
296 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Incorporating Unsupervised Machine Learning

Technique on Genetic Algorithm for Test Case

Optimization

Maragathavalli Palanivel and Kanmani Selvadurai

 Department of Information Technology, Pondicherry Engineering College, India

Abstract: Search-based software testing uses random or directed search techniques to address problems. This paper discusses

on test case selection and prioritization by combining genetic and clustering algorithms. Test cases have been generated using

genetic algorithm and the prioritization is performed using group-wise clustering algorithm by assigning priorities to the

generated test cases thereby reducing the size of a test suite. Test case selection is performed to select a suitable test case in

order to their importance with respect to test goals. The objectives considered for criteria-based optimization are to optimize

test suite with better condition coverage and to improve the fault detection capability and to minimize the execution time.

Experimental results show that significant improvement when compared to the existing clustering technique in terms of

condition coverage up to 93%, improved fault detection capability achieved upto 85.7% with minimal execution time of

4100ms.

Keywords: Test case selection and prioritization, group-wise clustering.

Received August 14, 2014; accepted August 31, 2015

1. Introduction

A criteria-based optimization with multiple objectives

concentrates on satisfying a number of objectives

simultaneously. The multi-criteria optimization

problem uses a set of solutions and each are satisfied

the objectives at an acceptable level. The multiple

attributes considered for optimization are fault

detection capability, test suite size, cost and execution

time [7, 13].

Genetic algorithm is a most commonly used test case

generation technique in software development

environment; an advanced heuristic search technique

applied in the area of software testing. For a large

search space and getting optimal set of solutions

genetic algorithm is the best choice. In this, testing of

software can be done with a single objective or with

multiple objectives like minimizing the execution time

and number of test cases simultaneously maximizing

the coverage (i.e., the test requirements) would be

considered [4].

Test case prioritization is a process of executing the

beneficiary test cases while testing the software [6].Test

case prioritization addresses the following objectives

namely:

1. Software testers intend to increase the rate of fault

detection.

2. Detecting the faults earlier in testing life cycle.

3. To enhance the condition coverage at a faster rate.

Test suite prioritization algorithm prioritizes the test

cases with a goal of maximizing the fault detection

ability that is likely to be found during the constrained

execution [7, 10]. By using effective prioritization

techniques, test cases can be reordered by the testers

in order to obtain improved fault detection rate of the

systems. A prioritized test is more effective; if

execution needs to be stopped after a period of time, it

can also be achieved using a random ordering [3].

 Finally, optimization of genetic algorithm

generated test cases and producing ordered test cases

from a set of clusters have been taken as a new

proposal. And also, fault detection by using reduced

test set is considered as main testing criteria.

2. Existing Methods

The concept of multi-objective optimization used for

test case generation with the help of genetic

algorithms is taken from the earlier researchers [4,

13]. An Elitist Non-dominated sorting multi-objective

Genetic Algorithm (ENGA)-based Automatic Test

Pattern Generation (ATPG) for crosstalk induced

delay faults has been introduced later. [13] Used an

objective boundary for calculating fitness whereas [4]

introduced multi-stage concept for automatic test data

generation. [11] Suggested Unified Modelling

Language (UML) diagrams for representing input to

genetic algorithm; the idea of activity diagram of

Control Flow Graph (CFG) representation is learnt

from this paper. Machine learning techniques used for

providing network security have been discussed in [1]

and for object-oriented software fault prediction is

reported by [6]; in particular for criteria-based test

Incorporating Unsupervised Machine Learning Technique on Genetic ... 297

case prioritization, unsupervisored learning techniques

are generally used. Clustering has been used for

prioritization with the help of expert knowledge

presented by [14, 15]. The genetic algorithm is applied

for prioritization of test cases derived from UML

diagrams by [11].
In [9] introduced the concept of optimizing the test

suite size in object-oriented programming where

methods are introduced for performing the optimization

task [12]. A genetic algorithm-based community

detection algorithm has been used to obtain the

optimized package structures for object-oriented

software. Multi-criteria optimization is used as test case

selection in size-constrained regression testing and was

reported by [7]. A cumulative mutation probability

metric is used to determine the effectiveness of a new

test case [3]. The concept of multi-criteria optimization

for selection and ordering is learnt from papers [7, 9].

