
54 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Towards Automated Testing of Multi-Agent

Systems Using Prometheus Design Models

Shafiq Ur Rehman1, Aamer Nadeem1, and Muddassar Sindhu2
1Center for Software Dependability, Capital University of Science and Technology, Pakistan

2Department of Computer Science, Quaid i Azam University, Pakistan

Abstract: Multi-Agent Systems (MAS) are used for a wide range of applications. Goals and plans are the key premise to

achieve MAS targets. Correct and proper execution and coverage of plans and achievement of goals ensures confidence in

MAS. Proper identification of all possible faults in MAS working plays its role towards gaining such confidence. In this paper,

we devise a model based approach which ensures goals and plans coverage. A Fault model has been defined covering faults in

MAS related to goal and plan execution and interactions. We have created a test model using Prometheus design artifacts, i.e.,

Goal overview diagram, Scenario overview, Agent and Capability overview diagrams. New coverage criteria have been

defined for fault identification. Test Paths have been identified from test model. Test cases have been generated from test

paths. Our technique is then evaluated on actual implementation of MAS in JACK Intelligent Agents is a framework in Java for

multi-agent system development (JACK) by executing more than 100 different test cases. Code has been instrumented for

coverage analysis and faults have been injected in MAS. This approach successfully finds the injected faults by applying test

cases for coverage criteria paths on MAS execution. ‘Goal plan coverage’ criterion has been more effective with respect to

fault detection while scenario, capability and agent coverage criteria have relatively less scope in fault identification.

Keywords: Goal sub goals coverage, MAS faults identification, model based goal plan coverage.

Received April 18, 2016; accepted September 19, 2016

1. Introduction

Multi Agent Systems (MAS) have been adopted widely

in complex systems due to agent’s unique features like

reactivity, pro-activity, autonomy and social ability [7].

Autonomous agents are programmed to perform

automatically and all of their activities converge

towards achieving their defined goals by any possible

way [7, 21]. Agents interact with each other to achieve

their designed goals. All these features of agents and

MAS pose challenges that must be handled and tested

before MAS goes into operation.

Testing is aimed at finding inconsistencies between

the system’s expected output and actual output [4].

Testing can be performed at unit, integration and

system level; we are targeting system level testing of

MAS. Model Based Testing (MBT) uses system models

to generate tests for System Under Test (SUT). Design

artifacts exhibit rich information of a multi agent

system and its internal working. Testing based on

extracting test requirements from system models is

useful for revealing faults in multi-agent systems

testing.

There are many MAS development methodologies

and one of the detailed methodologies is Prometheus [7,

8] that is extensively in use since more than a decade

[2]. Prometheus methodology has three phases: system

specification, architectural design and detailed design.

System specification phase identifies environment,

external actors, goals and scenarios with details of

actions and percepts involved. Architectural design

phase defines agent and interaction protocol involved in

system overview. Detailed design phase has plans and

capabilities for goals defined in system specification

phase [7]. Prometheus has tool support available called

Prometheus Design Tool (PDT) which supports all

artifacts and can generate skeleton code from detailed

design [17]. Based on the richness of Prometheus

methodology, we have used Prometheus design

artifacts for a test model generation. PDT generates

skeleton code for JACK Intelligent Agents is a

framework in Java for multi-agent system development

(JACK) [5] development environment [18].

Correct and ordered execution and achievement of

goals and plans in MAS can assure its correctness. Goal

deliberation and goals completeness work has been

done by Thangarajah et al. [11, 12, 13] and Duff et al.

[1], but goal and plan coverage and their coverage

criteria definition work seems missing. Although some

work has been done in [15] covering only single

scenario, no system level testing has been performed.

Our system level testing approach using MBT will

utilize most of the design artifacts in MAS testing. Each

design diagram of MAS, i.e., interaction protocol, goal,

scenario, process and agent overview etc, contains

features that must be covered for reliability. We assume

that design models are complete and specified

requirements are properly propagated from

specification to details design. As design faults are

detected and handled in other researches. Based on the

importance of goals and plans correct execution for

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 55

MAS reliability, we have two research questions which

we cover in this paper.

1. What Types of faults can occur in MAS?

This research question relates to the different types of

faults that can occur in MAS operations and how

different types of artifact interactions can cause faults in

MAS?

2. How MBT is effective in MAS fault detection? How

models can be used to ensure goal and plans

coverage?

This involves answering the effectiveness of design

model in MAS testing? How model coverage ensures

reliability in MAS? How goals and sub goals and plan

coverage is vital to MAS testing? How faults are

detected in MAS when goals and plans coverage is

performed?

A fault model has been devised by considering

possible occurrence of faults in MAS. Plans are used to

contain the steps to fulfill goals completeness. Goals

are defined and plans are triggered to achieve desired

goals. Goals and plans coverage with respect to their

execution and order is critical for testing adequacy. In

this case adequate testing can claim reliability of MAS.

The test model has ability to cover possible aspects of

model coverage. Coverage criteria can ensures testing

adequacy. Coverage criteria have been defined for test

model upon which test paths have been generated for

each coverage criterion. JACK development

environment [20] is used for MAS implementation,

which is then instrumented to evaluate our testing

framework. Test case execution and evaluation shows

different types faults identification.

Section 2 presents literature work that is done

regarding MAS goal and plans testing with reference to

finding faults. Section 3 presents our fault model for

multi-agent systems. Section 4 presents our testing

framework and process for testing. Section 5 presents

results and discussion for faults detected and problems.

