_2 \in \{ u, d \}, a \in \Sigma \cup \{ \lambda \}, \chi_1, \chi_2 \in \Gamma_1^*, \delta_1 \) is the mapping of \(Q_1 \times \Gamma_1 \). \(Q_T \) is the finite set of \(\omega \)-trajectories be a context free language. Clearly \(L_1 \|_{\omega} L_2 \) is a context free language. □

Example 4. Consider the two recognizable infinite array languages \(L_1 \) and \(L_2 \) as in Example 3. The transition function for \(L_1 \) is \(\delta_1 : Q_1 \times \{ a, b \} \rightarrow 2^{\delta_1, \delta_1} \) defined as follows.
\[\delta_2(q_{21}^T, q_{21}^T, b) = q_{21}^T\]
\[\delta_2(q_{21}^T, q_{21}^T, b) = q_{21}^T\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]
\[\delta(q_{11}^T, q_{11}^T, a, z_o) = \{\delta(q_{11}^T, q_{11}^T, a, z_o)\}\]

3. Applications

Shuffle on trajectories provides a useful tool to study the problem of parallelization of languages. Shuffle on trajectories offers a suitable theoretical framework to investigate this problem. Also the problem can be investigated with the turing complexity classes (time and space). Finding good parallelizations of problems can produce significant improvements with respect to the time used by a (one processor) computer to solve the problem. In this case the problem can be solved faster on a parallel computer.

Other aspects from the theory of concurrency and parallel computation such as priorities, the existence of critical sections, communication, the use of re-entrant routines are studied using semantic constraints on the shuffle operation. Of the special interest is to extend these operations for more complex objects such as graphs, networks or different types of automata.

4. Future Work

Shuffle on trajectories offers a suitable theoretical framework to investigate the problem of parallelization of languages. The Examples 3 and 4 deal with regular and context free languages respectively. For instance one can consider other intermediate classes of languages locally testable languages, linear languages, context sensitive languages, matrix languages, etc. Also the authors will study the literal shuffle on infinite arrays in future and fairness of shuffle on infinite trajectories in future.

5. Conclusions

Shuffle on infinite array languages provides a useful tool for the study of parallel computation and the theory of concurrency. The use of shuffle operation in the theory of concurrency and parallel composition is well known. This operation is used to yield formal languages. The shuffle on finite and infinite words have been investigated extensively but the study of shuffle operation on infinite arrays is in the initial stage. So in this paper the authors have made a
attempt to study in depth the use of shuffle operation in different languages of infinite arrays to provide new classes of language of arrays and images. Authors have defined an array grammar with shuffle on trajectories over infinite arrays and obtained interesting results. Based on the studies [7, 11] authors have made an attempt to examine the effect of shuffle operation on \(\omega \)-recognizable languages and extended the shuffle operation to \(\omega \)-array languages.

References

