
246 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Pair Programming for Software Engineering

Education: An Empirical Study

Kavitha Karthiekheyan
1
, Irfan Ahmed

2
, and Jalaja Jayalakshmi

1

1
Department of Computer Applications, Kumaraguru College of Technology, India

2
Department of Computer Applications, Sri Krishna College of Engineering and Technology, India

Abstract: As an iterative and incremental methodology, agile software has helped a lot in evolving solutions from self-

organizing, cross-functional teams. Pair programming is a type of agile software development technique where

two programmers work together with one computer for developing the required software. This paper reports the results of a

pair programming exercise carried out with a set of one hundred and twelve post graduate students, who developed small

applications as a part of their software development laboratory course at Kumaraguru College of Technology (KCT) during

the academic year 2012-2013 and 2013-2014. The objective of this research is to investigate the effect of adopting pair

programming as a pedagogical tool in Indian higher educational setting. Purposeful pair programming modules were

deployed in various phases of software development and the results revealed that pair programming is not only an useful

approach in teaching computer programming but also facilitate effective knowledge sharing among students. Further, the

effectiveness of pair programming was realized to a greater extent during the designing and coding phases of software

development. Practicing pair programming also enables the students to develop their collaborative skills, which is crucial to

an industrial working environment.

Keywords: Agile software development, collaborative learning, knowledge sharing, pair programming, software engineering,

education.

Received December 13, 2014; accepted April 26, 2015

1. Introduction

Agile software development contains immense

potential for delivering increased productivity, quality

and project success rate in software development

projects by synergizing considerable tacit knowledge.

In addition to promoting proactive planning, it also

encourages rapid and flexible response to change by

providing collaborative environment. Extreme

Programming [3] is one of the most widely recognized

agile software development methods, which focuses on

disseminating knowledge through collaborative

practices such as pair programming, planning game

and retrospectives. Pair Programming is an extreme

programming practice, where two programmers

mutually collaborate at the same workstation to acquire

added up knowledge and experience on everyday

basis. It works around the principle of sharing work

and expertise across teams.

Organizations focusing on developing software

practice pair programming where the programmers

collaborate as pairs by sharing a single computer

working with the same design, algorithm, code, or test

etc., [24]. While one member of the pair, namely the

driver types at the computer or writes down a design,

the other who assumes the role of the navigator,

observes the work of the driver to ensure objectivity,

logic and process flexibility [6]. Research results have

provided evidence for the efficacy of pair

programming [2]. Empirical evidence suggests that

two programmers working in collaboration can be

twice more effective in terms of speed and the

possibility of finding solution when compared to two

programmers working individually. The effectiveness

of the pair programming stems from effective and

frequent brainstorming among the pairs [7]. In

addition, it also facilitates frequent exchange of roles

between pairs. Further, through constant code

reviewing, pair programming also minimizes defects to

a significant extent, thus resulting in the development

of an error-free quality product [21].

Pair Programming (PP) has been offering

considerable promise as a strategy to learn

programming in academic environments. Engaging in

collaborative activities such as pair programming

engenders greater participation and better interaction

among learners when compared to programming done

individually. Studies revealed that pair programming

complimented the learning process commendably

within a short period of time [24]. Further, it also

helped students to gain real time practical experience

of software development through knowledge sharing

and collaboration [20]. While programming in pairs,

both partners tend to discuss and work on the given

problem, thus sharing their experience and knowledge

[1, 17, 23].

In this study, the researcher explores the various

aspects of pair programming which was used as a

teaching-learning methodology in a software

development laboratory course as a part of Master of

http://en.wikipedia.org/wiki/Self-organization#Self-organization_in_agile_software_development
http://en.wikipedia.org/wiki/Self-organization#Self-organization_in_agile_software_development
http://en.wikipedia.org/wiki/Cross-functional_team
http://en.wikipedia.org/wiki/Computer_programmer

Pair Programming for Software Engineering Education: An Empirical Study 247

Computer Applications program. Further, this study

also investigates the impact of pair programming

practices on software development by studying the

effectiveness of pair programming

a) In various phases of software development.

b) In facilitating collaborative learning through

knowledge sharing. The analysis was based on data

sources gathered for about two semesters in a post

graduate computer applications course.

The outline of the paper is as follows. The review of

literature is presented in section 2. The work proposed

is discussed in section 3 and the analysis and

interpretation of the collected data is presented in

Section 4. Student‟s perception on pair programming is

discussed in Sections 5 and 6 discusses the conclusion

part of the work.

2. Existing Studies on Pair

Programming

A comprehensive review of literature was done in

order to understand the impact of pair programming

exercise on teaching learning process. The ability to

work as part of a cross-disciplinary team in industry

has been highlighted by Scott and Wilson [19].

