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Abstract: Bagging is one of the well-known ensemble learning methods, which combines several classifiers trained on 

different subsamples of the dataset. However, a drawback of bagging is its random selection, where the classification 

performance depends on chance to choose a suitable subset of training objects. This paper proposes a novel modified version 

of bagging, named enhanced Bagging (eBagging), which uses a new mechanism (error-based bootstrapping) when 

constructing training sets in order to cope with this problem. In the experimental setting, the proposed eBagging technique 

was tested on 33 well-known benchmark datasets and compared with both bagging, random forest and boosting techniques 

using well-known classification algorithms: Support Vector Machines (SVM), decision trees (C4.5), k-Nearest Neighbour 

(kNN) and Naive Bayes (NB). The results show that eBagging outperforms its counterparts by classifying the data points more 

accurately while reducing the training error. 
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1. Introduction 

Ensemble learning combines several base models, 

where a traditional algorithm is used to learn each of 

them. It aggregates the outputs from a set of different 

classifiers to correctly classify new data points. 

Constructing ensemble classifiers is extremely useful 

for high dimensional and large dataset problems that 

finding an individual classifier in one step is 

impossible due to the scale and the complexity of the 

problem.  

Bagging is one of the most popular and successful 

ensemble learning algorithms for improving 

classification accuracy. Bagging (bootstrap 

aggregating) was introduced by Breiman [5] as a 

technique to aggregate various versions of an unstable 

estimator, each of which is generated from a bootstrap 

sample. It has provided considerable performance 

gains over a single learner in many application 

domains [25]. However, a drawback of bagging is that 

it generates the training sets by choosing instances 

completely randomly from the original dataset and so it 

doesn’t consider previously correct or incorrect 

classified instances in the selection process. In other 

words, it doesn’t focus the underlying learning 

algorithm on the training examples that have been 

misclassified previously. In this paper, we present and 

compare an enhanced version of bagging method 

which has specifically aimed to solve this drawback of 

the method. 

The major contributions and novelty of this paper 

are as follows. First, this paper presents a brief survey 

of different modifications of bagging, which have 

developed to overcome the limitations of this method. 

Second, it proposes a novel modified version of 

bagging, named enhanced bagging (eBagging), which 

uses a new bootstrapping method, referred to as 

prediction error-based bootstrapping (eBootstrapping), 

instead of traditional random bootstrap technique. 

Third, it provides experimental studies to demonstrate 

that eBagging often gives a better performance than 

bagging, random forest and boosting techniques in the 

context of classification accuracy when tested and 

compared on 33 well-known benchmark datasets and 

various artificial (synthetic) datasets using well-known 

classification methods decision trees, Support Vector 

Machines (SVM), Naive Bayes (NB) and k-Nearest 

Neighbor (kNN). This paper also compares eBagging 

and Bagging techniques in case there is noise in the 

data.  

The remainder of the article is structured as follows: 

section 2 provides a state of the art review on the 

distinct modifications of bagging, which have been 

performed to improve its performance. Section 3 gives 

background information on bagging, random forest and 

boosting techniques. This section also defines two 

novel concepts proposed in this paper: eBootstrapping 

and eBagging. In section 4, the experimental studies 

are presented and the obtained results are discussed. 

This section also answers the question of how well 

eBagging performs in situations where there is 

relatively little noise in the data. Finally, section 5 

gives future directions and some concluding remarks.
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Table 1. Summary of bagging variant methods. 

Year Name of the Bagging Variant Applied Technique Advantage / Disadvantage 

2017 
Actively Balanced Bagging 

(ABBag) [3] 

First learning a bagging classifier and then updating its 
bootstraps iteratively with batches composed of instances 

chosen from the training set according to the distribution of 

weights 

Improved classification performance 
Performing best when it integrates the ensemble disagreement 

factor with prediction error of component classifiers and 

information on class distribution in imbalanced data 

2015 
Positive Lasso Bagging 

(PL-Bagging) [9] 

In the integration step, employing positive Lasso to assign 

weights to base learners 

Encouraging diversity among base learners by excluding redundant 

ones and at the same time retaining accuracy of base learners 

Higher classification accuracy as the ensemble size increases 

2013 
Local-and-Over-All Balanced 

Bagging [4] 

Based on the analysis of local neighborhood of each 

example, which affect the probability of its selection into 

bootstrap sample 

Competitive results to best known under-sampling bagging 

extensions 

2012 
MArgin Distribution based 

Bagging (MAD-Bagging) [34] 

Margin distribution of ensembles to choose the subset of 

base classifiers for Bagging through acquiring a sparse 

weight vector of base classifiers, ranking them according to 

the calculated weights and then combining the base 

classifiers with high weights 

Improved classification accuracy 

When the base classifiers are diverse, more base classifiers would 

improve the classification power of the ensembles 

2011 

Information Gain Based Feature 

Selection for Bagging 

(IGF-Bagging) [29] 

First bootstrap instances are obtained and then, Information 

Gain (IG) based feature selection method is applied to 

remove and identify redundant or irrelevant attributes. 

Finally, base learners trained from the new sub data sets are 
combined via majority voting 

Improved classification accuracy, introduced diversity 

Redundant and irrelevant features are reduced 

Determination of feature selection ratio is a difficult task 

2011 Poly-Bagging [23] 

Create various classifiers by acquiring the forecasted values 

from the fitted methods to a number of replicated datasets 

and then aggregating predictors over a succession of 

resamplings 

Easy to implement, flexible and straightforward structure 

Better classification accuracy for the two-bagged and the three-

bagged models 

Sequentially, intensifying the decrease of the prediction error 

2010 Leveraging Bagging [2] 

Two randomization improvements which are increasing 

resampling using Poisson distribution and using output 

detection codes where each classier will predict a different 
function are used 

More accurate results with slower execution time for Random 

Forest classifier compared to other bagging methods; ADWIN 

Bagging and Online Bagging 

2010 
Bagging with Rank Aggregation 

[11] 

Out-of bag (OOB) samples are combined over through rank 

aggregation to obtain the locally best performing classifier 

given the bootstrap sample 

Optimized accuracy, sensitivity and specificity 

Better predictive performance as judged on test instances 

Increased computational time 

2010 
Selecting Base Classifiers on 

Bagging (SBCB) [37] 

The classifier candidates trained at the beginning of the 

phase may not be the set of base classifiers that the final base 

classifiers are selected in terms of evaluation according to 

both diversity and accuracy 

Enhanced accuracy and complexity 

Larger diversity among base classifiers, the method performs 

better than generic bagging 

2008 Robust Bagging [36] 

Remove the bootstrapped classifiers producing very high 

error rates, as predicted by the out-of-bag error rate and to 
merge over the remaining ones using the robust location 

estimator, median 

Performs better than standard bagging if more stable base 
classifiers as Nearest Mean Classifier and Fisher Linear 

Discriminant Analysis are implemented 

2007 
Class-wise Expert based 

Bagging (CeBag) [31] 
Generation of class-wise experts in each aggregation sample 