Finally section 6 concludes the work presented in this

paper and references are shown in last section.

2. Literature Review

In this section, existing research and development

which have been done so far regarding goal, sub-goals

and plan based faults identification in MAS are

presented and limitations in literature are discussed.

Thangarajah et al. [11, 12] present an approach to

quantify goal completeness and level of completeness

of goal in Belief-Desire-Intention (BDI) [12] multi-

agent system. Completeness has been measured by

considering resources consumed by a goal and measure

the effect of goal in terms of desired outcomes

achieved. Goals and plans coverage criteria have not

been defined neither relationship of goal-plan tree with

respect to scenarios and protocol diagram. Faults

identification has not covered in [11, 12]. Padgham et

al. [6] present model based test oracle creation for unit

testing of agents. Fault model has been created to cover

individual units. Event plan tree has been developed but

goals and their links to plans and sub-goals are missing.

System specification level design diagrams are not used

and adequate coverage criteria for coverage of

maximum functionality of MAS using Prometheus

design artifacts are also missing. Goal and goal-plan

related faults identification is also missing.

 Model driven architecture for building the multi-

agent systems has been presented in [3] but still no

verification is performed.

Thangarajah et al. [13] present a technique to

measure plans coverage by using numeric measures and

their overlap for agents. Coverage is measured by

number of models or area a plan is applicable. No

implementation and validation have been done neither

any fault model nor coverage criteria are defined for

goals and plans.

Positive and negative goal interactions have been

discussed in [10, 14, 18]. Negative interactions are

basically conflicts between goals. They have defined

resource requirements of a goal by considering all of its

plans. Focus of their work is on defining goal plan tree

annotated with resources both at start and run time [14].

For goal plan tree modeling, five tuples prolog function

node is used in [10]. Faults that may occur if a certain

interaction or coverage not covered are not discussed.

No coverage metrics has been defined neither design

diagrams used for tree construction are elaborated.

Thangarajah et al. [15] use scenarios of Prometheus

methodology and added a structure in scenario, e.g.,

added sequence, test descriptor and traceability link. A

limitation is that only a single scenario is tested in

isolation, no system level traceability is performed.

MAS’ execution and faults are not considered in this

approach. Zhang et al. [22] presented an approach for

automated testing for units in MAS. Orders of events,

plans were defined and test cases were executed with

proper test data [22]. Only unit testing is performed, no

faults identification model and coverage metrics for

goals and plans were discussed.

Partially complete and partial achievement goals

have been presented by [9, 23]. No detail has been

provided to show whether a goal will be satisfied or not

instead only progress is considered with reference to

goal achievement. Action and impact of goal

modification have not been analyzed. Thangarajah et al.

[16] defined several criteria for agent consideration or

discussion, e.g., time varying utilization, deadline,

resource requirement, dependencies, communication

with other goals etc., [16]. Main consideration in their

work is goal deliberation but no faults that may occur in

MAS are identified and detected. How AND, OR

constrains between goals and plans are covered are not

discussed.

The existing techniques on model based testing of

MAS considers only goals completeness or plan

56 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

coverage but there remains some faults that occurs in

system level interaction between artifacts, i.e., goal

triggers plan and plan generate sub-goals and so on.

Design diagrams like goal, system overview, scenario

and process diagrams contain the information required

and utilized in system level operations of MAS. No

such technique exists which uses all three Prometheus

phases design artifacts in testing. No fault model is

presented if certain goals are not achieved or plans for

the goal are not triggered. Current work in the literature

does not target faults description, identification and

complete coverage of goals and plans.

3. Fault Model

MAS have many features, if a feature that should be

present is not exhibited or not specified feature is

present then there is fault in MAS. A fault can also be

an undesired event or action in MAS, e.g., a triggering

event may not have been triggered or an action may not

have been posted or system reacts undesirably upon

receiving a triggering event etc., Goal’s and plan’s

correct and ordered execution is necessary for MAS

reliability. In Prometheus Methodology, goals have

been defined in goal overview diagram at system

analysis phase and are assigned relevant plans in the

detailed designed phase. Some goals have more than

one applicable plans, all of which must be executed in

order for a goal to be considered as achieved, while

some goals are achieved if any of applicable plans is

executed. Same is the case with plans and their sub-

goals. Such type of relationships are handled by ‘AND’

and ‘OR’ relationships between goals.

Different types of faults can occur in MAS some of

them are discussed by Padgham et al. [6] like incorrect

belief, incorrect context etc, but there are certain

aspects of MAS that are still missing and can cause

MAS to behave unexpectedly. In our fault model we

have also captured this relationship along with other

possible faults that may occur when a MAS is running.

Following are our defined fault types and their

description covering maximum faults occurrence in

MAS:

 Inaccurate goal achievement: if more than one plans

are required to execute in order to fulfill a certain

goal then missing any of the plan can cause

inaccurate goal achievement fault in MAS. This

could occur when a certain goal has an AND

relationship with all of its plans.

 Plan Failure: certain plans have more than one sub-

goals to achieve; sub-goals have an AND

relationship with the plan. Missing any of such sub-

goals can cause plan not to produce desired output.

 Internal Agent fault: such faults can occur if a

certain agent or its capability has not been executed.

Non execution of a certain capability cannot reveal

its agent’s operations and contribution to meet

system goals.