Kuppusami and Vivekanandan [10] experimented with

computer science course students comparing the

learning efficiency of students who adopted pair

programming with those using traditional method for

laboratory exercises for a short duration.

The cost-effectiveness of PP and the potential

contained in the same for developing codes with a few

errors have been demonstrated by Muller [12].

According to Lui et al. [11], pair programming

promotes not only quality programming skills, but also

enhances responsibility, mentoring, teamwork in

addition to providing an increased sense of enjoyment.

Vanhanen and Korpi [21] demonstrated their

experiences of using PP extensively in an industrial

project.

An extensive and substantial case study on pair

programming was carried out in software development

courses at the University of Dortmund, Germany by

Bipp et al. [5]. Thirteen software development teams

with a total of 100 students took part in the

experiments. The groups were as follows: In one set,

the group members worked on their projects in pairs.

Not only did these teams produce nearly the same

number of codes as the teams of individual workers in

the same period, but their codes were easier to read and

understand thus facilitating easy detection and

correction of errors. Research conducted by Begel and

Simon [4] also brought to fore the fact that freshly

inducted software developers often struggled to

adequately communicate, when they were in need of

assistance or while they were struggling with a

problem. Pikkarainen et al. [14] studied the

communication aspect of agile software development

and concluded that agile practices improve both formal

and informal communication among team members.

On reviewing 66 studies, Salleh at el. [18] identified

certain psychosocial factors such as compatibility,

personality and gender issues, which affect the

effectiveness of pair programming among students.

The effects of pair programming on knowledge

transfer and the resulting sense of fulfillment

experienced by students were reported by Venkatesan

and Sankar [22]. Hannay et al. [8] observed that the

personality of the pairs engaged in pair programming

could be a valid predictor for long-term team

performance. Salleh at el. [18] presented evidence

related to the effectiveness of Pair Programming (PP)

as a pedagogical tool in higher education CS/SE

courses. Naufal and Hui [13] conducted a study to

investigate the influence of learning style preference

on learning C++ language, especially in terms of the

quality of codes written and the number of errors that

occurred in programming. Radermacher and Walia

[16] attempted to specifically identify the presence of

knowledge deficiencies among the students to

influence curriculum changes in order to address the

same.

Studies reported in literature mostly involved

experiments conducted for a limited duration ranging

from a few laboratory sessions to a few months.

Further, only a few studies in the Indian educational

context have been reported so far. The current study

aims to plug the gap by undertaking a controlled

experiment and extending it to a longer duration i.e. a

period of six-months for each batch of students for the

same laboratory course. In addition to exploring the

knowledge sharing aspect of PP, it also records the

effectiveness of PP during various phases of software

development, as perceived by students.

3. Proposed Work

The strength of knowledge sharing through pair

programming was felt when the students of the Master

of Computer Applications (MCA) program struggled a

lot initially while developing applications, owing to

their different educational backgrounds [9]. Based on

the researcher‟s experiences and insights drawn from

existing literature, the researcher proposed to study the

effects and experiences of the pair programming

concept. Initially, the factors including the usefulness

of pair programming, reduced errors, collaborative

skills, proactive learning and knowledge improvement

were taken into consideration. The objectives of the

study are:

 To test the association between the overall scores

secured by students in similar software development

projects, irrespective of whether they worked in

pairs or as individuals.

248 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

 To test the significant difference in the phase-wise

scores secured by students in similar software

development projects, irrespective of whether they

worked in pairs or as individuals during the various

phases of software development.

 To study students perceptions on the effectiveness

of pair programming during various phases of

software development.

3.1. Experimental Methodology and Context

In order to facilitate learning process of students in the

computer applications course, the study investigated

the use of pair programming as a teaching

methodology and investigated its effectiveness on

students overall learning process.

Formal lists of questions were prepared and the

responses were analyzed using standard statistical

techniques. Two questionnaires with close-ended

questions containing a 5-point rating scale were

designed. The students were made to fill an entry

questionnaire consisting of ten questions to assess their

level of exposure to programming tasks, partner

preferences etc. The worksheet also contained twelve

open-ended questions, which allow the students to

provide their own answers in an unprompted manner,

thus yielding qualitative data. After the completion of

the project, an exit questionnaire containing twenty

questions on knowledge sharing, tool learning, pair

programming effectiveness during various phases of

software development and general experiences on pair

programming Table 1 was administered to each student

practising PP. Also, unstructured interviews were

conducted to understand their pair programming

experiences and clarify their responses to

questionnaires.

The Unified Process (UP) is an iterative software

development process framework [15]. The UP

determines a project life cycle as consisting of four

phases namely inception, elaboration, construction and

transition.