Improved performance of single SVM, higher diversity 

Outperforming standard bagging 

2007 Trimmed Bagging [10] 

Excluding the bootstrapped classification rules that give the 

biggest error rates, which are predicted by the out-of-bag 

error rate, and the remaining ones are aggregated 

Works well for both unstable and stable classifiers 

2005 Post-Bagging [19] 

Several classification techniques using a bootstrap sampling 

procedure on the set of association rules combined with 
weighted voting approaches and ordinary best rule 

Outperforming on average standard decision tree techniques and 

enhancing the outputs of best rule 

2005 
Dependency Bagging 

(DepenBag) [18] 

Bootstrap samples are obtained first and each sample is 

induced using a dependency model mentioned as a Directed 

Acyclic Graph (DAG); the features without connections to 

the class attribute in all the DAGs are then eliminated 

The causal discovery process performed facilitates constructing 

accurate but diverse component nearest neighbor classifiers 

2005 
Bagging with Injecting 

Randomness (BagInRand) [38] 

Creating diverse component nearest neighbor classifiers 

through perturbing the training set with bootstrap sampling 

and injecting randomness to distance metrics 

Improved accuracy of classifiers, introduced diversity among base 

classifiers, enhanced performance of stable kNN 

2004 BagBoosting [13] 

In each boosting iteration, combine the output from various 

base learners obtained from bootstrap samples, each drawn 
with replacement from the reweighted training data 

The advantageous predictive potential 

Lower bias, variance and mean squared error 

2004 
Bagging Multitree 

(BagMDT) [15] 

An optimization method based on sharing the common parts 

of the models from an ensemble generated by decision trees 

The redundancy and high computational cost property of bagging 

method is reduced, saturation point is reached earlier than classical 

bagging, enhanced diversity is obtained 

2003 Attribute Bagging (AB) [6] 
Voting on classifiers induced by (ranked) random attribute 

subsets 

Faster execution time than bagging, improved accuracy and 

stability 

2003 Double Bagging [17] 
The out-of-bag sample is used to generate an additional 

classifier model to integrate with the base learning model 

The estimate is unbiased regarding method and variable selection, 

higher diversity among base classifiers 

2003 
Bootstrap Robust Aggregating 

(Bragging) [8] 

Instead of the sample mean in the standard bagging 

algorithm, robust location estimator for the realized 
bootstrap estimators is used 

Improvement on estimation procedure using smoothing effects and 

taking average over unstable selection of variables 

2002 
Variance Optimized Bagging 

(Vogging) [12] 

Optimizing weights in linear combinations of classifiers 

which are acquired by bootstrap sampling 
Reduction in variance while retaining high accuracy 

2001 
Small SubSampled Bagging 

(S3Bagging) [28] 

Classifier induced by decreasing the size of the training set 

using subsampling and aggregating each classifier’s results 

applying bagging process 

Determination of the subsampling rate is tedious 

The performance is highly depended on subsampling rate 

2000 
Subsample Aggregating 

(Subagging) [7] 

Subsampling used instead of the bootstrap for the 

aggregation 

Improvement on variance and mean squared error, and gained 

computational efficiency 

With very small subsample ratios performance dramatically 

decreases 

1999 
Weight Aggregation 

(Wagging) [1] 

Sampling from training set is done via adding Gaussian 

noise to each weight 

Facilitating some control on the bias-variance trade-off 

Higher diversity among base classifiers 

1998 
Nice 

Bagging [27] 

Only the bootstrap versions of the applied classifier which 

obtain lower error rate than the original classifier on the 

same training set are averaged 

More stable results and lower shifting effect compared to bagged 

classifier; not giving better results than bagging in general 



Enhanced Bagging (eBagging): A Novel Approach for Ensemble Learning                                                                              517 

2. Related Work 

The aggregation of various classifiers, referred as a 

classifier ensemble, has previously managed to enhance 

classification accuracy in lots of application areas 

compared to single classifiers. Bagging is one of the 

most commonly used ensemble learning methods 

because of its proven performance improvements in 

classification task [21, 24, 25]. Therefore, remarkable 

amount of research has been put forth in recent years by 

introducing new bagging variants. Almost every year, a 

new bagging algorithm is developed in order to make 

up for the missing properties of the previous ones. 

Table 1 presents a brief summary of the previously 

proposed bagging versions up to the present. It is 

apparent that there are two key issues which make the 

difference among the models. At first, the way of 

splitting the original training data set into subsets, i.e. 

the bootstrap technique to be performed, should be 

taken into consideration. The second one is the 

determination of the learning method to train base 

classifiers [20]. 

Differently from the previous works, in this study, 

the proposed eBagging algorithm, which is a novel 

version of the standard bagging method, presents a new 

direction to the existing instance-based ensemble 

learning models by performing a new bootstrap 

technique, eBootstrap. In the following section, its 

implementation is explained in detail. 

3. Materials and Method 

3.1. Background Information 

Bagging, random forest and boosting are among the 

mostly applied ensemble learning methods due to their 

good performance in improving classification accuracy. 

These techniques construct diverse classifier ensembles 

by manipulating the training dataset and then classify 

new data by a voting mechanism.  

3.1.1. Bagging 

Bagging is an ensemble learning approach which 

creates multiple exemplars of a learner to result in an 

aggregated predictor whose output is obtained using a 

combination rule (i.e., majority voting) on the outputs 

of each constructed subspace. Generation of the 

multiple exemplars is done via making bootstrap 

replicates of the learning set in which instances are 

randomly drawn from the entire training data with 

replacement by placing the same number of instances to 

each ensemble subspace. Bagging provides a way of 

presenting variability between different models within a 

committee.  

3.1.2. Random Forest 

It is an ensemble learning method which is comprised 

of a number of individual decision trees. The difference 

from the decision tree algorithm is that the operations 

of finding the root node and partition of nodes run 

randomly. The procedure is practised as follows. 

Firstly, the original data is randomly sampled as in 

bagging to build each tree. Then, randomly selected 

features as in the random subspace method are used to 

produce the best split point. In other words, two types 

of randomness are present in the selection of either 

feature or instance. Instead of looking for the most 

significant feature when partitioning a node, it 

searches the best attribute within a random subset of 

attributes. In this way, a wide diversity is obtained in 

addition to a better model. If there are enough trees in 

the forest, the risk of overfitting is reduced. 

3.1.3. Boosting 

It is another commonly known ensemble learning 

strategy where weighted resampling procedure is 

performed by sequentially updating selected instances 

to the ensemble subspace by giving more weight to 

difficult examples, i.e. the most informative instances, 

which are not correctly classified in the previous steps. 

Weighted majority voting is applied as the 

combination rule for the ensemble outputs. Boosting 

facilitates the reduction of bias of otherwise stable 

learners such as univariate decision trees also known 

as decision stumps or linear classifiers. The most 

popular boosting algorithm is AdaBoost, which is an 

abbreviation for Adaptive Boosting. It is basically a 

machine learning method where multiple “weak 

classifiers” are combined into a single “strong 

classifier” by optimizing the weights in each iteration.  