Test case prioritization techniques including random

and selective prioritization are used by [10, 15].

Existing clustering techniques use pair-wise

combination of test cases in order to reduce the

execution time. If the cluster consists of more than two

test cases, then the no of clusters will be reduced

thereby execution time will also be reduced. The idea

of group-wise combination is experimented using intra

and inter-clustering mechanisms in [14, 15].

Prioritizing test cases using string distances has been

attempted in [5] and the comparison of fault detection

is done with random ordering; the results are more

efficient in detecting the strongest mutants and have a

better Average Percentage of Fault Detected (APFD).

Early fault detection model using integrated and cost-

effective test case prioritization is proposed [8] which

increase the test suite’s fault detection rate. APFD

metric is used to measure the test suite’s fault detection

rate. The importance of early fault prediction is learnt

from [8]. Test prioritization using hierarchical

clustering applied to industrial case study has been

found in [2].
From the literature, in most of the systems decision

making is done using clustering. Multi-criteria

optimization techniques suitable for different stages of

testing are analysed and an attempt of genetic algorithm

with clustering for object-oriented test case generation,

selective prioritization with multiple objectives without

using a separate selection mechanism has been taken as

a proposal. In each stage, the target goal is to reduce the

size of a test suite without affecting the fault detection

capability.

3. Proposed Work

The main objective of the work is to reduce the test

suite size; the number of clusters formed in the existing

hierarchical clustering is tried to reduce the execution

time. The entire system is shown in Figure 1 which has

two main processes:

1. Test case generation using Genetic Algorithm

(GA).

2. Test case prioritization using Group-Wise

Clustering Algorithm (GWCA).

3.

4.

5.

6.

7.

8.

9.

Figure 1. System design.

3.1. Test Case Generation using Genetic

Algorithm

The input program is represented as activity diagram

and then converted into the CFG of activity diagram.

The nodes are numbered from initial to final state by

numbers 1, 2, 3 etc; node weight is calculated by using

the value of maximum stack height and number of

nodes present in the stack. Maximum stack height

value is equivalent to the number of nodes in Control

Flow Graph except decision nodes. The total

complexity of the node is calculated using the

formula,

)()(OUTFANINFANA

The nodes are pushed into the stack and the total

complexity of the node is calculated (TC=A+B). The

GA parameters used for test case generation including

crossover, mutation and fitness range is given in Table

1.

Table 1. GA parameters.

GA Parameters

Name of the Parameter Initial Value Range

Fitness Value 40 40-200

Crossover Probability, Cp 0.95 0.1-1.0

Mutation Probability, Mp 0.95 0.1-1.0

Stopping Criteria 55
≤1000 test

cases

(1)

ACTIVITY DIAGRAM FOR EACH MODULE

CONTROL FLOW GRAPH

GA OPERATORS USED:

1. Selection

2. Fitness Function

3. Crossover

4. Mutation

INFORMA

TION
FLOW

METRIC –

for
covering

paths

INTRA - CLUSTERS

CLUSTERS – BASED ON FITNESS VALUE

n

i

iWF
1

A= FAN (IN)*FAN (OUT)

Total Complexity (TC) = (A+B)

TEST CASE GENERATION USING GA

INTER - CLUSTERS

PRIORITIZED TEST SUITE

MULTIPLE - CRITERIA:

 FDC – Fault Detection

Capability

 Condition Coverage

B = (Smax-K)

298 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

3.1.1. Algorithm for Test Case Generation using

Activity Diagram

The steps involved in test case generation using Genetic

Algorithm by taking activity diagram of Control Flow

Graph as an input is given in existing algorithm [11].