 Missing functionality: such type of faults can occur if

a goal has more than one alternative plans. These

plans have an OR relationship with the goal; so non-

coverage or non-execution of all of OR plan

branched/arcs can cause missing functionality faults.

 Scenario Fault: Scenario contains sequence of steps

to perform in MAS in the form of goal, action and

percepts. If a scenario is not covered properly then

there could occur a scenario fault in MAS.

 Deliberate Fault: desired output of the MAS can be

obtained only by correct execution order of the plans

and sub-goals. If an agent triggers the incorrect plan

which should not be executed as required then

deliberate faults can occur. Correct communication

within and between agents should be required. Such

types of faults could also occur due to wrong

implementation with respect to design.

4. Testing Framework and Process

This section describes our testing framework and

testing process of our approach for system level testing

of MAS. Our target is to ensure thorough coverage of

plans and goal for MAS. Figure 1 shows overall testing

process in which maximum utilization of Prometheus

design artifacts in test model construction is done. For

each scenario there exists a goal overview diagram.

Each goal has associated plan(s) or capability in

detailed design phase called process diagrams. The test

model is constructed by considering all scenarios, goal

diagrams and process diagrams. Fault occurrence can

cause the MAS to deliver an unexpected outcome.

Identify coverage criteria and then apply on test model

for test paths generation. Test paths are generated

automatically against each coverage criteria. Test paths

will lead to the generation of test cases and semi-

automatic generation of test data. Expected output is

calculated manually for test results evaluation. Actual

executable code of MAS is managed in JACK

development environment. We have instrumented MAS

code to get execution traces when test cases are

executed. Our testing process identifies faults that occur

because of wrong or ambiguous implementation of

MAS design into code.

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 57

Figure 1. Overview of testing process for goal and plans coverage.

Figure 2 shows testing framework having five main

processes, e.g., goal-plan graph generator, test paths

generator, test case generator, test case executor and

test result evaluation. We have used design artifacts of

Prometheus methodology as it is a rich methodology

for MAS designing. Sub-sequent sections elaborate

each process, i.e., test model generation, coverage

criteria definition, test paths generation, test case

generation, execution and evaluation for MAS testing

with reference to goals and plans. Test paths are used

for generation of test cases, elaborated in subsequent

sections. Test cases are generated for MAS

implementation and they are executed to reveal injected

faults. When a test case has correct output as expected

then it is considered as pass. Failed test cases have

incorrect output. Failed test cases are further discussed

with the reason why path is deviated that caused wrong

output. Test result evaluation is performed manually.

Figure 2. Testing framework for goals and plans coverage.

4.1. Test Model Generation

Goals and plans are the factors used to measure the

correctness of MAS working. Every MAS has goal

diagram for each scenario. Scenario contains goal,

actions and percepts that occurs specific to scenario.

We have taken the case study of Multi Currency

Banking System described in [5]. It has three agents,

e.g., Bank Account agent, Currency Exchange agent,

and Communicator agent [5] which work together to

create account, debit account, credit account, debit and

credit account with same and different currency and

currency conversion. We have design artifacts of MAS

which will be used to generate test model. Notations

used in all design artifacts are standard notations used

in Prometheus Design Tool (PDT) [17]. Figure 3

presents scenario and goal overview diagram of our

case study. MAS have three main scenarios which

consist of a sequence of goals, actions and percept to

perform. As depicted in Figure 3 the operate account

scenario has two sub scenarios to handle, e.g., credit

account scenario and debit account scenario. Credit

account and debit account scenario has an OR

constraint with three sub-goals, any of its sub goal’s

successful execution can lead to positive contribution to

its main goal achievement, e.g., debit or credit account.

Currency exchange goal has an AND constraint with its

sub goals like set exchange rate goal and perform

exchange goal. Perform exchange goal has a need to

achieve compute rate. Compute rate has an OR

constraint with Identify rate and Two Step Exchange

goal. Two Step Exchange goal is triggered if two step

currency conversions are required. Goals and sub goals

have their plans in detailed design. Plans are defined in

process diagrams and each plan has goals to satisfy.

Every plan has exactly one triggering goal and multiple

sub-goals (steps) in the plan.

Figure 3. Scenario and goal overview diagram of MAS.

Goal-Plan

Graph

Generator

Test Paths

Test Cases

Implementation

Test Output

Test Path

Generator

Test Case

Generator
Test Case

Executor

Goal Overview

Diagram

Agent Overview
Diagram

Protocol Diagram

Scenario Overview

Diagram

Goal-Plan

Graph

Coverage Criteria
(Goal-Plan Graph)

Capability
Overview Diagram

Expected
Output

Test Result

Evaluation

Pass/Fail

Start

For Each Scenario, goal overview and Process diagram in MAS,

Construct Test Model for goals/plans using detail design

Identify Coverage Criteria and Test Paths for test model

Generate Test Cases, Identify test data semi-automatically
and identify expected output

Instrument SUT and execute Test Cases

End

Evaluate Test Results-Identify Faults in MAS

58 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Satisfaction of all sub-goals in a plan means the plan

is satisfied, and therefore its triggering (sub) goal is

achieved. Sub-goals are specified in a plan while

designing the MAS. The steps that need to be executed

as part of a plan are determined and included as sub-

goals.

Figure 4. BankAccount agent overview diagram of MAS.