When bagging and boosting are compared, 

boosting leads to greater reduction in error [25] 

because it concentrates on the challenging elements in 

the training set during the sample selection. However, 

boosting suffers from being hard to parallelize because 

the inputs of one model depend on the outputs of 

others. In this work, we present a new ensemble 

method (eBagging) which takes the best 

characteristics of these two techniques. While both 

approaches substantially improve predictive accuracy, 

eBagging shows the greater benefit. 

3.2. Error-based Bootstrapping 

Fundamentally, bagging relates to the bootstrap 

approach where the training sets are randomly selected 

with replacement from the original instances. By 

following this procedure, it is possible that several 

records may appear more than once as a result of 

resampling while others may not be present in the 

training set. The disadvantage with traditional 

bootstrap method is that training subsets produced by 

random selection with replacement are not especially 

concentrated on misclassified instances. In other 

words, the hard-to- classify examples may not present 

in the training sets, so the learning algorithm cannot 
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focus on those data points to minimize the training 

errors. To overcome this drawback, we propose a novel 

bootstrapping model, named eBootstrapping, that 

ensures the presence of misclassified instances in 

training sets  to encourage their correct classification.  

Consider the dataset D={o1, o2, ..., on}={(x1, y1), (x2, 

y2), ..., (xn, yn)} with yi as the class output and xi as a p-

dimensional explanatory variable for the ith object oi, so 

oi = (xi, yi) for (i = 1, …, n), where n is the number of 

objects (instances) in the dataset. Assume that we have 

k different class labels, in this case, yi ϵ Y ={1, ..., k}. 

 Definition 1. (Bootstrapping). If we have n data 

instances denoted by 

 noooD ,...,, 21  

Then randomly generated sample with the same size n 

and with the equal probability (1/n for each 

observation)  

 **

2

*

1

* ,...,, noooD   

Called the bootstrap sample or bootstrap resample and 

denoted by adding a star to the symbols. The star 

symbol * represents zero or more instances. This means 

that D* is likely to contain repeats. Similarly, just as ō is 

the mean of the original dataset, we write ō* for the 

mean of the resamples’ data.  

To create an ensemble E, we get b independent 

bootstrap samples and denote by 

 **

2

*

1 ,...,, bDDDE   

For a given dataset of n examples, each example has a 

probability (1-1/n)n of not be included in the bootstrap 

sample. If n is large, the probability approaches 1/e = 

0.368, which means 36.8% of the original examples 

would not be selected, called out-of-bag instances.  

368.0
11

1lim
n











 en

 

This also means that on average 36.8% of the 

“difficult” examples (misclassified) would not take part 

in training set and for this reason the underlying 

learning algorithm may not provide a good compromise 

between bias and variance on classification. To get over 

this drawback, we propose a novel bootstrapping 

method, eBootstrapping, which gives priority to the 

difficult instances.  

 Definition 2. (eBootstrapping). Given a dataset with 

size n,  

 noooD ,...,, 21  

Misclassified instances are identified by a prior 

classifier in the pre-training step and denoted by M 

 moooM ,...,, 21  

Where m is the number of incorrectly classified 

instances and it is smaller than instance size n.  

Classified instances are the rest of the dataset 

(correctly classified instances) and denoted by C 

 nmm oooC ,...,, 21   

Where CMD   and CM Ø. 

eBootstrapping is a prediction error-based 

bootstrapping method which generates a dataset that 

includes all misclassified instances in M and some 

correctly classified instances taken with replacement 

from C. 

An eBootstrap sample of D is a collection of n 

instances 

 nmmm ooooooD ,...,,,,...,, 2121

*

  

Where each value oi is a distinct instance from M for 

(1 ≤ i ≤ m), and each value cj
* is a randomly selected 

instance from C with replacement and with equal 

probability Pr(cj
* = ot) = 1/(n-m) for (m+1 ≤ j, t ≤ n) 

and (m+1 ≤ t ≤ n). The star symbol * represents zero 

or more instances. In particular, repeated values cj1
* = 

cj2
* = ot are allowed. Since the sample size of D* is n, 

repeated values cj
* means that some values in C must 

be left out. To form b independent eBootstrap 

samples, we repeat this process b times and denote by 

 **

2

*

1 ,...,, bDDDE  . 

As shown in Figure 1, an ebootstrap sample 

includes members of the original dataset with all 

misclassified members appearing, some correctly 

classified members appearing zero times, some 

appearing only once, some appearing twice, and so on. 

Replacement results in repetition of correctly 

classified values in ebootstrap samples. eBootstrap 

samples have the same sample size as the original 

sample. As an example, consider a dataset D ={1, 2, 3, 

4, 5, 6, 7, 8, 9, 10} with size n =10. The eBootstrap 

sample D* ={1, 2, 3, 8, 6, 6, 4, 10, 9, 6} has three 

repeats of the same number (6). The order of the 

elements in the resample plays no role. The out-of-bag 

set consists of two elements {5, 7}. 

 
                                      misclassified          classified  

Original sample 1 2 3 4 5 6 7 8 9 10    

              

eBootstrap Sample 1 1 2 3 8 6 6 4 10 9 6  5 7 

eBootstrap Sample 2 1 2 3 5 7 10 4 10 8 9  6  

eBootstrap Sample 3 1 2 3 4 4 7 9 8 6 10  5  

eBootstrap Sample 4 1 2 3 7 10 6 8 4 5 9    

eBootstrap Sample 5 1 2 3 9 4 9 6 7 5 9  8 10 

                                              in bag                                           out of bag 

Figure 1. An example of eBootstrapping. 

3.3. Enhanced Bagging (eBagging)  

eBagging improves the traditional bagging technique 

by replacing the bootstrap method by eBootstrap. The 

key difference is the creation of training sets by giving 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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higher chance for selection to hard-to-classify instances 

which are misclassified by the prior learner. As shown 

in Figure 2, the proposed eBagging technique contains 

four steps:  

 Step1: Pre-training A prior classifier is applied on 

the original dataset and the dataset is divided into 

two parts: one part that contains correctly classified 

instances and the others (incorrectly classified). 

 Step 2: eBootstrapping eBootstrapping is used to 

construct different training sets by directly pushing 

misclassified instances and resampling with 

replacement from classified instances. So, the 

difficult instances are always included in each subset 

of data. This step both provides diversity and allows 

the learning algorithm to focus on hard-to-classify 

examples and so it gives us a reasonable starting 

point.  

 Step 3: Training The base classifiers are trained on 

different subsets of the training patterns. In this 

study, the learning algorithms used in pre-training 

and training steps (in other words the learning 

algorithms of prior classifier and base classifier) are 

planned to be same, but different learning algorithms 

can also be tried in the future studies. 

 Step 4: Combining (Aggregating) The base 

classifiers perform classification task and the final 

prediction is made by applying majority voting to 

the outputs of each ensemble subset. If classifiers 

disagree with each other, then the incorrect errors of 

the different classifiers can be removed by the voting 

mechanism. 

