
The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 429

Advanced Architecture for Java Universal

Message Passing (AA-JUMP)
Adeel-ur-Rehman

1
 and Naveed Riaz

2

1
National Centre for Physics, Pakistan

2
School of Electrical Engineering and Computer Science, National University of Science and

Technology, Pakistan

Abstract: The Architecture for Java Universal Message Passing (A-JUMP) is a Java based message passing framework. A-

JUMP offers flexibility for programmers in order to write parallel applications making use of multiple programming

languages. There is also a provision to use various network protocols for message communication. The results for standard

benchmarks like ping-pong latency, Embarrassingly Parallel (EP) code execution, Java Grande Forum (JGF) Crypt etc. gave

us the conclusion that for the cases where the data size is smaller than 256K bytes, the numbers are comparative with some of

its predecessor models like Message Passing Interface CHameleon version 2 (MPICH2), Message Passing interface for Java

(MPJ) Express etc. But, in case, the packet size exceeds 256K bytes, the performance of the A-JUMP model seems to be

severely hampered. Hence, taking that peculiar behaviour into account, this paper talks about a strategy devised to cope up

with the performance limitation observed under the base A-JUMP implementation, giving birth to an Advanced A-JUMP (AA-

JUMP) methodology while keeping the basic workflow of the original model intact. AA-JUMP addresses to improve

performance of A-JUMP by preserving its various traits like portability, simplicity, scalability etc. which are the key features

offered by flourishing High Performance Computing (HPC) oriented frameworks of now-a-days. The head-to-head

comparisons between the two message passing versions reveals 40% performance boost; thereby suggesting AAJUMP a viable

approach to adopt under parallel as well as distributed computing domains.

Keywords: A-JUMP, java, universal message passing, MPI, distributed computing.

Received February 5, 2015; accepted December 21, 2015

1. Introduction

To process computation intensive tasks, the trend of

traditional supercomputers got evolved in favour of

commodity computing i.e., utilization of cluster of

computers in order to achieve the throughput of

traditional supercomputers with economical

infrastructure cost. This derived model leads us to the

fascinating world of parallel computing. On the other

hand, in order to solve more complex computing

problems, it’s still a challenge to provide extensive

infrastructure within a single physical cluster. Thus, in

order to get such problems untangled in an efficient

manner, a robust High Performance Computing (HPC)

solution is needed [10].

This paper deals with a parallel code execution

framework written in pure Java i.e., it doesn’t

incorporate any native libraries/directives. The

framework primarily supports asynchronous

communication mechanism in order to deal with

message passing as well as for distribution of code over

the cluster. Hence it is named as Architecture Java

Universal Message Passing (A-JUMP) [3] framework.

A-JUMP launches a new technique of communication

in the form of an HPC bus which entails an open-source

implementation of Java Message Service (JMS)

specification 1.1, namely Active Message Queue

(ActiveMQ) by Apache. It supports various

communication protocols in order to entertain

message passing. Moreover, its representation layer

(application) and the business layer (communication)

are not tightly coupled giving the advantage of

modifying the application without having any need to

touch the underlying communication mechanism. The

performance of A-JUMP has been calculated based on

the standard communication test such as ping-pong

latency tests, as well as Java Grande Forum (JGF) and

NASA Advanced Supercomputing Division (NAS)

benchmark tests. It was observed that its performance

looked promising with message sizes smaller than

256K bytes. But when the message size exceeds that

limit, the figures get disturbed to a great extent. Based

on this observation and information, this research

work revolves around the attempt to cope up with the

known performance limitation of original A-JUMP

implementation in the form of its derived model titled

Advanced A-JUMP (AA-JUMP) keeping the basic

workflow of the original model intact.

This paper is organized as follows: Our area of

focus covering common underlying message passing

mechanisms as well as domains of interest are

discussed in section 2, basic architecture and

workflow of original A-JUMP model is presented in

section 3, the advanced A-JUMP (AA-JUMP)

430 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

explaining the improvement methodology is covered in

section 4, one-to-one comparisons between the original

and the enhanced model is portrayed in section 5 while

section 6 reveals the conclusion and possible future

work. As far as the Related Work part is concerned, we

have already discussed that in detail in a separate paper

published earlier [6]. In that paper, we had come up

with a comparative survey report of various Message

Passing Interface (MPI) implementations available. In

context of the current paper, the desired comparison

report could be consulted from the survey paper under

section 3.2.

2. MPI and Java

MPI communication involves data marshalling of

primitive types which leads to high message latency.