Suppose the initial population is 0011, then the test

case satisfies only last two conditions / decisions (true-

1) and first two conditions value assigned 00 (false-0)

which is not satisfied by the test case.

3.1.2. Operations used in Genetic Algorithm

The operations used for test case generation are

mentioned in Figure 2; Selection of test case is

performed using high-low fit method, crossover using

two-point, and mutation using bit-inversion.

n

i

iWF
1

 High-Low Fit

`

 Two-Point Random

 Bit-Inversion

Figure 2. Operations involved in genetic algorithm.

1. Selection: In high-low fit method, the test cases

selection is done using the combination of more high

fitness values with less low fitness values. So, the

resultant chromosomes with better fitness’s are taken

for next, next generations.

2. Two-point crossover: The crossover facilitates us to

combine individuals i.e. reproduction chromosomes

that were selected. Two-point crossover which calls

for two points to be selected from the parents; the

values between two points are swapped together, to

get two off springs. Consider this example,

 Testcase1: 1 3| 2 5 4| & 7 8 3

 Testcase2: 1 2| 4 3 5| & 9 1 2 3 3

 Offspring1: 1 3 4 3 5 & 7 8 3

 Offspring2: 1 2 2 5 4 & 9 1 2 3 3

3. Bit-inversion mutation: Mutation alters one or more

gene values in a chromosome from its initial value.

Value Occurrences mutation attempts to replace a

duplicate value of an individual with a missing value

to improve the individual’s fitness. For example, the

value 4 is repeatedly coming in a particular test case

that value alone will be replaced by a new value

and is shown below:

 Testcase1: 1 4 4 & 5 9

 Offspring: 1 4 2 & 5 9

4. Fitness function: The fitness function used is

weighted-sum approach. The evaluation of fitness

gives better individuals. These metrics translate

objectives such as quality objectives (usability,

reliability), organizational objectives (scalability),

and environmental objectives (security, privacy)

into some measurable attributes of a candidate

solution. The FF formula is given below:

n

i

iWF

1

Where, Wi - weight of a i
th
 node and n - number of test

cases.

3.2. Test Case Prioritization

For the generated test cases, priorities have to be

assigned and this is done using prioritization; it also

checks the frequency of occurrences. By considering

the execution time of an algorithm and to minimize

the resource cost, the prioritization is usually being

performed only for limited test cases from the

generated test set.
Covering more number of conditions is the main

criteria to be considered for the entire testing process;

which in turn increasing the fault detection capability.

Clustering technique is chosen because it is an

unsupervised machine learning technique for

prioritization. The parameters considered and their

range of values is tabulated in Table 2.

Table 2. Test case prioritization parameters.

S. No. Parameter Range

1 Condition Coverage 70-95%

2 Number of Faults Detected 5-12

3 Execution Time (1000-6000)ms

4 Number of Clusters 12-40

3.2.1. Implementation of Clustering Algorithm

In the existing, they use only pair-wise combination

whereas the proposed technique named GWCA

reduces the number of clusters by combining four test

cases altogether to form a cluster thereby reducing the

execution time of an algorithm; using both Intra and

Inter clustering. Intra-cluster is prioritization of test

cases within a cluster. The criteria taken here is Fault

Detection Capability (FDC). Inter-cluster is

prioritizing the clusters and the criterion is Condition

Coverage (CC). After applying the prioritization

technique, each cluster will represent a single test

case; all the test cases represented by each and every

a-Test Case

Initial Population

Fitness Value

Selection

Crossover

Mutation

Test Data

(2)

Incorporating Unsupervised Machine Learning Technique on Genetic ... 299

cluster are combined to form an optimal prioritized test

suite.

The pseudo-code for group-wise clustering algorithm is

given in Algorithm 1.

Algorithm 1. Pseudo-code for group-wise clustering algorithm.