In the inception phase, the business case which

includes business context, success factors and financial

forecast is established. The primary objective of the

elaboration phase is to mitigate the key risk items

identified by analysis till the end of this phase. The

objective of the construction phase is to build the

software system. The bulk of the coding takes place in

this phase and the first external release of the software

also happen at this stage. Finally, the transition phase

helps to 'transit' the system from development into

production, thus enabling the end user to understand

the system.

The pair programming experiment was carried out

for two batches (2012-13 and 2013-14) in software

development laboratory course in the fifth semester of

the MCA Program. The credit for the course weighted

50% out of the total credits among the other laboratory

courses carried out in that semester. The curriculum

doesn‟t contain an associated theory component. The

students were already exposed to subjects like software

engineering, databases and object oriented analysis and

design techniques, which are essential for developing

software applications during laboratory sessions. The

students were expected to use IBM rational suite and

microsoft visual studio software. While developing the

application, the students were instructed to follow the

Unified Process model for developing the software as

Rational Suite recommends it. Since they lacked prior

knowledge of the above-mentioned tools, they were

asked to explore the various functionalities and to

develop small applications on their own.

To begin with, a batch of fifty-five third year MCA

students participated in the study. The study was

carried out in a controlled experimental setup. While

pair and solo programming were considered as

independent variables, improved knowledge sharing

and work quality were treated as dependent variables.

Eighteen pairs were formed by Pair Programming

Information System (PPIS) based on student responses

to the following factors such as willingness to

participate in the experiment, partner preferences, level

of knowledge, cumulative grade point average secured

till the previous semester and their level of expertise in

developing software applications and tool usage. The

remaining 19 students were made to work individually.

The students who belonged to this group either

preferred working solo or were capable of working on

their own.

Most students preferred to work with the same

gender and had no problems working with partner of

any knowledge level. The major intent of the study is

to enable the average and slow learners to learn and

display improved performance in the laboratory

course. Hence, the students were categorized into 4

levels based on the cumulative grade point average

secured. The students were grouped as follows: Level

1 consisting of top performers, level 2 the above

average performers, level 3 the average category and

level 4 the slow learners. Students who were in level 4

and 3 were either paired with students in level 1 or

level 2 in order to facilitate effective knowledge

sharing. The students who were asked to work in solo

either belonged to level 1 or 2, considering the fact that

they were capable of learning and working on their

own. Yet another batch of fifty seven third year MCA

students was also involved in the study. All students

were made to work in pairs with the intent of

collecting only their pair programming experiences.

No comparisons were drawn between the project

outcomes of these batches. This data was used to

correlate the variables Table 3.

They were given the freedom of choosing their pairs

in order to know their level of satisfaction while

working with a partner of their choice.

http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process

Pair Programming for Software Engineering Education: An Empirical Study 249

3.2. The Controlled Experiment

A process framework was designed in order to carry

out the pair programming exercise systematically

Figure 1. Appropriate user interfaces available in the

framework enabled student respondents and the

assessors to record data easily. Once the students were

found to acquire the requisite understanding about pair

programming, they were allowed to access online

software PPIS, which forms a part of the framework.

PPIS enabled the students to fill the entry and exit

questionnaire online. The questionnaire entries were

stored in appropriate databases [9].

For the first batch, eighteen software application

development projects with equal levels of difficulty

were chosen for the experiment by the faculty. These

projects were randomly allotted to the students and the

scope and requirements were clearly explained to

contextualize the results. These tasks were executed

during separate lab sessions of five hours duration per

week. The same project title was allocated to pairs and

solo programmers in order to enable easy comparison

of outcomes and the milestones for the projects were

also announced. For the second batch, twenty eight

similar application development projects were given to

student pairs with the main intention of collecting their

general experiences related to pair programming. One

student volunteered to work on his own. The pairs

were asked to interchange driver-navigator roles once

in the middle of each laboratory session to ensure

equal contribution to the project.

During the lab experiment, the students were asked

to record their experiences individually for each lab

session. In order to extract and record the software

development and learning experiences of those

students working in pairs, they were made to fill in a

worksheet as detailed in Table 1. Subsequently, details

related to knowledge sharing and transfers were also

collected. After the tasks were completed, the students

were asked to fill in an online exit questionnaire,

specifically designed to collect their views on pair

programming, knowledge sharing, tool learning and

collaborative skill development.

Each application developed by the student was

assessed phase-wise and their comments were recorded

in the software. Artifacts like requirements

management plan, vision document, use case

documents, Unified Modeling Language (UML)

diagrams, code developed for each module, test cases,

test plans and test results were also taken into

consideration for assessment purposes. Further, each

student was also asked to demonstrate the application

developed by them and the data thus collected was

analyzed using appropriate tools. The results of the

analysis are presented in the following sections.