Nonetheless, adoption of Java language under HPC

realm has become common due to many of powerful

features of Java such as platform independence,

portability, purely object oriented, sound memory

management, support for multi-threading, security,

built-in communication libraries, very rich collection of

Application Programming Interfaces (APIs) etc.,

Hence, numerous attempts have been made for offering

Java oriented implementation of MPI. Implementations

of message passing libraries under Java mostly possess

their individual MPI resembling Java language binding.

Such Java implementations are built using techniques

including Java sockets, Java Remote Method

Invocation (RMI), Java Native Interface (JNI) etc.

2.1. Communication Models for Java HPC

A number of implementations regarding messaging

passing libraries under Java exist today. Most of them

employ either of the following approaches:

 Use of Java Native Interfaces (JNI).

 Java Remote Method Invocation (RMI).

 Low-level Java Sockets.

Even though none of these low level models directly

offer message passing facility but upper layer libraries

could be constructed on top of these in order to develop

parallel applications under Java. The most significant

aspects for HPC models include portability,

performance, ease of use, and scalability. Interestingly,

neither of these implementations provides all of these

important features rather each of them have a subset of

those to present.

Moreover, Java language has copious tempting

qualities to offer including but not limited to multi-

threading support, simplicity, portability, and user-

friendly network libraries which attest it as a pleasant

option for building HPC architectures. In addition, Java

threads could be engaged to develop shared memory

programs on multi-core CPUs, e.g., JOMP [4]. Such

implementation types haven’t been discussed here as

Java 7- the new version of Java [8] is offering a built-

in feature to develop OpenMP codes by utilizing fork-

join model.

2.2. Approaches of Interest

Three major approaches stand out among others:

 JMS: Their capability of offering powerful merging

regarding various application types permits

individual components to be integrated in order to

develop seriously scalable, expandable, and

trustworthy systems. Today, ActiveMQ [1],

because of its built-in features, is considered one of

the most appropriate choices to be used as a JMS

implementation to perform message passing

activities under Java oriented communication

models.

 AMQP: AMQP [2] is recognized as an open

standard, binary protocol for Message Oriented

Middleware (MOM) for offering proficient support

across various message passing application and

data communication patterns. It provides

comprehensive functional interoperability among

its complying clients and middleware servers in

charge of messaging i.e., brokers.

 Super Sockets (ZeroMQ) [11]: is a C++ based high-

performance messaging library using a socket

interface without having to deal with the intricacies

of a full-fledged messaging system. Applying Zero

Message Queueing (0MQ) framework proves to be

very simple as compared to its predecessor models

because of being merely a socket library to carry

out communications. This approach also achieves

scalability by utilizing Pragmatic General Multicast

(PGM) protocol which deals with transferring data

to multiple end-points by implicitly exercising load

balancing over them. Even portability feature could

be achieved to certain extent by using 0MQ as it

supports several language bindings covering nearly

most of the popular languages of today including

Java. We have found that 0MQ can prove itself as

the most effective Java HPC model for data

communication comparing to the other approaches

mentioned above.

3. Architecture for Java Universal Message

Passing

3.1. Overview

The communication performance is the major concern

for High Performance Computing (HPC) community.

MPI implementation could benefit from JMS to

provide network independent, heterogeneous, and

architecture neutral message passing over LAN,

WAN, peer-to-peer and Grids. Therefore the

evaluation of MPI implementation using JMS

becomes an interesting task.

Advanced Architecture for Java Universal Message Passing (AA-JUMP) 431

An effort in such direction has been made to develop an

MPI framework based on pure Java and JMS to

entertain parallel execution. The model is named as

Architecture for Java Universal Message Passing (A-

JUMP) [3]. Java is chosen as the base programming

language for its implementation as today it is the most

renowned language for developing platform

independent applications [9]. Thus, A-JUMP does not

involve any native code or libraries. AJUMP follows

MPI 1.2 specifications [5]. It also offers asynchronous

communication mode for dealing with message passing

as well as in order to distribute the code to be executed

over the clusters. It has the provision of supporting

various communication protocols to perform message

passing. The communication layer of A-JUMP is kept

isolated from the underlying application code. This

leads the possibility of adoption of various JMS based

implementations without touching the application level

code. The framework achieves parallel execution of

code supporting homogeneous as well as heterogeneous

clusters.

3.2. Architecture

The main components of A-JUMP along with their

brief description is covered in this section.. A collection

of APIs is also shipped with the framework in order to

facilitate developing MPI oriented code.

 Scheduler: The responsibility of the Scheduler

component is to offer submission of incoming jobs

to the cluster resources available.

 Monitoring: The scheduler collects information from

the Monitoring component. The purpose of the

Monitoring component is to witness the dynamic

information regarding the computing resources

included in the framework. It also has to keep track

of number of busy or free computing resources.