Boosting technique (i.e., AdaBoost algorithm) also tries 

to classify the hard-to-classify examples accurately, and 

ignores the ones which are easy-to-classify. However, 

our proposed method is different from boosting in two-

folds. First, eBagging generates training sets from the 

original dataset in parallel, so it is not an iterative 

approach as boosting. Second, eBagging doesn’t assign 

weight values to each instance as boosting. Instead of 

that, eBagging is directly copied all difficult examples 

into all training sets.  

Algorithm 1 eBagging 

Inputs 

Dataset D={(x1,y1),(x2,y2),…,(xn,yn)} where yi∈Y={1,…,k} 

L:Learning algorithm for prior and base classifiers 

t:ensemble size 

n:the number of instances 

k:the number of classes 

x:an unlabelled instance to classify 

Process 

#Step1: Pre-training 

h=L(D)                   #train to build prior classifier 

C=Ø, M=Ø                       #generate new datasets 

for(i=1 to n) 

{ 

    if(h(xi)=yi)                              #correctly classified instances 

          C.add(xi,yi) 

    else 

          M.add(xi,yi)              #misclassified instances 

} 

#Step2: eBootstrapping 

for(i=1 to t) 

{ 

    Di=Ø 

    Di= Di∪M 
    while(D.length!=m) 

    { 

            r=random.next(1,C.length) 

            Di.add(Cr) 

     } 

} 

#Step3: Training 

hi=L(Di) 

 

Output 

#Step4:Combining 

H(x)=voting(h1(x), h2(x),…, hn(x)) #final hypothesis 

       = ∑
=

∈

t
)x(hiy:i 1

Yy

maxarg   

 

Figure 2. The general framework of Enhanced Bagging 

(eBagging) algorithm. 

The effectiveness of our method depends on 

constructing a diverse, yet accurate, collection of 

classifiers. By eBagging, we obtain a good 

compromise between a lack of diversity and a 

premature overfitting situation. Algorithm 1 

demonstrates the pseudo code of the proposed 

eBagging algorithm. A classifier (or a hypothesis) is a 

mapping from x to y. Given set D containing n 

examples, misclassified instances are identified by a 

prior classifier in the pre-training step and denoted by 

M. Classified instances are the rest of the dataset and 

denoted by C. Datasets D1...Dt are generated by 

including all misclassified instances in M and some 

correctly classified data points taken with replacement 

from C. After training, a new instance is classified by 

voting. 

In Table 2, there is a brief summary of the 

properties of eBagging, bagging, random forest and 

boosting techniques in terms of given criteria. 
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Table 2. Comparison table of eBagging, Bagging, Random Forest and Boosting techniques. 

 eBagging Bagging Random Forest Boosting 

Training set construction 
misclassified samples + random 

resampling 
random resampling 

random resampling+random 

feature subset 
weighted resampling 

Model construction parallel parallel parallel iterative (incremental) 

Weight assignment to 

each instance 
no no no yes 

Classifiers inducer independent inducer independent 
inducer dependent (decision 

tree) 
inducer independent 

Training datasets 
giving higher preference to 

misclassified samples 
random random 

giving higher preference to 

misclassified samples 

Goal to achieve 
increase the performance of the 

base learners with a prior learner 
minimize variance minimize variance increase predictive force 

Aim 

find a good trade-off between 

variance and bias that minimizes 
prediction error 

decrease variance increase diversity decrease bias 

Methods where this is 

used 
error-based random subspace random instance subspace 

random instance subspace and 

random feature subspace 
gradient descent 

Function to combine majority voting majority voting majority voting weighted majority voting 

Inducer number single inducer single inducer single inducer single inducer 

Base learner simple or complex complex simple simple 

Effect loss minimization risk minimization risk minimization margin maximization 

4. Experimental Work 

In this study, the proposed eBagging method was 

compared with single (no ensemble strategy used), 

standard bagging ensemble, random forest and 

AdaBoost learners. As a base learner for ensemble 

methods, SVM, kNN, Decision Tree (C4.5) and NB 

algorithms were individually applied. Many studies 

have taken these methods as base learners in bagging 

[16, 30, 33] even though bagging is not generally 

favorable to work with stable algorithms such as SVM, 

kNN and NB. We aimed to handle this stiuation with 

our additional improvements in eBagging to see 

whether it is useful or not. 

Weka open source data mining library was used to 

develop the models [32]. Classification accuracies, 

pairwise comparisons showing win/tie/loss status and 

average error rates of the applied algorithms are  

 

presented in this section. Statistical test results were 

also given to verify the obtained outputs. In addition, 

we explored the effect of classification noise on the 

performance of eBagging technique. 

4.1. Dataset Description 

In the experimental studies, 33 datasets taken from 

UCI Machine Learning Repository [22] were used. 

Table 3 shows the basic properties of the datasets by 

noting the release year of the dataset, their respective 

number of records, the number of dimensions 

including the class attribute and how many classes 

they contain. In addition to well-known benchmarks, 

synthetic datasets with different characteristics were 

also handled and their properties are given in the next 

section. 

  

Table 3. Experimental datasets and their characteristics. 

ID Dataset Name Year Attributes Instances Number of Classes ID Dataset Name Year Attributes Instances Number of Classes 

1 arrhythmia 1998 280 452 16 18 letter 1991 17 20000 26 

2 audiology 1992 70 226 24 19 liver-disorders 1990 7 345 2 

3 breast-cancer 1988 10 286 2 20 lymph 1988 19 148 4 

4 car 1997 7 1728 4 21 nursery 1997 9 12960 5 

5 dermatology 1998 34 366 6 22 page-blocks 1995 11 5473 5 

6 diabetes 1990 9 768 2 23 segment 1990 20 2310 7 

7 ecoli 1996 8 336 4 24 sick 1987 30 3772 2 

8 glass 1987 10 214 7 25 sonar 1988 61 208 2 

9 haberman 1999 4 306 2 26 soybean 1988 36 683 19 

10 heart-c 
1988 

14 

303 5 27 spambase 1999 58 4601 2 

11 heart-h 294 5 28 tae 1997 6 151 3 

12 heart-statlog 1992 270 2 29 tic-tac-toe 1991 10 958 3 

13 hepatitis 1988 20 155 2 30 vehicle 1987 19 846 4 

14 hypothyroid 1987 30 3772 4 31 wine 1991 14 178 3 

15 ionosphere 1989 35 355 2 32 waveform-5000 1988 41 5000 3 

16 iris 1988 5 150 3 33 zoo 1990 17 101 7 

17 kr-vs-kp 1989 37 3196 2  

4.2. Comparison of the Applied Methods 

Five different cases were taken into consideration as 

classifiers’ performances were compared: classification 

accuracy for benchmark datasets and artificial datasets 

(shown in Table 4 and Table 7), win/tie/loss status 

showing pairwise comparisons of the applied methods 

(displayed in Table 5), the average error rates relative 

to each other (demonstrated in Figure 3), the results of 

statistical tests (Friedman and Quade) and the effect of 

classification noise (in Figure 5). Classification 

accuracies of the applied algorithms were obtained 
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using 10-fold cross-validation. In the implementations 

of the ensemble learners, the number of iterations to be 

performed (ensemble size) were determined as Weka’s 

default parameter, 10. The number of neighbors, N for 

kNN classifier was selected as log2(n) where n indicates 

the number of instances in the respective dataset. The 

default N parameter of Weka is 1, however, it does 

generally not make sense to choose the parameter N so 

small when large numbers of data points are available 

in the dataset. N=log2(n) is a reasonable choice 

because if N is determined as too large or too small, 

the probability of overfitting dramatically increases 

[14, 26, 35]. The classifier parameters of SVM, C4.5 

and NB classifiers were left as default Weka 

parameters. 