The previous studies reported in literature have not

used a complete process framework that is fully

automated. When the entry questionnaire is filled by

the respondent online, PPIS would automatically

suggest pairs based on student preferences. It would

also suggest pairs randomly on demand. Once the data

entry is complete for the questionnaires, worksheets

and assessment sheets, the data will be stored in a

database that can be exported in excel format, which in

turn can be fed into the analysis tools.

As a means of achieving validity, during the pre

experiment phase, the assessors gave a presentation on

pair programming, covering details related to the type

of problem that would be given to the students during

the experiment and the desired outcomes in the

laboratory sessions. Following this, the basic features

of the IBM rational suite and microsoft visual studio

environment were demonstrated by the faculty.

Clear, consistent and unambiguous instructions

regarding criteria and method of assessment were also

given. Therefore, even before starting the experiment,

the student respondents were clear about the tasks to be

carried out during the lab sessions, phase-wise artifacts

that would be assessed and also about the various

assessment methods such as awarding grades for the

phase-wise artifacts, presentations and viva. The

students were given sufficient time to explore the

concepts of the prescribed software by referring to e-

books and lab manuals. Care was taken to ensure that

the pairs interchanged among themselves and shifted

roles frequently to enable knowledge transfer and to

ensure equal contribution to the work. To ensure

accurate recording of data, all the laboratory sessions

were coordinated and closely monitored by two faculty

members.

Both the assessors involved in the study have more

than ten years of teaching experience and have prior

experience in handling software development related

subjects. They have also guided more than fifty student

projects and have rich expertise in using rational

software. The assessors conducted the lab sessions

methodically and used a standardized scheme Table 2

for assessment purposes. They followed clear and

systematic recording procedures in order to ensure

valid and reliable data. Each student was assessed

individually by both the assessors and their scores

obtained were more or less the same with a maximum

difference of five percent, thus ensuring inter-rater

reliability.

Pair programming experiment was carried out for

different batches of students in various laboratories.

Student respondents who underwent pair programming

exercise in the software development lab had also

worked in pairs in visual programming laboratory

course conducted in the previous semester. The

students were assessed by the same two assessors and

under the same standards and guidelines. The results

seem to be promising [1] and students had opined that

pair programming was very useful to them and helped

them in sharing knowledge and learning a tool with a

good interface. The students had also scored well in

250 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

final semester exams in both the laboratories, with a

further improvement of scores in levels 3 and 4. The

results obtained from the experiments conducted in

both the labs seem to be consistent, thus increasing the

reliability of the data collected.

Generally, the attitudes and behavior of student

respondents might not be consistent. At times, it is

possible that the questions may not be interpreted by

them as they are intended to be. In all likelihood, the

student respondents may rate a factor without

understanding the question carefully, thus yielding

imprecise data and creating a threat to the validity of

the data. This problem was addressed by designing

questions that can be both clearly and easily

understood by student respondents.

4. Analysis and Interpretation of Data

The collected data was analyzed using IBM

SPSS predictive analytics software.

4.1. Study of the Correlation Between

Variables

The data for deriving this table was taken from the exit

questionnaire collected from both batches of student

respondents. The variables used in the table are

explained as follows:

1. Pair support-support and coordination rendered by

the pair during pair programming session.

2. Levels of awareness-during pair programming, the

partner constantly watch the activities of his/her

pair, thus increasing the awareness levels.

3. Reduced Errors-the extent to which constant code

reviewing during PP helped to reduce errors.

4. Collaborative skills- improvement in collaborative

skills after pair programming.

5. Construction phase activities-effectiveness of PP

during the construction phase of software

development.

6. Proactive Learning-Improvement of work quality

and skills through effective learning.

The ratings given by the respondents for various

factors about pair programming were stored in an excel

sheet and this data was used to find the correlation

between the variables. Factor analysis and pearson

correlation tests were used to find the correlation and

the results are exhibited in Table 3. It can be seen that

the highest correlation of 0.598 was observed for the

following two variables namely pair support and

reduced errors. The correlation value was found to be

significant. During pair programming, since one of the

pair, namely the navigator looks for errors and bugs

made by the driver and correct it then and there, the

errors while developing software were minimized to a

significant extent.

Table 1. Sample questions asked in the questionnaire.

Entry Questionnaire Exit Questionnaire Worksheet

Rate your level of

understanding on the subjects

Software engineering and
object oriented analysis and

design.

Do you think working

in pairs was useful?

Lines of code

developed

Mention the number of

software applications
developed so far

Do you see yourself
getting better in

developing

collaborative skills?

Types of errors and
time spent for

debugging

Rate your level of familiarity

of the concept „Pair

Programming‟.

To what extent having

a second opinion

helped you to avoid
common mistakes,

reduced errors thus

saving time?

Contribution of

partner in

correcting errors

Mention the preferred level of

your partner while doing pair

programming.