The BankAccount agent overview diagram is shown

in Figure 4; it has two capabilities, i.e., Credit Account

Cap and Debit Account Cap and three plans, i.e., Create

AccountP, Account Info P, Account Operation P which

have some goals to achieve. Percepts and messages are

triggering events for the plans and capabilities as shown

in diagram. Arrow shows the flow of information from

one entity to other. Each capability is further elaborated

in capability overview diagram as depicted in Figure 5.

Each capability has three plans for alternative three

goals as depicted in Goal Overview diagram.

In case of exchange request Communicator agent get

the message of Transport Request; which generates

Exchange Request message for Currency Exchange

agent which execute its relevant plans and capability

i.e., Perform Exchange P, Set Exchange Rate Plan and

one capability Compute Rate.

Figure 5. Debit account cap and credit Account cap capability

overview diagram of MAS.

Currency Exchange agent have two plans i.e.,

Perform Exchange P, Set Exchnage Rate Plan and one

capability Compute Rate. While considering the

protocol diagram loop can be on creation of accounts

and debit or credit the account more than one time.

4.1.1. GOAL-PLAN GRAPH

We use the details contained in design artifacts for our

case study discussed in section 4.1 and generate a Goal-

Plan Graph (GPG) i.e., Test Model. We have used

Prometheus design artifacts, e.g., scenario overview

diagram, goal overview diagram, protocol diagram

(only for loops), agent and capability overview

diagrams. These design artifacts contain rich

information from goals identification to assignment of

plans for that goal. Protocol diagram is used as

interaction between agents and also contains different

loops in it. We have used only loops information from

protocol diagram and added loops in our test model.

Algorithm 1 is designed that takes these design artifacts

as input, extract and process goals and plans

information, and generates a test model which is the

Goal-Plan Graph. It extract sub-goals from the body of

plan using process diagrams, i.e., agent and capability

diagrams; and add sub-goal to Goal-Plan Graph as they

are listed in goal overview diagram. We build GPG for

each scenario and link different GPG of the system by

looking their working in agent overview diagram.

Algorithm 1 generates a list of all goal and plan from

design diagrams. Applicable plans list contains

applicable plans for each goal along with related

scenario, agent and capability. Sub-goals list is

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 59

prepared for each plan containing its sub-goals. Step by

step GPG will be generated by the listed steps in

Algorithm 1. GPG in Figure 6 consists of nodes and

edges where nodes are of two type i.e., goal node and

plan node. Each node has relevant scenario, agent and

capability associated which are also annotated with the

node.

Algorithm 1: Goal-Plan graph generation Algorithm Using

Prometheus Design Artifact

Input: Goal-Overview Diagram (GD), Scenario Diagram (SD),

Protocol Diagram (PD), Agent Diagram (AD) and Capability

Overview Diagram (CD).

Output: Goal-Plan Graph (GPG) with plans and goals as

nodes.

Declare: GPG=empty, SG is the sub-goal, AS=Applicable

Scenario, AA=Applicable Agent, AC=Applicable Capability,

AP=Applicable Plan, Each capability will be treated as a plan

as well.

Step 1: Extract goals list from GD: GL GD.goals

Step 2: Extract plans from AD and CD: PL AD.plans

CD.plans

Step 3: For each Goal and Plan

Step 4: Add Plan P(G) List of Applicable Plans (G, AP)

Step 5: Add SG (P) List of sub-goals for Plans (P, SG).

Step 6: Add Scenario S(G)/S(P) Scenario for Goal/Plan

(G/P,AS)

Step 7: Add Agent A(G)/A(P) Agent for Goal/Plan (G/P,

AA)

Step 8: Add Capability C(G)/C(P) Capability containing

Goal/Plan (G/P, AC)

Step 9: For each Goal-Diagram against each Scenario

Step 10: Set Root (GPG) GD.root

Step 11: Set Current Goal (CG) Root

Step 12: Add S (G), A (G) and/or C(G)

Step 13: Add Children (CG) AP

Step 14: Add Constraint(G-Node) AND or OR

Step 15: Add S(P), A(P) and/or C(P)

Step 16: For Each Plan (P, CG)

Step 17: Add Children (P) (SG, P)

Step 18: Add Constraint(P-Node) AND or OR

Step 19: Set CG SG

Step 20: While CG ≠ {}

Step 21: Repeat step 11-18

Step 22: End While

Step 23: If Goal-Diagrams > 1 and n = Number of Scenario

Step 24: Add link GPG (Scenario-I) to GPG (Scenario-n)

Using Detail Design

Step 25: Extract Loops from PD

Step 26: Add Loop link goal Plan

Step 27: Return GPG

GPG in Figure 6 shows the complete flow of system

from high level goal to detail sub-goals and plans

execution. Each goal can have more than one

applicable plans where all applicable plans can have

‘AND’ or ‘OR’ relationships annotated with arcs.

Every plan has exactly one triggering goal and multiple

sub-goals (steps) in the plan. These sub-goals can also

have ‘AND’ or ‘OR’ relationships. Loop edges are

always starts from an arrow from plan to goal

somewhere earlier. Each node contains metadata which

includes scenario, agent and/or capability. Every plan

and goal belongs to some scenario and performed by

some agent within any capability belonging. Such

detail of node type is also included in GPG nodes as

metadata of a node.

Figure 6. Goal-Plan graph (Test Model) for multi currency MAS.

4.2. Coverage Criteria

It is possible that some parts of system under test

remains untested that can cause problem in MAS

operation. Maximum possible coverage is essential.