Input: A set of n test cases, T

Output: A dendrogram, D, representing the clusters

(1) Form n clusters, each with one test case

(2) C! {}

(3) Add clusters to C

(4) Insert clusters n as leaf node into D

(5) When there is more than one cluster

(6) Find a group of test cases with similar fitness value

(7) Merge the group for new cluster Cnew

(8) Remove the group of test cases from C

(9) Add Cnew to C

(10) Insert Cnew as a parent node of the group into D

(11) Return D

 Cluster formation: Test cases with similar fitness are

combined together to form a cluster. Four test cases

are chosen maximum for a cluster. Representation of

a test case from each cluster with assigned priority

value is shown in Figure 3.

 TC TC

 C1 C1

 TC1 TC2 TC3 TC4 ……………..…. . TC8

Figure 3. Cluster formation.

Instead of assigning priorities to individual test

cases, priority is being assigned to a cluster. Once the

clusters are formed, intra clustering is performed,

prioritization of the test cases inside the clusters. The

fault detection capability, and condition coverage are

considered as the multi-attributes for test case

prioritization. Intra clusters are formed by taking fault

detection capability as criteria and inter clusters are

formed based on the condition coverage of the test

cases. Finally inter clustering is performed where the

individual test case represented by a cluster with its

priority. Here, group-wise reduces the no of levels

required. When compared to existing clustering no of

levels are reduced, and time taken for prioritization is

also reduced. The process of selecting test cases for

prioritization is shown in Figure 4.

 Representation

 of a test case

Figure 4. Selecting test cases for prioritization.

Fault Detection Capability: The ability of a test

case to detect the faults or errors in programs. Fault

detection capability is calculated using the formula,

)....(21

1

m

n

i

i CCCTFDC

Where, m - number of conditions

n - number of test cases

 C1, C2 ... Cm – set of conditions and

T - test case

4. Result Analysis

Data set consists of SIR and existing java programs.

Lines of code 70-240 with no of conditions range from

(18-32) is taken for experimentation. Genetic

algorithm generated test cases are taken for analysis.

Fitness value of test cases depends on the no of

conditions covered (by the test case). ge CC is

represented in % for each test case which depends on

fitness value i.e., fitness purely depends on the

weightage (weighted sum approach) given to the

individual nodes in the activity diagram. The test cases

with totally different set of values give better results

i.e., covering all paths. CC is directly proportional to

fault detection capability and number of test cases to

execution time. If CC is more, then FDC will also be

more i.e., increase in coverage is nothing but increase

in FDC. Test set with different combinations have

been generated using GA (which uses a strategy for

test case generation). Maximum of 1000 generations

have been considered as stopping criteria for genetic

algorithm.

Initial testing results in coverage which is above

70% shown in Figure 5. Variance in test value is

measured using the hamming distance which produces

the dissimilar test cases; the variance in terms of

condition coverage (%) is shown in Figure 5.

PRIORITIZED test

cases based on FDC

and condition coverage

INDIVIDUAL

test cases

CLUSTERS are

formed based on the

fitness value

GENERATED TESTCASES

CLUSTER FORMATION USING FITNESS VALUE

INTRA-CLUSTERS

CLUSTER1-

ONE TEST

CASE

CLUSTER2-

ONE TEST

CASE

CLUSTER3-

ONE TEST

CASE

INTER-CLUSTERS

CLUSTERn-

ONE TEST

CASE

Based on FDC,

Condition

Coverage

(3)

300 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Information Flow Metric (IFM) gives the value of how

much the current value converges from previous one

i.e., convergence. Convergence and diversity are the

commonly used metrics in GA.

Test cases grouping used for selection and

prioritization is resultant in optimized test suite shown

in Figure 5. Multi-criteria optimization, GWCA used

for taking the decision in test case selection and

execution with improved FDC.

a) ELEVATOR - GA generated test cases. b) ELEVATOR - clustered and prioritized

test cases.

c) CHESS PLAYING - GA generated test

cases.

d) CHESS PLAYING – clustered and

prioritized test cases.