Did pair programming
improve your work

quality and skills?

Pair programming

experience in the

session

How far you will be

comfortable working with a

different gender?

Effectiveness of pair
programming in

various phases.

Difficulties faced
in the session if

any

Table 2. Artifacts used for assessment.

Inception

phase

artifacts

(10 marks)

Elaborati

on phase

artifacts

(10

marks)

Construction

phase

artifacts

(10 marks)

Transition

phase

artifacts

(10 marks)

Project execution

(10 marks)

Requirement

management

plan

Vision

document

Use case

ocument

Class

diagram

Use case

diagram

Sequence

Diagram

Activity

diagram

Lines of Code

Readability of
code

Complexity of
code

Understandabil
ity of code

Defect density

Test cases

developed

Test plan

Test cases
passed

Test results

Correctness and
effectiveness of

output

Alternative

solution/

Thinking different

Viva

Project demo

Figure 1. Pair programming process framework.

Pair Programming for Software Engineering Education: An Empirical Study 251

Table 3. Correlation between vsariables.

Pair

Suppor

t

Levels of

awarenes

s

Collaborativ

e Skills

Reduce

d

Errors

Constructio

n

Phase

activities

Proactiv

e

Learning

Pair Support 1 .444
**

 .331
**

 .598
**

 .208
*
 .002

Levels of

awareness
 1 .591

**
 .459

**
 .314

**
 -.120

Collaborativ

e Skills
 1 .538

**
 .360

**
 .010

Reduced

Errors
 1 .317

**
 -.164

Construction

Phase

activities

 1 .565
**

Proactive

Learning
 1

** Correlation is significant at 0.01 level

The next highest correlation was found for the

variable levels of awareness and the collaborative

skills, with a correlation value of 0.591. Students

normally seemed to prefer collaborating among

themselves to obtain new ideas and also to seek advice

from one another. Thus, those students who learn

collaboratively and benefit from the ideas and opinions

of others seem to have an increased level of awareness.

Further, there also seemed to be a good correlation

between the variable collaborative skills with other

variables namely reduced errors, construction phase

activities and proactive learning. The correlation

between the variable proactive learning and the

variables pair support, levels of awareness,

collaborative skills and reduced errors was also found

to be very low and insignificant. The only variable that

correlates with proactive learning seems to be the

construction phase activity. Thus, it can be concluded

that the construction phase of software development

provides more opportunities and contains more scope

for proactive learning.

4.2. Association Between Overall Scores

Secured by Students Undergoing Pair and

Solo Programming

A paired t test was carried out to test whether there is

any difference between the outcomes of similar

projects that were carried out in pairs or solo. The

hypothesis formulated for the same is as follows:

 H0: There is no significant difference in the overall

scores secured by students in similar software

development projects, irrespective of whether they

worked in pairs or as individuals.

The outcomes of the project done using pair and solo

programming techniques were evaluated by the

faculty. A phase-wise evaluation was carried out

considering the artifacts produced in each phase of the

software development. The overall scores comprised of

the evaluation of the student‟s projects in various

phases namely the inception, elaboration, construction

and the transition phase, with a maximum score of 10

for each phase and 10 for the project execution,

aggregating to a maximum overall score of 50. A

paired t-test was used to compare the overall scores of

pair and solo programmers and the results are shown in

Table 4.

Table 4. Overall scores of pair/solo programmers.

 Mean SD t df Sig. (2-tailed)

Overall Scores for

projects secured

by
Pairs/Individuals

Pair 39.16 3.43 4.4

69
17 .000

Solo 32.22 5.44

From the results, it can be concluded that the

significance value for the paired t test is less than 0.05,

and is highly significant. Therefore, the null hypothesis

can be rejected and the alternative hypothesis that there

is difference in the scores of the pair programmers and

solo programmers on similar projects stands accepted.

It can also be seen that the mean of the overall scores

for projects was observed to be high in the case of pair

development when compared to scores for projects

developed by individuals Figure 2. The learners seem

to engage in more creative software development when

compared to other areas of development. Further, since

pairs generated better ideas than solo programmers,

their overall scores stand high.

 Figure 2. Pair-Solo score comparison.

From Figure 2, it can be understood that the highest

score of 46 was secured by the students who worked as

pairs, belonging to levels 1 and 3. The pair seems to

have shared knowledge and brainstormed on various

issues, thus emerging with a better score. The lowest

score of 33 was secured by a student pair who

belonged to level 3 and level 2. As per the worksheet

data collected from the pair, it can be understood that

the pair collaboration and knowledge sharing was low,

resulting in low scores among students. Similarly,

while looking at the scores secured by solo

programmers, the highest score 42 was secured by a

level 1 student and the lowest score 22, by a level 2

student. The student who scored low among the solo

programmers admitted that he was not so efficient in

software design and also that he spent more time on

debugging. The student further opined that his score

may have improved if he had undergone pair

programming. Thus, it can be inferred that students

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 101112131415161718

S
co

re
 (

 O
u

t
o

f
5

0
 m

ar
k
s)

No. of Projects Pair Solo

252 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

working as pairs and developing software projects

outperformed those working solo.