Once Goal-Plan Graph (test model) is generated for

goals, sub-goals and plans; there is a need to measure

the coverage of executed/traversed nodes in the test

model. MAS posses different characteristics so new

coverage criteria have been defined that are different

from the literature. To ensure maximum coverage of all

goals and plans in MAS we have defined following

coverage criteria for Goal-Plan Graph.

1. All goals Coverage: A set of Test Paths (TP) is said

to satisfy all goals coverage criterion for Goal-Plan

Graph G if each goal node g of graph G is included

in at least one path P є TP.

Test path(s) in which all goals from goal-diagram have

been covered at least once. Only all AND condition

branches will be covered. As shown in Figure 7, if OR

is the constraint then only one path coverage is enough

which traverse only all goals.

60 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

Figure 7. All Goal Coverage (OR constraint).

2. Scenario Coverage: A set of Test Paths (TP) is said

to satisfy Scenario coverage criterion for Goal-Plan

Graph G if each Scenario S of graph G (nodes

metadata) is included in at least one path P є TP.

Test path(s) in which every scenario have been covered

at least once.

3. Agent Coverage: A set of Test Paths (TP) is said to

satisfy agent coverage criterion for Goal-Plan Graph

G if each agent A of graph G (nodes metadata) is

included in at least one path P є TP.

Test path(s) in which every agent has been traversed at

least once.

4. Capability Coverage: A set of Test Paths (TP) is

said to satisfy Capability coverage criterion for

Goal-Plan Graph G if each Capability C of graph G

(nodes metadata) is included in at least one path P є

TP.

Test path(s) in which every capability(s) have been

covered at least once.

5. Plan Coverage: A set of Test Paths (TP) is said to

satisfy Plan coverage criterion for Goal-Plan Graph

G if each Plan node p of graph G is included in at

least one path P є TP.

Test path(s) in which every Plan has been covered at

least once. Only all AND condition branches will be

covered. As shown in Figure 8, if OR is the constraint

then only one path coverage is enough which traverses

only all plans.

Figure 8. Plan Coverage model (OR constraint).

6. Goal Plan Coverage: A set of Test Paths (TP) is

said to satisfy Goal Plan coverage criterion for

Goal-Plan Graph G if each Arc of graph G is

included in at least one path P є TP.

Test path(s) in which every goal and its all applicable

Plans (Arcs) must be covered at least once. It will

cover OR conditions branches as well.

7. Loop Coverage: A set of Test Paths (TP) is said to

satisfy Loop coverage criterion for a protocol graph

G if it traverses each loop 0, 1 or more than one time

in graph G and loop path(s) included in at least one

test path P є TP.

A set of test paths which by-passes every loop and a set

of test paths which traverse each loop exactly once and

a set of test paths which traverse each loop more than

once.

Loop coverage is necessary to test functionalities in

which a goal/plan is called more than once and in

literature prime path and loop coverage 0, 1 or more

than once is suggested. In MAS loop coverage 0 time, 1

time and more than one i.e., 2 is useful to check

stability in multiple calls to certain goal.

4.3. Test Paths Generation

Test paths are generated from test model. We have

automated test paths generation process with the help of

a tool that takes a test model as input, apply different

coverage criteria and generate test path against each

coverage criteria. Based on our GPG test model in

Figure 6, we have categorized goals and plans as basic

nodes types. Based on coverage criteria; agent, scenario

and capability coverage are considered as meta-data

coverage as depicted in GPG. Algorithm 2 is used for

automated test paths generation for each coverage

criteria. Figure 9 shows the basic architecture of

automatic test paths generation by following Algorithm

2. For loop coverage we created a list of nodes

containing the loop edges and check its one, two or

more than two occurrences.

Algorithm 2: Test Path generation Algorithm Using Test

Model (Goal-Plan Graph)

Input: Goal-Plan Graph and Coverage Criteria

Output: Test Path for each Coverage Criteria

Let GPG be the Goal-Plan Graph with node type i.e. goal or

plan,

meta-data (Capability, Agent, Scenario) and AND or OR

constraints with edges.

Step 1: Insert metadata (Nodes) in data array

Step 2: Insert Nodes types (goal/Plan) in Array

Step 3: Make list of AND/OR edges

Step 4: If criteria = All Goals coverage/Plans coverage

Step 5: Call findpathsbytype ()

Step 6: End If

Step 7: If criteria = Capability/Agent/Scenario coverage

Step 8: Call findpathsbymetadata ()

Step 9: End If

Step 10: If criteria = Goal Plan coverage

Step 11: Call findall ()

Step 12: End If

Step 13: If criteria = Loop coverage

Step 14: Call findloop ()

Step 15: End If

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 61

Figure 9. Automatic test path generation architecture using GPG.

Figure 10. Test Paths generation tool GUI.

Goal-Plan Graph structure used for automatic test

paths generation is presented in Table 1. For

understanding purpose only one node structure has been

presented here. For each coverage criteria test paths are

generated. Type coverage method covers all goals

coverage, all plans coverage and goal-plan coverage

criteria. Metadata coverage method covers scenario,

agent and action coverage criteria. Generated test paths

have relevant coverage criteria node name in it. e.g.,

1(goal)23 (goal)610(goal)16, one of the

paths from all goals coverage criteria. The GUI of Test

path generation tool is shown in Figure 10.

Table 1. Structures of the goal-plan graphs used paths generation.