 Registry: This component has to maintain a list of

resources that are introduced or eliminated from the

cluster in a dynamic fashion. The information stored

about each registered machine includes number of

processors, cores per processor and volume of

overall system.

 JMS: The JMS component serves as the backbone

for communication in A-JUMP. The communication

could be inter-process, monitoring and circulation of

Registry related information. JMS is employed in

order to have the business and communication layers

of the implementation separated.

 Output Controller: The prime purpose of this

component is to establish the synchronization among

the machines, gather job outputs from every machine

and transmit it towards the initiating machine. Again

all this is achieved through JMS.

 Code Migrator: This component deals with

distributing and executing jobs over the network.

Once a resource is found free for accepting a job,

Scheduler passes it on to that machine. The class

file corresponding to the job is loaded via Code

Migrator. The component level illustration is

provided under Figure 1. Afterwards, the Java

Virtual Machine (JVM) on the destination machine

loads the class file received for its execution. The

output of the job is then forwarded to the user

machine. The fundamental send() and receive()

routines are also provided under communication

libraries provided by the framework in pure Java.

 Communication APIs: A-JUMP is also comprised

of a communication API in order to facilitate Peer-

to-Peer (P2P), selective as well as collective

communication. The selective and collective

paradigms could be mapped to multi-cast and

broad-cast communication strategies. Due to JMS

supervising the communication and distribution

workflows, A-JUMP achieves that in an

asynchronous fashion [3].

Figure 1. Component level diagram of code migrator/ execution.

3.3. Workflow

First of all; an end user loads a Java class via client

APIs shipped by the framework related to the Code

Migrator module. The class is then transformed into

byte code and then forwarded to the Scheduler

component making use of JMS for its submission over

the appropriate and available resources on the cluster.

Each of the machines assigned the job gets a separate

code replica and starts running it in parallel fashion.

The message passing is performed in an asynchronous

mode of communication because of JMS. The

Scheduler components keeps the job queued

temporarily until any free resources are identified for

its execution. Once identified, the job is sent to the

corresponding resources. The cluster administrator is

capable for increasing or decreasing the number of

jobs according to the situation of resources available.

The relationships between the components

constituting A-JUMP is shown under Figure 2.

432 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

Figure 2. Component level diagram A-JUMP.

4. Advanced Architecture for Java

Universal Message Passing

4.1. Why AA-JUMP

The original A-JUMP implementation depicts

promising results when compared with their

predecessor models like P2P-MPI, MPJ Express,

MPICH etc., for message passing, but this happens for

a small-to-medium amount of data transfers only i.e. up

to 256KB. However, if the message size goes beyond

that level, the performance gets severely hampered [3].

It was claimed that the performance limitation is

coming from the HPC bus, which in turn comprises of a

JMS based middleware i.e., ActiveMQ [1]. Till present,

all of the previous A-JUMP implementations employed

ActiveMQ for incorporating the JMS specifications into

the framework. Also, ActiveMQ has been identified to

be the source of the performance limitation observed

[7].

This observation leads us towards a direction

chasing which, we could hit and adjust the area for

boosting up the performance figures reported by the

current A-JUMP models. Hence, in order to address the

issue, one has to hunt for a newer and superior message

framework in lieu of ActiveMQ, which has the ability

to provide evidence for better performance metrics.

4.2. Why ZeroMQ Could be Potential Choice

ZeroMQ can be reckoned as a middle level messaging

system as it integrates the performance and flexibility

of low level messaging systems with the simplicity and

ease-of-use of a high-level one.

This research work deals with seeking a high-

performance messaging framework and ZeroMQ is

particularly eminent because of that feature. It is

claimed to be much faster comparing with most of

AMQP oriented messaging systems. Some of the

reasons for its top notch performance are; lacking the

overhead of a full-fledged protocol/system such as

AMQP, provision to use efficient transport schemes

such as reliable multicasting, ability to deal with smart

message batching [11].

Upon choosing a model with some eagerly desired

feature, one should not take for granted the

shortcomings of the model if comprised of other major

features shared by such type of frameworks. So, in our

case we were wary regarding the simplicity and

scalability features more than other aspects.

Fortunately enough, ZeroMQ also offers those

features while keeping intact its prime trait-

performance. Consequently, when combing all these

features, ZeroMQ unanimously wins the contest and

looks perfect choice for employment under A-JUMP.

4.3.Comparing Active MQ and ZeroMQ

Although the leading purpose of both the middleware

i.e., ActiveMQ by Apache and ZeroMQ by iMatix

Corp. is similar but still various differences could be

observed between both these models when explored

technically. Therefore, it would be a nice idea to

present one-to-one comparison between the two

approaches. Table 1 below is serving the job for us.