Table 5. Phase-Wise Scores of Pair/Solo Programmers.

Development

Phase

Programming

style
Mean Std. Deviation t df

Sig. (2-

tailed)

Inception
Pair 7.166 1.24853

1.824 17 .086
Solo 6.166 2.38253

Elaboration
Pair 8.388 1.14475

2.803 17 .012
Solo 7.111 1.49071

Construction
Pair 8.000 1.02899

3.051 17 .007
Solo 6.777 1.47750

Transition
Pair 7.555 .98352

5.208 17 .000
Solo 4.833 2.40710

4.3. Association Between Phase-Wise Scores

Secured by Students Undergoing Pair and

Solo Programming

A paired t test was carried out to test whether there is

any difference between the outcomes of similar

projects that were carried out in pairs or solo during

different phases of software development. The

hypothesis formulated for the same is as follows:

 H0: There is no significant difference in scores

secured by students in similar software development

projects, irrespective of the fact whether they

worked in pairs or as individuals during various

phases.

A phase-wise evaluation was carried out considering

the artifacts produced during each phase of software

development and the scores were recorded in the

assessment sheet by the assessors. In the inception

phase, artifacts such as vision document, requirements

management plan and use case documents were

considered. In the elaboration phase, diagrams such as

activity, use case, sequence and class were considered.

The construction phase was evaluated by analyzing the

code developed by the students, considering factors

such as code quality, readability, defect density and

productivity in terms of lines of code. Finally, the

evaluation criteria for transition phase consisted of test

cases, test plans prepared and the test results produced

by automated testing tools. The comparisons of the

phase-wise scores are shown in Table 5. It can be

observed that the scores obtained through pair

programming are high in all the four phases of

software development. It can be concluded from the

results that the significance value for the paired t test

was less than 0.05 and highly significant for H0 b, H0 c

and H0 d. Therefore, the null hypothesis stands rejected

and the alternative hypothesis stands supported. During

these three phases, the pairs collaborated effectively,

generating better ideas and showing better

productivity, when compared to solo programmers.

From the scores obtained in the inception phase, it can

be observed that the significance value for the paired t

test is greater than 0.05, thus validating the null

hypothesis H0 a. Thus, it can be understood that the

students can work effectively even as individuals

during the inception phase, where the requirements are

gathered and planning is completed. It can be inferred

that even though the pair score in the transition phase

is high, the students have expressed that pair

programming in this phase is less effective when

compared to other phases of software development.

5. Students Perception of the Effectiveness

of Pair Programming in Various Phases

of Software Development

Table 6. Effectiveness of pair programming in various

phases of software development.

Phases Minimum Maximum Mean Std. Deviation

Inception 2.00 5.00 3.3370 .90514

Elaboration 3.00 5.00 4.2935 .62085

Construction 3.00 5.00 3.7717 .68103

Transition 1.00 4.00 2.4457 .78955

A questionnaire was used to rate the effectiveness of

pair programming in the various software development

phases. From Table 6, it can be inferred that the mean

score of students is higher in the elaboration phase,

which involves the design activities of the project. The

prospects of achieving a better design by collaborating

and sharing ideas also seem brighter. While working in

pairs, students think of alternative designs and

problems can be corrected immediately through

brainstorming. The next phase in which students felt

pair programming to be effective is the construction

phase, which involves coding. Since one of the pair

acts as the navigator, he/she looks into the code typed

by the navigator, finds errors and tries to correct it

immediately. This minimizes errors to a considerable

extent. Students rated that pair programming is not so

effective in the transition phase, which involves testing

activities Figure 3. The students easily tested the

developed application by referring to the test plans and

test cases using automated testing tools. Students felt

that testing activity is manageable even while working

individually.

5.1. Students Performance in Final Exam

The student respondents who participated in these

experiments were selected upon base criteria namely

their Cumulative Grade Point Average (CGPA) scores

obtained during their previous semesters of the course

and were categorized into four levels. The students

were continuously monitored and assessed through two

internal tests and one end semester examination with a

viva component.

Pair Programming for Software Engineering Education: An Empirical Study 253

Figure 3. Pair programming effectiveness.

The software development exercise given for end

semester examination included problems with higher

levels of difficulty when compared to those that they

would normally solve in regular laboratory sessions.

Each student respondent was assigned with one

individual problem. Finally the assessors evaluated the

outcome for 100 marks for program output and viva

respectively. The criteria for evaluating program

output encompassed the correctness of phase-wise

artifacts, requisite output and problem understanding.