Figure 5. Initial generated test cases and improved results in

reduced test suite after applying prioritization technique, group-wise

clustering algorithm.

In elevator and shipping payment programs the

condition coverage achieved is 91% by using GWCA

whereas for library management system, CC is 94%.

Number of conditions covered in GWCA is

comparatively more than Hierarchical Clustering

Algorithm (HCA) and the test case efficiency in terms

of fault detection capability achieved upto 88.7%

shown in Table 3. Cluster covering conditions decides

the priority and it has been improved in group-wise

clustering.

By combining more than two test cases together to

form a cluster reduces the number of levels required for

testing when compared to hierarchical combination. For

example, programs elevator and alarm clock, number of

clusters is reduced up to 12, a significant reduction. An

important parameter, number of faults detected at

particular time is improved very much by prioritization

as proven in alarm clock, 11 faults can be detected at

2970ms whereas in previous predictions it is 9; library

management system execution time was 3240ms and

for soda vending machine and atm systems 4300 and

4960ms. Thus by using new clustering algorithm the

execution time is reduced significantly and the results

are presented in Figure 6.

Table 3. Results obtained in hierarchical and group-wise clustering
algorithms.

S. No.

Program

Name

Number of

Conditions

Number of

Test Cases

Generated

Number of

Clusters

Formed

Condition

Coverage

(%)

HC

A
GWCA HCA GWCA

1 Elevator 23 240 28 12 80
91

2

Alarm Clock 19 305 34 18 78 90

3
Shipping

Payment
18 290 32 16 79 91

4
Stock

Management
18 170 20 12 82 91

5
Student

Enrolment
20 185 22 12 81 90

6

Chess Playing

32

260

30 14 76 89

7

Soda Vending
Machine

28 210 24 12 73 88

8

Library

Management

System

24 250 30 16 85 94

9
Automated

TellerMachine
35 315 36 18 78 89

a) Minimized execution time in GWCA.

b) Improved fault detection effectiveness in GWCA.

Figure 6. Improved results of group-wise clustering compared to

hierarchical clustering.

Incorporating Unsupervised Machine Learning Technique on Genetic ... 301

5. Conclusions

Thus, the clustering technique named GWC Aperforms

better in reducing number of levels for test case

prioritization. In test case generation using GA, the

fitness is calculated based on the weight of individual

nodes. The multiple-criteria for optimization considered

are condition coverage in terms of fault detection, no of

clusters formed and execution time requirement.

Number of clusters formed using group-wise clustering

is comparatively less compared to pair-wise and

hierarchical. Prioritization uses fault detection

effectiveness for assigning priorities and produces

ordered test cases as output. The condition coverage

achieved using group-wise clustering has been

improved up to 93% comparatively better than

hierarchical clustering.

 In future, the algorithm will be experimented with

large programs by varying parameters. Similar type of

criteria-based prioritization techniques can be

attempted for testing. Different clustering criteria in

addition to fault detection effectiveness can be

considered for testing object-oriented programs.

References

[1] Abdulla S., Ramadass S., Altaher A., and Al-

Nassiri A., “Employing Machine Learning

Algorithms to Detect Unknown Scanning and

Email Worms,” The International Arab Journal

of Information Technology, vol. 11, no. 2, pp.

140-148, 2014.

[2] Carlson R., Do H., and Denton A., “A Clustering

Approach to Improving Test Case Prioritization:

An Industrial Case Study,” in Proceedings of 27
th

IEEE International Conference on Software

Maintenance, Williamsburg, pp. 382-391, 2011.
[3] Do H. and Rothermel G., “On the Use of

Mutation Faults in Empirical Assessments of Test

Case Prioritization Techniques,” IEEE

Transactions on Software Engineering, vol. 32,

no. 9, pp. 733-752, 2006.