 

 

 

Table 4. Comparison table of the applied classifiers in terms of classification accuracies (%). 

DATASET / 

METHOD 

C4.5 NB 

eBagging Bagging Single RF AdaBoost eBagging Bagging Single AdaBoost 

arrhythmia 78.89 75.44 64.38 64.82 70.58 70.42 64.60 62.39 62.83 

audiology 83.18 81.42 77.88 76.55 84.96 75.44 71.68 73.45 77.88 

breast-cancer 73.64 73.78 75.52 69.23 69.58 73.46 72.73 71.68 64.69 

car 92.89 93.11 92.36 93.58 96.12 85.76 85.53 85.53 90.16 

dermatology 94.64 96.17 93.99 95.90 95.63 98.28 96.99 97.27 96.45 

diabetes 79.21 74.61 73.83 74.35 72.40 76.17 76.56 76.30 76.17 

ecoli 87.92 84.52 84.23 84.82 81.25 86.25 86.01 85.42 85.42 

glass 81.31 74.30 66.82 74.30 74.30 50.75 50.00 48.60 49.07 

haberman 75.20 72.88 72.88 68.63 70.26 75.26 75.16 76.14 75.16 

heart-c 83.83 78.88 77.56 79.21 82.18 84.22 83.17 83.50 84.16 

heart-h 81.39 79.93 80.95 77.55 78.57 84.80 83.33 83.67 86.39 

heart-statlog 85.07 78.52 76.67 77.78 80.37 85.48 83.33 83.70 82.59 

hepatitis 86.26 83.87 83.87 83.87 85.81 85.81 85.81 84.52 85.81 

hypothyroid 99.62 99.60 99.58 99.02 99.58 95.55 95.47 95.28 95.28 

ionosphere 94.10 92.88 91.45 92.88 93.16 83.65 83.19 82.62 92.02 

iris 96.33 94.67 96.00 95.33 93.33 96.33 96.00 96.00 93.33 

kr-vs-kp 99.41 99.37 99.44 98.72 99.50 87.56 87.73 87.89 94.96 

letter 91.29 92.47 87.98 93.97 95.54 64.41 64.17 64.12 64.11 

liver-disorders 76.52 69.28 68.70 68.41 71.59 57.36 57.10 55.36 67.25 

lymph 84.46 79.73 77.03 75.00 81.08 83.92 82.43 83.11 80.41 

nursery 97.18 97.33 97.05 98.05 99.51 90.20 90.28 90.32 91.82 

page-blocks 97.68 97.20 96.88 97.20 97.02 89.73 90.50 90.85 90.85 

segment 97.66 97.45 96.93 97.53 98.48 80.06 80.48 80.22 80.22 

sick 99.15 98.59 98.81 98.14 99.18 93.08 92.71 92.60 93.96 

sonar 87.50 77.88 71.15 77.40 77.88 71.78 68.27 67.79 80.77 

soybean 93.05 92.68 91.51 91.22 92.83 92.78 92.97 92.97 92.83 

spambase 94.73 94.18 92.98 94.48 95.09 79.85 79.70 79.29 79.29 

tae 69.54 60.26 59.60 65.56 68.87 53.18 54.30 54.30 54.30 

tic-tac-toe 89.77 93.32 84.55 92.80 95.82 71.06 70.15 69.62 83.92 

vehicle 85.15 74.47 72.46 76.00 76.24 46.16 45.63 44.80 44.80 

wine 95.39 93.82 93.92 97.75 96.63 98.15 97.19 96.63 96.07 

waveform-5000 87.70 81.20 75.08 81.20 80.48 79.99 79.98 80.00 80.00 

zoo 96.53 93.07 92.08 95.05 95.05 96.63 95.05 95.05 97.03 

Average Accuracy 88.37 85.66 83.76 85.04 86.33 80.11 79.34 79.12 80.91 

DATASET / 

METHOD 

kNN SVM 

eBagging Bagging Single AdaBoost eBagging Bagging Single AdaBoost 

arrhythmia 60.97 58.41 58.85 58.85 80.55 71.9 70.35 65.93 

audiology 78.76 59.73 56.19 59.73 90.71 76.99 81.86 82.74 

breast-cancer 77.52 74.48 73.43 73.43 71.82 72.03 69.58 69.58 

car 93.82 92.53 93.29 93.29 93.51 93.46 93.52 94.50 

dermatology 96.89 96.17 95.63 94.26 98.52 96.72 95.36 95.36 

diabetes 78.35 73.57 71.09 71.09 76.71 77.47 77.34 77.34 

ecoli 85.24 86.90 86.31 86.31 85.36 83.63 83.33 84.82 

glass 75.65 66.36 64.02 64.02 57.29 57.48 56.07 57.01 

haberman 76.21 73.20 73.53 72.22 73.14 73.53 72.88 73.86 

heart-c 82.77 82.51 83.50 82.18 83.96 84.49 84.16 84.82 

heart-h 85.20 83.33 82.31 79.59 83.98 83.67 82.65 82.31 

heart-statlog 82.00 78.15 81.11 75.56 84.37 82.96 84.07 84.07 

hepatitis 83.03 83.23 84.52 84.52 86.00 85.81 85.16 81.29 

hypothyroid 92.90 93.05 93.08 90.54 93.60 93.64 93.58 94.99 

ionosphere 89.77 84.90 85.47 86.04 89.40 89.46 88.60 88.60 

iris 96.40 96.67 96.67 96.00 95.87 95.33 96.00 98.00 

kr-vs-kp 96.44 95.18 94.96 97.09 96.31 95.87 95.56 97.18 

letter 96.89 94.44 94.25 94.25 82.47 82.65 82.35 82.34 

liver-disorders 73.13 62.90 61.74 61.74 58.14 60.00 58.26 62.03 

lymph 86.15 84.46 83.78 85.14 90.27 85.14 86.49 83.78 

nursery 97.95 97.52 98.36 98.49 93.08 93.07 93.09 93.07 

page-blocks 96.73 95.34 95.05 94.98 93.06 93.60 92.93 92.93 

segment 97.45 94.37 94.46 94.46 92.66 92.86 93.07 93.29 

sick 96.65 95.94 96.00 95.68 94.09 93.93 93.88 94.41 

sonar 88.89 75.48 79.33 83.17 82.40 78.37 75.96 75.96 

soybean 92.59 88.73 88.58 88.87 95.40 92.39 93.70 92.68 

spambase 92.82 90.07 88.85 85.98 90.60 91.02 90.42 90.76 

tae 69.93 53.64 51.66 51.66 52.05 54.97 52.98 52.98 

tic-tac-toe 98.16 98.33 98.85 98.64 98.33 98.33 98.33 98.12 

vehicle 76.94 70.09 70.21 70.21 74.81 75.30 74.59 74.35 

wine 97.58 96.07 94.94 94.38 98.43 98.31 98.31 98.31 

waveform-5000 83.41 81.94 81.34 81.34 86.85 86.26 86.70 86.68 

zoo 95.94 89.11 89.11 93.07 97.13 92.08 93.07 97.03 

Average Accuracy 87.06 83.24 83.04 82.93 85.48 84.32 84.07 84.28 
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Table 4 displays the comparisons of the applied 