The evaluation was also complimented by a viva

session that contributed to 20% of the total marks. This

was done to test the efficiency of the student

respondents to explain about the tool features,

requirement analysis and design which they have used.

The test results revealed that the student respondents

had gained a significant knowledge about tool usage

and programming tactics. In addition, it was also noted

that levels 3 and 4 students demonstrated better

performance, scoring in the range of 71-90. The results

of another laboratory course which adopted solo

programming conducted during the same period were

compared to benchmark the performance outcomes of

those students who underwent pair programming,

Figure 4. The results indicate clearly that pair

programming experiments considerably enhances the

students performance. To substantiate, it was recorded

that even level 3 and level 4 students felt that pair

programming sessions boosted their performance.

Students who belonged to levels 1 and 2 performed

well as they do in other laboratories which insist on

solo programming. Also, these students expressed that

they enjoyed pair programming and also that they

gained a sense of satisfaction in sharing their

knowledge with peers. A few students who were

involved in solo programming also expressed their

willingness to adopt pair programming in future.

Figure 4. Student‟s performance - solo and pair programming.

6. Conclusions and Scope for Further Work

Collaborative work is now being looked upon more

seriously than ever in teaching-learning process. This

was the impetus for carrying out the above-reported

research. The study reports the results of preliminary

work carried out in implementing pair programming as

a teaching methodology. The results of the study

conducted in the context of a programming laboratory

course appear to be positive and also reveal the

potential of PP in improving both programming

practice and collaborative skills. These results

propelled the researcher in experimenting with the

benefits of collaborative skills on a large scale.

Following this, the researcher developed a process

framework for pair programming and experimented the

effects of the same for a longer duration. Most student

respondents have acknowledged in the questionnaire

that practicing in pairs did help them experience a

sense of reward and accomplishment. The students

seem to believe that this experience would prepare

them for their transit into an industrial setting which is

open to them immediately after completing the course.

Thus pair programming can influence practitioners to

use it as a teaching learning methodology in

laboratories, where more creativity is expected and

where the students are required to learn on their own,

with minimal support from the faculty. However, a few

students who worked in paired teams expressed their

dissatisfaction with team work due to lack of

cooperation of the pair. While looking at the software

project scores of the students who underwent solo and

pair programming, it can be concluded that the scores

of pair programmers are higher than those of the solo

programmers. These results seem to be consistent with

the results of previous studies reported in literature. As

an extension of the present work, the researchers are

currently working on developing software tools that

would help in the evaluation and analysis of the

experimental sessions. The study can be further

expanded by choosing student groups with 4/6 students

with mixed knowledge levels, within which the pairs

can be formed. The pairs can be interchanged after a

specified duration within the group, thus enabling easy

knowledge transfer among the members of the group.

0

5 3.3
4.3

3.8

2.4

M
ea

n
 R

at
in

g

Software development phases
PP effectiveness

0

20

40

60

%

o

f
S

tu
d

en
ts

Range of Marks

Solo

Pair

254 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Acknowledgements

The authors would like to thank the Management of

Kumaraguru College of Technology, Coimbatore,

India for providing the necessary support to conduct

the experiment and collect the necessary data for

research. We would like to thank all the students who

participated in the study and faculty friends who

supported the study.

References

[1] Akerkar R. and Sajja P., Knowledge-Based

Systems, Jones and Bartlett Publishers, 2010.

[2] Arisholm E., Gallis H., Dybå T., and Sjoberg D.,

“Evaluating Pair Programming with Respect to

System Complexity and Programmer Expertise,”

IEEE Transactions on Software Engineering, vol.

33, no. 2, pp. 65-86, 2007.

[3] Beck K., Extreme Programming Explained,

Addison-Wesley Langman Publishing, 2000.

[4] Begel A. and Simon B., “Novice Software

Developers, All over Again,” in Proceedings of

the 4
th
 International Workshop on Computing

Education Research, Sydney, pp. 3-14, 2008.

[5] Bipp T., Lepper A., and Schmedding D., “Pair

Programming in Software Development Teams-

An Empirical Study of its Benefits,” Information

and Software Technology, vol. 50, no. 3, pp. 231-

240, 2008.

[6] Cockburn A. and Williams L., The Costs and

Benefits of Pair Programming, Extreme

Programming Examined, 2002.

[7] Faja S., “Pair Programming as a Team Based

Learning Activity: A Review of Research,”

Issues in Information Systems, vol. 12, no. 2, pp.

207-216, 2011.

[8] Hannay J., Arisholm E., Engvik H., and Sjoberg

I., “Effects of Personality on Pair Programming,”

IEEE Transactions on Software Engineering, vol.

36, no. 1, pp. 61-80, 2010.