Node Name
Node

Metadata

Node type

(G/P)

Node

No

AND/OR

constraint

debitaccountplan [s3,c2,a1] Plan 7 OR, (7,8), (7,9)

Example single node structure: debitaccountplan;[s3,c2,a1];plan;7

4.4. Test Case Generation and Execution

Test case generation consists of two parts. First one is

to identify variables used in test cases and second part

is assigning test data to test case variables. Variables

identification step is manual. Test cases are generated

from test paths. Each test path consists of nodes and

edges. Each node has some related information that will

be used to generate a test case.

Each Node  Info (properties) Extract variables

associated at each nodeIdentify functions associated

to the variablesAssign test data semi-automatically.

We construct a Node Description Table (NDT)

manually for each path and use the variables or

properties associated at each node for test case

generation. Test cases then consist of value

combinations of variables that make a certain path to

follow. For example the test path: “1(goal)  2 (Plan) 

4(goal)  7(Plan)  8(goal)  10(Plan) 15(goal)21(Plan)”
has NDT presented in Table 2.

Table 2. Node description table for test paths nodes.

Node No. Node Type Associated Variables/functions

1
Goal

(Obtain Information)

String = Account Title

Function = Inquire

2
Plan

(ObtainInfoP)

Triggering event = Yes

String = Title

4
Goal

(Account Operation)
String = Title

Double = amount

7
Plan

(Account opP)

Event = yes

String = Title

Double = amount
String = Currency

8
Goal

(Credit account)
Function = credit account

10
Plan

(Credit AccountP)

String = Title

Double = amount

String = Currency

Figure 11 shows test case generation process for

MAS under test, i.e., banking system. A MAS has

many functions that are called or triggered. The number

of test cases to execute depends on generated value

combination for each variable, i.e., (Select number from

array of values) and the number of generated patterns

(number of test cases) for variables that make MAS to

execute.

Test data generation and test case execution is semi-

automatic. Test case execution process requires several

set up variable values involved in test cases. Once

values have been assigned then combination of

execution is hard coded into MAS implementation.

Randomly these values are called along with function

name automatically once we run the implementation.

Some details of the code have been shown at the end of

this section.

Figure 11. Test case generation process for MAS.

Start

Extract variables for each function in MAS

Assign random values ranges to functional variables
using any testing technique

Decide Number of execution of functions and

generate combinational patterns of variables

Generate combination of values based on

decided number of call

End

Main GUI Interface

Tree Model Coverage Criteria

Loop Coverage

Method

Type Coverage

Method

Metadata Coverage

Method

Print result

62 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

There are 8 plans for accounts operations handled by

Bank Account agent, one plan for Communicator agent

and 5 plans for Currency Exchange agent. Account

name, currency and amount are three variables

extracted and combinations of values are assigned for

test case generation. JACK code has been instrumented

for automatically assigning variable values for test case

generation and test cases are executed by providing the

total number test cases to execute. Patterns of variables

for test case executions are then automatically formed.

Instrumented code will generate output showing details

of executed or traversed plans in test case execution.

Only part of added code in JACK is shown below.

int length = ary.length,seq_num, looplen2 = 0;

seq_num = 0 + rand.nextInt(100);

// 100 test cases are generated

int[][]seq = new int[seq_num][];

callCommands(seq[i],communicator,nextName(),nextCurr(),

nextAmount());

Test case structure after extracting variables and

functions from NDT and assigning test data for our
MAS under test is as follows:

Test Case: createAccount (John,USD,100)|creditAccount (John,AUD,200)

|debitAccount (John,AUD,50) etc.

4.5. Test Result Evaluation

This section discusses about manual calculation of

expected output and test results evaluation. After

executing test cases, we have our test case results which

are used for test result evaluation. For example account

debit request is made with 50 dollar then expected

output shown that 50 dollars debited from given

account etc. Output of MAS is compared with the

expected output. If expected and actual output is same

then we declare the test case as a pass otherwise a fail.

A failed test case can be analyzed to trace the fault that

caused the wrong output. We identify which node has

caused fault in MAS. Faults are injected in MAS

implementation. Test case output will reveal faults after

executions of a test case’s set. Even a single test case

can identify an injected fault which is clearly compared

with those of expected results.

Different coverage criteria paths have different test

cases, while running these test cases reveals certain

faults identified earlier in Section 3. Detailed test result

evaluations with faults are presented in results and

discussion section.

5. Results and Discussion

In this section, we discuss faults detected in relation to

the fault model. For each fault type at least one fault is

injected in the MAS implementation. We achieve

effectiveness of our testing approach after finding

injected faults in MAS. These faults are detected by

applying different test cases that are generated from

different coverage criteria paths. Coverage criteria

ensure certain types of faults detection and

identification with a system [19].

Table 3. Injected faults in multi-currency banking MAS.

Fault ID Fault Type Injected Faults details

F-1 Plan failure
CreditAccountPlan not covered- Making its

context false

F-2
Inaccurate goal

achievement

Debit Account goal not triggered – event for

debit account not posted “#posted as” not

working

F-3
Scenario fault,

Internal agent fault

#posts event TransportRequest tev; not posted

- Agent functionality missed, currency

exchange scenario missed

F-4
Plan failure, Missing

functionality
Compute rate event handler made false -

Capability missed

F-5
Deliberate faults,

Internal agent fault

#reads data Account “accounts” not allowed –

database reading/writing not allowed -

Deliberate faults

F-6

Missing

functionality,

Deliberate Fault

Obtain Information event not triggered after

Node 6 etc - loop not executed

Table 3 provides the details of injected faults in

multi-currency banking MAS, e.g., making context

condition of plan to false, prevent plans not to trigger,

changing the code so optional goal of a plan is not

triggered, making certain scenario and capability not to

execute etc. We have applied more than 100 test cases

on implementation of multi-currency banking system

case study. These test cases were selected after multiple

executions of MAS. Test cases output is compared with

the expected output. Execution trace is used to analyze

failed test cases to identify which node created fault.