methods (eBagging, single learner, standard Bagging, 

random forest and AdaBoost) with respect to 

classification accuracy by separately using C4.5, NB, 

kNN and SVM as a base learner. Random Forest is 

only under C4.5 column because it is inducer 

dependent and the decision tree is employed as a base 

learner. The results show that eBagging has generally 

the best average classification accuracies 88.37%, 

80.11%, 87.06%, and 85.48%, respectively. The 

highest classification accuracy for each dataset is 

shown by bold background. According to the results, 

eBagging clearly ahead of other methods by 

outperforming its counterparts in 21, 14, 25 and 13 out 

of 33 when one of the C4.5, NB, kNN or SVM 

methods was used as a base learner, respectively. As 

seen in the results, the performance of standard 

bagging algorithm, which managed to be the best 

learner in 1, 5, 2, and 10 out of 33 for the same base 

learners, is significantly enhanced when the ensemble 

subspace is constructed with the proposed eBagging 

algorithm. On the other hand, eBagging also achieved 

classifying instances more accurately than the most 

powerful ensemble learning methods, AdaBoost, 

which is the winner in 9, 11, 2, and 9 out of 33 datasets 

for the corresponding base learners. Furthermore, 

Random Forest performs the best among other 

methods in only one dataset under C4.5 base classifier. 

In addition to the results of classification accuracy, 

it is important to extend experimental work on the 

pairwise comparisons of the performed algorithms. 

Table 5 indicates the (win-tie-loss) status of the paired 

algorithms where each cell is read by looking at the 

algorithm in the respective row and then in the 

respective column.  

It is clear that eBagging is the winner among others 

when one of the methods from C4.5, SVM and kNN is 

used as a base learner in the generation of ensembles. 

Besides, when NB is used as the classifier of the 

ensembles, both eBagging and AdaBoost perform 

equally well for classifying instances.  

Table 5. Pairwise comparisons of the applied methods by showing in each cell (wins - ties - loses) between the method in that row and the 
method in that column for the respective classifier (C4.5, SVM, NB or kNN).  

C4.5 eBagging Single Bagging AdaBoost Random Forest 

eBagging 

 

31 - 0 - 2 27 - 0 - 6 22 - 0 - 11 27 - 0 - 6 

Single 
 

6 - 2 - 25 6 - 1 - 26 11 - 1 - 21 

Bagging 
 

11 - 2 - 20 16 - 5 - 12 

AdaBoost   24 - 2 - 7 

Random Forest     

 

SVM eBagging Single Bagging AdaBoost 

eBagging 

 

24 - 1 - 8 17 - 1 - 15 21 - 0 - 12 

Single 

 

10 - 2 - 21 10 - 9 - 14 

Bagging 
 

16 - 2 - 15 

AdaBoost  

Random Forest     

NB eBagging Single Bagging AdaBoost 

eBagging  24 - 0 - 9 25 - 1 - 7 15 - 2 - 16 

Single 

 

11 - 5 - 17 10 - 8 - 15 

Bagging 
 

16 - 3 - 14 

AdaBoost  

Random Forest   

kNN eBagging Single Bagging AdaBoost 

eBagging  25 - 0 - 8 28 - 0 - 5 28 - 0 - 5 

Single 
 

13 - 2 - 18 12 - 13 - 8 

Bagging 

 

19 - 1 - 13 

AdaBoost  
 

Random Forest  

 

Figure 3 shows average error rates (results from all 

datasets are averaged) obtained from the pairwise 

comparisons of the applied algorithms. The calculation 

of the average error rate can be explained through an 

example (eBagging vs single classifier): For each 

dataset, the ratio between the mean error rate of 

eBagging algorithm and of single classifier when C4.5 

is applied are calculated over the 10-fold cross-

validation. For instance, in the case of NB algorithm, 

the classification errors (%) of arrhythmia dataset are 

29.58 and 37.61 for eBagging and single classifier, 

respectively. The ratio of eBagging vs single classifier 

is calculated as 1 - (37.61 - 29.58) / 37.61 = 0.79. After 

all of the ratio values for each dataset are computed, 

their mean value gives the average error rate between 

the compared algorithms. 

 

Figure 3. Average error rates of the proposed algorithms in terms 

of pairwise comparisons. 
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According to the Figure 3, the base line, y=1, means 

that the performance of the compared methods is 

approximately equal in classifying instances. The 

average error rate below 1 states the enhancement case 

in which the first method in the legend improves 

classification performance compared with the second 

applied algorithm. For example, when SVM is used as 

a base learner, eBagging obtains average error rates of 

0.89, 0.90, and 0.96 compared to the algorithms, Single 

classifier, bagging and AdaBoost, respectively. There is 

a noticeable improvement in the experimental results 

when eBagging is selected as an ensemble strategy for 

SVM classifier. In the part of C4.5 algorithm, there is 

also the comparison of eBagging versus Random Forest 

differently from the comparisons of other base learners. 

The average error rate is decreased 13.87% when 

eBagging is applied instead of Random Forest. Apart 

from this, eBagging provides a visible improvement in 

the most of the comparisons for all base learners. At the 

same time, standard bagging algorithm is apparently 

enhanced by executing eBagging regardless of the 

choice of the base classifier. 

Even though eBagging performs better than 

AdaBoost in terms of classification accuracy, when NB 

and C4.5 classifiers are taken as base classifiers of the 

ensembles (in half of the cases), average enhancement 

rate reduces below 1. In this case, average error rates 

are 1.15 and 1.09, respectively, if eBagging applied 

instead of AdaBoost as an ensemble strategy. It is 

because that AdaBoost results in great increases in 

classification accuracy of a number of datasets although 

eBagging manages to classify much more datasets 

accurately.  

Figure 4 shows the classifiers’ average ranks. 