[4] Ghiduk A., “Automatic Generation of Object-

Oriented Tests with a Multistage-Based Genetic

Algorithm,” Journal of Computers, vol. 5, no. 10,

pp. 1560-1569, 2010.

[5] Ledru Y., Petrenko A., Boroday S., and Mandran

N., “Prioritizing Test Cases with String

Distances,” Automated Software Engineering,

vol. 19, no. 1, pp. 65-95, 2012.

[6] Malhotra R. and Singh Y., “On the Applicability

of Machine Learning Techniques for Object

Oriented Software Fault Prediction,” An

International Journal, vol. 1, no. 1, pp. 24-37,

2011.

[7] Mirarab S., Akhlaghi S., and Tahvildari L., “Size-

Constrained Regression Test Case Selection using

Multi-Criteria Optimization,” IEEE Transactions

on Software Engineering, vol. 38, no. 4, pp. 936-

956, 2012.

[8] Pandey A. and Shrivastava V., “Early Fault

Detection Model using Integrated and Cost-

Effective Test Case Prioritization,” International

Journal of System Assurance Engineering and

Management, vol. 2, no. 1, pp. 41-47, 2011.

[9] Raamesh L. and Uma G., “An Efficient

Reduction Method for Test Cases,” International

Journal of Engineering Science and Technology,

vol. 2, no. 11, pp. 6611-6616, 2010.

[10] Roongruangsuwan S. and Daengdej J., “Test

Case Prioritization Techniques,” Journal of

Theoretical and Applied Information

Technology, pp. 45-60, 2010.

[11] Sabharwal S., Sibal R., and Sharma C.,

“Applying Genetic Algorithm for Prioritization

of Test Case Scenarios Derived from UML

Diagrams,” International Journal of Computer

Science Issues, vol. 8, no. 2, pp. 433-444, 2011.

[12] Singhal A., Chandna S., and Bansal A., “A

Novel Approach for Prioritization of Optimized

Test Cases,” International Journal on Computer

Science and Engineering, vol. 4, no. 5, pp. 795-

802, 2012.

[13] Sukstrienwong A., “Solving Multi-Objective

Optimization under Bounds by Genetic

Algorithms,” International Journal of

Computers, vol. 5, no.1, pp. 18-25, 2011.

[14] Upadhyay A. and Misra A., “Prioritizing Test

Suites Using Clustering Approach in Software

Testing,” International Journal of Soft

Computing and Engineering, vol. 2, no. 4, pp.

222-226, 2012.

[15] Yoo S. and Harman M., “Clustering Test Cases

to Achieve Effective and Scalable Prioritization

Incorporating Expert Knowledge,” in

Proceedings of the Eighteenth International

Symposium on Software Testing and Analysis,

Chicago, pp. 201-212, 2009.

302 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Maragathavalli Palanivel received

her B.E. degree in Computer Science

and Engineering from Bharathidasan

University, Trichirappalli in 1998

and M.Tech. degree in Distributed

Computing Systems from

Pondicherry University, in 2005.

She joined Pondicherry Engineering

College in 2006 and currently working as Assistant

Professor in the Department of Information

Technology. Now she is pursuing her PhD degree in

Computer Science and Engineering. She has published

several research papers in various refereed journals and

international Conferences. She is a Life member of

Indian Society for Technical Education.

Kanmani Selvadurai received her

B.E and M.E in Computer Science

and Engineering from Bharathiar

University and Ph.D from Anna

University, Chennai. She has been

the faculty of department of

Computer Science and Engineering,

Pondicherry Engineering College from 1992. Presently

she is working as Professor in the department of

Information Technology. Her research interests are in

Software engineering, Software testing and Data

mining. She is a member of Computer Society of India,

ISTE and Institute of Engineers India. She has

published more than 120 papers in international

journals and conferences.