Table 4 shows detected faults by applying coverage

criteria and minimum required test cases to cover test

criterion. These minimum test cases are chosen after

multiple execution and their result with respect to faults

detected. It shows effectiveness coverage criteria in

identifying injected faults, different coverage criteria

reveals different faults in MAS. Test cases have been

applied on the instrumented code and it is found that by

applying our coverage criteria, which are defined in

section 4.2, uncovers different faults discussed in

section 3.

Figure 12 shows graphical representation of no of

test cases executed for each coverage criterion and

types of faults detected. At least 13 test cases are

required to cover ‘goal plan coverage’ criterion. Our

testing approach has been seen effective in identifying

faults of different types when it comes to goal and plan

coverage. Injected faults were successfully revealed by

applying coverage criteria. For each coverage criteria

we need certain test cases which assure its coverage.

Table 4. Detected faults by coverage criteria and minimum test
cases required.

S. No Coverage Criteria Test cases (TC ID) Faults Detected

1 All goals Coverage 5 Test cases F-2, F-6

2 Scenario Coverage 6 Test Cases F-3, F-6

3
Agent and capability

Coverage
6 Test Cases F-4, F-5

4 Plan Coverage 8 Test Cases F-1, F-4

5 Goal Plan Coverage 13 Test Cases
F-1, F-2, F-3, F-4, F-

5

6 Loop Coverage 8 Test Cases F-2, F-6

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 63

In Table 4 goal-plan coverage identifies five faults

by executing 13 test cases but F-6 is not detected by

goal-plan coverage criterion. Because fault-6 is relevant

to missing functionality or deliberate faults, only loop

coverage criterion identifies such types of faults in

MAS by executing test cases which test loop events in

system execution.

Figure 12. Chart with test cases and coverage criteria detecting types

of faults.

A test case is failed either due to a plan or a goal

which was not triggered thus not executing the relevant

path and producing a wrong output.

Test Path = 1(goal)2(Plan)4(goal)7(Plan) 9(goal)

11(Plan)12(goal)28(Plan).

Inject fault = Debit Account goal not triggered-event

for debit account not posted “#posted as” not working.

Test case: createAccount(John,USD,100) | debitAccount (John,USD,40)

Actual output: 1(goal)2(Plan)4(goal)7(Plan)

9(goal)11(Plan){Not triggered}

Nodes of the path are not covered in case a fault occurs

which restricts coverage/execution of certain goal and

plans. Currently we are testing all possible calls in a

single test case, therefore the numbers of test cases are

minimum.

6. Conclusions

In this paper, we have defined a fault model for testing

of MAS with respect to goals, plan and sub goals. We

have used Prometheus methodology due to its rich

artifacts and availability of its rich design tool i.e. PDT.

We have used design artifacts of all three phases so no

functionality is missed or remain uncovered.

This research paper uses scenario overview, goal

overview, protocol diagram and process diagrams to

generate test model for the SUT. An algorithm is

defined for Goal-Plan Graph generation. New coverage

criteria have been defined and automatic test paths

generation has been done for each coverage criteria.

JACK implementation of MAS has been instrumented

to semi-automatically execute test cases. Faults are

injected into MAS and test cases are executed to show

identified faults. More than 100 test cases have been

generated and executed on our case study for evaluation

purpose. All fault categories which have been identified

to find goal and plan related faults seems effective in

building trust in MAS. The defined coverage criteria

contribute to find possible root-cause up to node level

of a detected fault.

In future work, faults that could occur in case of

interaction between agents and environment will be

identified in fault model. Test case generation and

result evaluation process can be automated.

References

[1] Duff S., Thangarajah J., and Harland J.,

“Maintenance Goals in Intelligent Agents”

Computational Intelligence, vol. 30, no. 1, pp.

71-114, 2014.

[2] Dam K., Evaluating and Comparing Agent-

Oriented Software Engineering Methodologies,

Ph.D. Thesis, RMIT University, 2003.

[3] Elammari M. and Issa Z., “Using Model Driven

Architecture to Develop Multi-Agent Systems,”

The International Arab Journal of Information

Technology, vol. 10, no. 4, pp. 349-355, 2013.

[4] IEEE. Standard for Software Test

Documentation. IEEE STD 829, 1998. URL

http://standards.ieee.org/findstds/standard/829-

1998.html, Last Visited, 2016.

[5] Jack intelligent agents,

http://aosgrp.com/products/jack/, Last Visited,

2015.

[6] Padgham L., Zhang Z., Thangarajah J., and

Miller T., “Model-based Test Oracle Generation

for Automated Unit Testing of Agent Systems,”

IEEE Transactions on Software Engineering, vol.

39, no. 9, pp. 1230-1244, 2013.

[7] Padgham L. and Winikoff M., Developing

Intelligent Agent Systems: A Practical Guide,

Wiley Series in Agent Technology. John Wiley

and Sons, 2004.

[8] Padgham L. and Winikoff M., “Prometheus: A

Methodology for Developing Intelligent Agents,”

in Proceedings of International Workshop on

Agent-Oriented Software

Engineering, Bologna, pp. 174-185, 2003.