Initially for each dataset, classifier models are rated 

interms of their classification accuracies. It is done by 

giving rank 1 to the method with the highest 

classification accuracy and raising the rank for each 

evaluated classifier until assigning rank c to the lowest 

one for c applied methods. The rank value is given as 

the mean rank in case of a tie. In the next step, average 

ranks per classifiers are calculated by taking the mean 

value of the outputs of 33 datasets. Finally, the obtained 

mean values of all applied models for each base 

classifier are again ranked from 1 to c. In Figure 4, the 

output is given in terms of base classifiers using the 

ensemble models, eBagging, bagging, random forest (in 

C4.5 model) and AdaBoost; and using single classifier 

models. According to the results, when eBagging is 

performed, it obtains the lowest rank value which 

means that it attains the best performance among the 

others.  

 

 

Figure 4. Average ranks of the methods (eBagging, Bagging, 

Single Classifier, Random Forest and AdaBoost) using four 

different base classifiers (SVM, NB, kNN and C4.5). 

Another important thing is to apply statistical tests 

to verify the experimental results and to support 

decision making process. Therefore two non-

parametric tests were applied as Friedman and Quade 

ranking tests at the significance level of α = 0.05. 

Accuracy results in Table 4 were used in each test for 

each base classifier. The null hypothesis, H0, is that 

the means of the experimental results of different 

classifiers (eBagging, single classifier, bagging, 

random forest and AdaBoost) are the same, meaning 

that all the groups behave similarly. According to the 

results, the null hypothesis is rejected by both of the 

statistical tests in other words the results are 

considered as statistically significant. The obtained p-

values of the tests with the base classifiers C4.5, kNN, 

NB and SVM are presented in Table 6 by also 

showing their significance level. 

Table 6. The number of wins obtained from classification. 

Base Classifier / 

Statistical Test 

Friedman Quade 

p-value 
Significance 

Level 
p-value 

Significance 

Level 

C4.5 0.00001 Very Strong <0.00001 Very Strong 

KNN <0.0000

1 
Very Strong <0.00001 Very Strong 

SVM 0.03841 Strong 0.00140 Very Strong 

NB 0.03182 Strong 0.01458 Strong 

 

In addition to the experiments on the benchmark 

datasets, evaluations with arficial (synthetic) datasets 

were also performed. Experiments were categorized 

with four different aspects: 

a) The effect of the number of dimensions  

b) The impact of the imbalanced data generated using 

different class weights  

c) The variation when the class separation factor is 

changed  

d) The effect of the outliers on the performance of 

learners.  

Table 7 (a, b, c, and d) displays the evaluation results 

(% accuracy) of each factor using 10-fold cross-

validation. 
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Table 7. Evaluation results of artificial datasets. 

C4.5 SVM 

Method 
Num of Features 

Method 
Num of Features 

50 100 150 200 250 50 100 150 200 250 

eBagging 97.09 97.19 97.3 97.07 97.36 eBagging 95.23 94.84 95.23 94.39 93.37 

Bagging 95.5 95.1 95.6 95.5 95.1 Bagging 95.3 93.9 92.8 91.7 91.4 

Single 94.4 93.6 93.8 94.4 94.5 Single 95.5 94.2 93.9 91.4 92.2 

AdaBoost 95.9 95.2 95.1 95.2 95.3 AdaBoost 95 91.3 90.6 88.5 86.7 

RF 95.1 93.4 91 87.7 88  

NB KNN 

Method 
Num of Features 

Method 
Num of Features 

50 100 150 200 250 50 100 150 200 250 

eBagging 94.14 94.21 93.97 93.98 94.11 eBagging 87.94 83.63 84.59 82.68 79.29 

Bagging 94.1 94.2 93.8 93.6 93.4 Bagging 90.2 85 83.4 82.1 79.4 

Single 94.3 94 94 93.5 93.9 Single 89.6 83 84 81.3 77.7 

AdaBoost 92.2 92.4 89.3 90.6 90.2 AdaBoost 89.6 83 84 81.3 77.7 

Table 8. The experimental results of the artificial dataset with different class imbalances. 

C4.5 SVM 

Method Balanced 10%-90% 20%-80% 30%-70% 40%-60% Method Balanced 10%-90% 20%-80% 30%-70% 40%-60% 

eBagging 97.19 98.42 97.86 97.06 96.66 eBagging 94.84 97.31 96.34 95.56 95.57 

Bagging 95.1 98 97.5 96.2 96.1 Bagging 93.9 96.7 95.3 94.9 94 

Single 93.6 97 96.1 93.4 94.8 Single 94.2 96.9 95.2 94.8 94.3 

AdaBoost 95.2 97.6 97.3 95.6 95.6 AdaBoost 91.3 95.1 93.1 91.8 91.6 

RF 93.4 96 95.9 94.5 94.3  

NB KNN 

Method Balanced 10%-90% 20%-80% 30%-70% 40%-60% Method Balanced 10%-90% 20%-80% 30%-70% 40%-60% 

eBagging 94.21 97.57 96.05 95.11 94.17 eBagging 83.63 90.92 86.59 86.76 85.5 

Bagging 94.2 96.8 95.7 94.8 94 Bagging 85 90.1 85.2 86 86 

Single 94 97.5 95.7 95.3 93.9 Single 83 90.4 87.5 86.6 85.3 

AdaBoost 92.4 95.9 93.5 92.5 92.7 AdaBoost 83 89.8 84.1 86.6 85.3 

Table 9. The experimental results of the artificial dataset with different class separation values. 

C4.5 SVM 

 0.5 0.75 1 1.25 1.5 1.75 2  0.5 0.75 1 1.25 1.5 1.75 2 

eBagging 83.92 85.75 87.32 89.73 91.41 94.11 95.24 eBagging 68.61 75.84 81.35 85.48 89.22 92.56 94.89 

Bagging 74.4 79.9 84.3 88.3 89.1 93 94.2 Bagging 67.3 74.8 80.8 84.4 89.2 91.9 94.6 

Single 69.7 72.5 76.2 81.3 86.6 86.3 91 Single 67.2 76.1 80.9 85 88.3 92.2 94.9 

AdaBoost 71.9 77.9 83.9 87.9 91 94 96 AdaBoost 68.4 75.1 80.6 85 87.8 92.1 93.2 

RF 70.9 72.4 80.8 83.9 90.6 91.5 94.5  

NB KNN 

 0.5 0.75 1 1.25 1.5 1.75 2  0.5 0.75 1 1.25 1.5 1.75 2 

eBagging 72.45 77.74 82.36 85.98 88.73 90.76 92.73 eBagging 81.73 84.48 87.76 91.53 94.15 96.47 97.71 

Bagging 70.8 76.7 81.6 85.1 87.7 90.3 92.7 Bagging 78.4 83 87.7 91.5 95.4 97.3 98.5 

Single 72 77.3 82.2 85.4 88.2 90.8 93 Single 76.8 80.9 86 91.7 94.8 97 98.9 

AdaBoost 73.1 77.6 82.1 85.3 88.6 92.6 93.7 AdaBoost 76.8 80.9 86 90.1 92 95.8 97.3 

Table 10. The experimental results of the artificial dataset with extreme outliers. 