[9] Kavitha R. and Irfan A., “Knowledge Sharing

Through Pair Programming in Learning

Environments: An Empirical Study,” Education

and Information Technologies, vol. 20, no. 2, pp.

319-333, 2015.

[10] Kuppuswami S. and Vivekanandan K., “The

Effects of Pair Programming on Learning

Efficiency in Short Programming

Assignments,” Informatics in Education-An

International Journal, vol. 3, no. 2, pp. 251-266,

2004.

[11] Lui K., Keith C., and Chan C., “Pair

Programming Productivity: Novice-Novice vs.

Expert-Expert,” International Journal of Human-

Computer Studies, vol. 64, no. 9, pp. 915-925,

2006.

[12] Muller M., “Two Controlled Experiments

Concerning the Comparison of Pair

Programming to Peer Review,” The Journal of

Systems and Software, vol. 78, no. 2, pp. 166-

179, 2005.

[13] Naufal I. and Hui T., “Learning Style, Metaphor

and Pair Programming: Do they Influence

Performance?,” Procedia -Social and Behavioral

Sciences, vol. 46, pp. 5603-5609, 2012.

[14] Pikkarainen M., Haikara J., Salo O.,

Abrahamsson P., and Still J., “The Impact of

Agile Practices on Communication in Software

Development,” Empirical Software Engineering,

vol. 13, no. 3, pp. 303-337, 2008.

[15] Pressman S., Software Engineering

Practitioner’s Approach, McGraw Hill, 2010.

[16] Radermacher A. and Walia G., “Gaps Between

Industry Expectations and the Abilities of

Graduates,” in Proceedings of the 44
th
 ACM

Technical Symposium on Computer Science

Education, Colorado, pp. 525-530, 2013.

[17] Salleh N., “A Systematic Review of Pair

Programming Research-Initial Results,” in

Proceedings of New Zealand Computer Science

Research Student Conference, Christchurch, pp.

151-158, 2008.

[18] Salleh N., Mendes E., and Grundy J., “Empirical

Studies of Pair Programming for CS/SE Teaching

in Higher Education: A Systematic Literature

Review,” IEEE Transactions on Software

Engineering, vol. 37, no. 4, pp. 509-525, 2011.

[19] Scott G. and Wilson D., “Tracking and Profiling

Successful IT Graduates: An Exploratory Study,”

in Proceedings of the 13
th
 Australasian

Conference on Information Systems,
Australasian, pp. 1185-1195, 2002.

[20] Vafadar S. and Barfourosh A., “Towards

Intelligence Engineering in Agent Based

Systems,” The International Arab Journal of

Information Technology, vol. 12, no. 1, pp. 94-

102, 2015.

[21] Vanhanen J. and Korpi H, “Experiences of Using

Pair Programming in an Agile Project,” in

Proceedings of the 40
th
 Hawaii International

Conference on System Sciences IEEE Computer

Society, Waikoloa, pp. 1530-1605, 2007.

[22] Venkatesan V. and Sankar A., “Adoption of Pair

Programming in the Academic Environment with

different Degree of Complexity in Students

Perspective-An Empirical Study,” International

Journal of Engineering Science and Technology,

vol. 2, no. 9, pp. 4791-4800, 2010.

[23] Williams L. and Kessler R., All I Ever Needed to

Know about Pair Programming I Learned in

Kindergarten, Communications of the ACM,

2000.

[24] Williams L. and Kessler R., Pair Programming

Illuminated, Addison Wesley, 2003.

https://www.ceeol.com/search/journal-detail?id=987
https://www.ceeol.com/search/journal-detail?id=987

Pair Programming for Software Engineering Education: An Empirical Study 255

Kavitha Karthiekheyan received

her Master of Computer

Applications Degree and M.Phil

Degree from Bharathiar University,

Coimbatore, India. Currently she is

working as an Assistant Professor in

the Department of MCA in

Kumaraguru College of Technology, Coimbatore. She

has 15 years of teaching experience and 4 years in

research. She has published research papers in various

international conferences and journals.

Irfan Ahmed holds his PhD degree

in computer science from the

Alagappa University, Karaikudi,

India. He has more 2 years of

industry experience, 18 years of

teaching experience and 10 years of

research experience. Currently he is

working as Director in the Department of MCA in Sri

Krishna College of Engineering and Technology,

Coimbatore, India. He received the best faculty award

in the year 2012. He has presented and published more

than 20 research papers in international journals and

conferences.

Jalaja Jayalakshmi received her

Master of Computer Applications

Degree from Bharathiar University,

Coimbatore, India. Currently she is

working as an Assistant Professor in

the Department of MCA in

Kumaraguru College of Technology,

Coimbatore, India. She has 10 years of experience in

teaching and 1 year in industry.