[9] Riemsdijk M. and Yorke-Smith N., “Towards

Reasoning with Partial Goal Satisfaction in

Intelligent Agents,” in Proceedings of

International Workshop on Programming Multi-

Agent Systems, Toronto, pp. 41-59, 2010.

[10] Shaw P. and Bordini R., “An Alternative

Approach for Reasoning about the Goal-Plan

Tree Problem,” in Proceedings of Languages,

Methodologies, and Development Tools for

Multi-Agent Systems, 3rd International

Conference, Lyon, pp. 115-135, 2010.

0

2

4

6

8

10

12

14

All goals

Coverage

Scenario

Coverage

Agent

and

capability

Coverage

Plan

Coverage

Goal Plan

Coverage

Loop

Coverage

Detected Faults by Coverage Criteria

with Minimum Test Cases
Test cases

No of Faults Detected

http://aosgrp.com/products/jack/

64 The International Arab Journal of Information Technology, Vol. 16, No. 1, January 2019

[11] Thangarajah J., Harland J., Morley D., and

Yorke-Smith N., “Towards Quantifying the

Completeness of BDI Goals,” in Proceedings of

The International Conference on Autonomous

Agents and Multi-Agent Systems, Paris, pp. 1369-

1370, 2014.

[12] Thangarajah J., Harland J., Morley D., and

Yorke-Smith N., “Quantifying the Completeness

of Goals in BDI Agent Systems,” in Proceedings

of 21st European Conference on Artificial

Intelligence, Prague, pp. 879-884, 2014.

[13] Thangarajah J., Sardina S., and Padgham L.,

“Measuring Plan Coverage and Overlap for

Agent Reasoning,” in Proceedings of the 11th

International Conference on Autonomous Agents

and Multiagent Systems, Valencia, pp. 1049-

1056, 2012.

[14] Thangarajah J. and Padgham L.,

“Computationally Effective Reasoning about

Goal Interactions,” Journal of Automated

Reasoning, vol. 47, no. 1, pp. 17-56, 2011.

[15] Thangarajah J., Jayatilleke G., and Padgham L.,

“Scenarios for System Requirements Traceability

and Testing,” in Proceedings of The 10th

International Conference on Autonomous Agents

and Multiagent Systems, Taipei, pp. 285-292,

2011.

[16] Thangarajah J., Harland J., and Yorke-Smith N.,

“A Soft COP Model for Goal Deliberation in a

BDI Agent,” in Proceedings of the 6th

International Workshop on Constraint Modelling

and Reformation, Rhode Island, pp. 61-75, 2007.

[17] Thangarajah J., Padgham L., and Winikoff M.,

“Prometheus Design Tool,” in Proceedings of the

4th International Conference on Autonomous

Agents and Multi Agent Systems, Utrecht, pp.

127-128, 2005.

[18] Thangarajah J., Padgham L., and Winikoff M.,

“Detecting and Avoiding Interference between

Goals in Intelligent Agents,” in Proceedings of

the 18th International Joint Conference on

Artificial Intelligence, Acapulco, pp. 721-726,

2003.

[19] Tian J., “Quality Assurance Alternatives and

Techniques: A Defect Based Survey and

Analysis,” Software Quality Professional, vol. 3,

no. 3, pp. 6-18, 2001.

[20] Winikoff M., in Multi-Agent Programming,

Springer, 2005.

[21] Wooldridge M., an Introduction to Multi-Agent

Systems, John Wiley and Sons, 2002.

[22] Zhang Z., Thangarajah J., and Padgham L.,

“Automated Testing for Intelligent Agent

Systems,” in Proceedings of the 10th

International Conference on Agent-Oriented

Software Engineering, Budapest, pp. 66-79,

2011.

[23] Zhou Y., Torre L., and Zhang Y., “Partial Goal

Satisfaction and Goal Change: Weak and Strong

Partial Implication, Logical Properties,

Complexity,” in Proceedings of the 7th

International Joint Conference on Autonomous

Agents and Multiagent Systems, Estoril, pp. 413-

420, 2008.

Towards Automated Testing of Multi-Agent Systems Using Prometheus Design Models 65

Shafiq Ur Rehman is PhD (CS)

candidate at Capital University of

Science and Technology, Islambad.

He is member of Center for

Software Dependability research

group. His research focuses on

software quality assurance and

testing, spcifically model based testing of multi-agent

systems. In this research area he has published journals

and conferences papers as well. Besides his research

activities he is working as a software test engineer as

well.

Aamer Nadeem is an Associate

Professor in the Department of

Computer Science at Capital

University of Science and

Technology, Islamabad. He is also

Head of the Center for Software

Dependability - a research group

working in the areas of software reliability, software

fault tolerance, formal methods and safety-critical

systems. He received his MSc in computer science

from QAU, MS in software engineering from NUST,

and PhD from Mohammad Ali Jinnah University,

Islamabad. He did part of his PhD research work at

the Chinese University of Hong Kong (CUHK) under a

research collaboration. He is a professional member of

the Association for Computing Machinery (ACM).

Muddassar Sindhu received his

PhD from Royal Institute of

Technology (KTH), Stockholm,

Sweden. Currently, he is an

Assistant Professor of Computer

Science at Quaid-i-Azam

University, Islamabad, Pakistan. His

research interests include software testing, learning-

based testing, formal methods and formalization of

informal software requirements.