C4.5 SVM 

eBagging Bagging Single AdaBoost RF eBagging Bagging Single AdaBoost 

93.16 92.1 89 91.2 89.6 90.48 89.7 89.5 88.4 

NB KNN 

eBagging Bagging Single AdaBoost 
 

eBagging Bagging Single AdaBoost 

89.71 89.8 90 88 85.24 84.9 84.7 84.7 

 

 

The artificial datasets were created on the Pyhton 

platform. All the generated datasets have 2 class labels 

and they include 1000 instances. The dataset used in 

Table 7-a includes variable feature number for each 

experiment as 50, 100, 150, 200 and 250. In Table 7-b, 

an artificial dataset with 100 features is shown. For 

different evaluations, the number of instances per class 

changes with a ratio of 10%-90%, 20%-80%, 30%-

70%, 40%-60% and balanced class condition is also 

examined. Furthermore, the results according to 

different class separation factors in Table 7-c were 

obtained using a dataset with 50 features and several 

class separation values were used as 0.5 to 2 with 0.25 

increase. Lastly, the dataset which includes 50 features 

and 2% of which consists of extreme outliers was 

created for the experiments in Table 7-d. 

According to the results of Table 7-a, eBagging  

 

outperforms other applied methods in most of the 

cases  

when C4.5, SVM and NB base classifiers were 

selected. When kNN is applied, Bagging performs 

better if the dataset has 50, 100 or 250 features.  

When different class imbalances as in Table 7-b 

were applied, the evaluation results were found similar 

to the outputs of Table 7-a. Even though eBagging 

achieved a comparable performance with bagging 

when kNN is the base classifier, it is the best among 

others when the base classifiers, SVM, C4.5 and NB 

are applied. It managed to classify the same number of 

datasets as bagging did.  

It is a known fact that larger values of class 

separation factor makes the classification task easier. 

This condition holds for the applied experiments in 

Table 7-c. For each base classifier, eBagging achieved 

the most accurate results, especially in C4.5.  
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Table 7-d demonstrates the experimental results of 

the dataset with extreme outliers. Except from the 

results of NB classifier, eBagging with other base 

classifiers managed to classify data points correctly.  

As a consequence of the experimental work, 

eBagging is proved to be a novel and improved version 

of the standard bagging algorithm and it has succeeded 

to compete with powerful ensemble learning methods, 

random forest and AdaBoost, as well. The idea is easy 

to implement, simple and provides major benefits 

compared the other applied algorithms. 

4.3. The Effects of the Classification Noise 

Robustness with respect to noise is a desirable property, 

because some noise in the data is often present. In this 

experimental study, we explored the effect of 

classification noise on the performance of eBagging 

technique. 

  

We added random class noise to the 33 datasets 

described in Table 3 for exploring the effect of 

classification noise. To include classification noise at 

the rate of p percent, p% of the data instances were 

chosen randomly without replacement and class labels 

of them were changed to be incorrect (alternated to 

class label chosen uniformly from the other labels).  

Figure 5 shows the average classification 

performances of eBagging and Bagging techniques at 

the six noise levels (0%, 2%, 4%, 6%, 8% and 10%). 

From this analysis, we can conclude that eBagging is 

still better than Bagging in the presence of noise in the 

data. The evaluation results also proved that in the 

case of Naive Bayes algorithm, eBagging is slightly 

superior to Bagging. However, in the case of decision 

tree, kNN and SVM, eBagging is much better than 

Bagging. In Table 8, the number of wins and ties for 

eBagging and bagging methods is shown. With 10% 

noise, eBagged C4.5 has a certain advantage over 

bagged C4.5 (28 wins, 5 losses). 

Figure 5. Influence of added noise on the average accuracies of eBagging and Bagging methods when noise is added at the rate of (0% - 

10%). 

Table 8. The number of wins obtained from classification accuracy of eBagging and bagging methods in terms of added classification noise. 

Noise 
Ratio 

C4.5 NB kNN SVM 

eBagging Bagging Tie eBagging Bagging Tie eBagging Bagging Tie eBagging Bagging Tie 

0% 27 6 0 25 7 1 28 5 0 17 15 1 

2% 26 7 0 22 11 0 24 8 1 21 10 2 

4% 27 6 0 18 15 0 23 10 0 22 10 1 

6% 26 7 0 23 10 0 20 13 0 26 7 0 

8% 25 8 0 21 12 0 22 11 0 23 10 0 

10% 28 5 0 19 14 0 19 14 0 24 9 0 

 

Classification noise destroys the effectiveness of 

eBagged kNN and bagged decision tree methods at 

most compared to the other applied algorithms. There 

are more dramatic decreases in the classification  

 

accuracies of the mentioned methods when the noise 

ratio is increased. However, when noise increases, 

eBagging still has certain advantages to noise. 
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From this analysis, we can conclude that the best 

method in the presence of classification noise is 

eBagged SVM. In contrast, eBagged kNN is not a good 

choice in such applications. Because, kNN changes 

markedly with noise, while SVM procedures generally 

show small changes.  

A plausible explanation for the better response of 

eBagging to noise is that misclassified examples due to 

noise will present in the training set. Hence, the training 

examples with misclassified examples will tend to 

make each classifier more accurate. EBagging 

overcomes classification noise problem since it 

emphasizes on hard points.  

However, in the experiments, we only considered 

ensembles of size 10. Larger ensembles might be able 

to overcome the effects of fairly high levels of noise. 

5. Conclusions 

The principal purpose of this study is to present a novel 

ensemble learning technique, eBagging, by modifying 

and optimizing standard bagging algorithm. The key 

difference is the creation of the ensemble subsets by 

giving higher chance for selection to the most 

informative and challenging instances which are 

misclassified by the prior learner. This essential step 

canalizes the algorithm to deal with hard-to-classify 

instances in depth so that training errors can be 

minimized.  

In the experimental studies, which were verified by 

statistical tests, four commonly used classifiers, which 

are SVM, NB, kNN and C4.5, are used as base 

classifiers of the applied ensemble learning methods. 

eBagging was compared with single learners, standard 

bagging, random forest and AdaBoost algorithms. 

According to the experimental results, eBagging 

outperforms its counterparts by classifying the data 

points more accurately while reducing the training 

error. Furthermore, average error rate significantly 

decreases when eBagging is performed compared to 

single classifiers and standard bagging algorithm, while 

it leads close results with AdaBoost in half of the cases. 

As a consequence, the proposed eBagging method 

shows promising applicability in classifying data 

samples. The experiments also show that over 33 

datasets, eBagging gives better results than Bagging as 

long as there is little or no noise in the data.  

In addition to benchmark datasets, four different 

evaluations were also done on synthetic datasets 

according to the effect of the number of dimensions, the 

performance on the imbalanced data, the influence of 

the size of class separation values and the impact of the 

outliers. As a result, eBagging dealt with these exteme 

cases better than other applied methods.  

In the future, the following studies is going to be 

performed: 

 Generation of the ensemble subsets in eBootstrap 

step by randomly selecting the instances from the 

whole dataset instead of the classified instances 

after placing all the misclassified instances 

identified by a prior classifier to the ensemble 

subsets, 

 Determination of the optimal ensemble size for 

eBagging. 
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