Table 1. Comparison summary of ActiveMQ and ZeroMQ.

Area/ Models ActiveMQ ZeroMQ

Implementation Pure Java C/C++

Communication JMS Super Socket

Topology Message Broker Broker/Broker-less

Performance Promising
Much Faster and

lightweight

Deployment
Non-Trivial, stand-

alone process
No dedicated process

requirement

Monitoring Third-party web console

Non-trivial; could be

done using legs or
network monitoring

Message Persistence KahaDB No built-in support

4.4. Integerating ZeroMQ with A-JUMP

Acquaintance with ZeroMQ revealed at least two

feasible approaches to deal with it to address our need

as identified below:

 Completely replacing the ActiveMQ layer by a

ZeroMQ layer.

 Introducing a ZeroMQ wrapper over ActiveMQ

intelligently.

The wiser approach to go with would be by making

best use of both the middleware features together

somehow.

Consequently, one should try to modify our

communication layer in such a way that for initial

setup of queues, connections, producers and

consumers, message persistence, monitoring etc,

ActiveMQ should be serving the client application,

like we have been using it since the inauguration of

the original A-JUMP framework. However, in order to

deal with message passing between the business

processes, ZeroMQ should come into action. The

modification is proposed only for data transfer part of

the workflow as it is this piece of code of ActiveMQ

Advanced Architecture for Java Universal Message Passing (AA-JUMP) 433

that would be mostly responsible for the higher

message latencies we were getting. Thus, we have

attempted to adopt the ZeroMQ Wrapper oriented

approach. For making our choice able of being

implemented, we should first of all keep in mind that

we need to address a framework (i.e., A-JUMP) which

is purely Java based. On the other hand, ZeroMQ is a

C++ based model but fortunately enough, it offers

support for several language bindings which are

currently popular including Java. Ultimately for our

model to get into work, we need to setup ActiveMQ,

ZeroMQ based implementation along with Java binding

of ZeroMQ on top of that on every machine intending

to get involved as an execution node under the

available cluster resources.

4.5. AA-JUMP Architecture

Most of the structure suggested by the original A-

JUMP is kept intact as described earlier under section

4.4. The only change which is made is under the

message passing part of the ActiveMQ layer.

Figure 3. Code execution component of AA-JUMP.

Here the execution of the client application on the

sender side is delegated to ZeroMQ which performs the

actual transportation of data behind the scene, with its

corresponding ZeroMQ layer on the receiver end

receives the data sent over the framework and transfers

the data back to neighboring ActiveMQ layer which in

turn returns the data to the receiving process.

The Code Execution component of AA-JUMP is

illustrated in Figure 3.

Basic workflow remains coherent with the original

A-JUMP. However, the only difference is introduced at

the data communication level during the code

migration/execution step where now an additional

ZeroMQ layer is introduced where the control transfers

between the two middleware on both the ends of the

transfer. In other words, in this new implementation,

the send() and receive() function calls being utilized by

ActiveMQ have been wrapped up by the send() and

receive() counterparts provided by ZeroMQ framework

which do not use JMS by default rather it provides an

abstraction layer on top of traditional low level socket

API with customized and enhanced features support.

5. Performance Analysis

5.1. Test Environment

The computational machines used in performing the

tests comprised of a cluster of nodes having 2x2 quad-

cores Intel Xeon CPU @ 3.16GHz, 16 GB RAM

(2GB/Core), 16 GB RAM and a Gigabit interconnect.

The OS running on them is Scientific Linux SL

release 5.3 (Boron). The machines have been running

with no adjustments made under default

configurations for TCP Window size, as well as no

optimizations performed under hardware/OS. The test

results have been obtained manually on the

aforementioned machines while the corresponding

graphs have been plotted using MS-Excel tool.

5.2. Code Execution Performance

We have compared AA-JUMP with the original A-

JUMP by evaluating it against Embarrassingly Parallel

(EP) benchmark performance considering Class A.

As could be noticed in Table 2 below, both

approaches are offering competing figures. The reason

behind is that the proposed AA-JUMP didn’t eliminate

ActiveMQ layer from its implementation and all the

initialization is still done by ActiveMQ, that’s why we

have to bear with that and performance gained due to

introduction of ZeroMQ could not make it dominant

as it plays only data communication oriented role in

the whole schema.

Table 2. EP Results for AA-JUMP.

Number of

CPUs

Times(s)

A-JUMP AA-JUMP

2 39.75 38

4 21.7 19.5

8 15.55 9.95

5.3. Communication Performance

This category of measurement is performed using

ping-pong test and network throughput calculations. In

case of ping-pong test of communication, a variety of

message sizes under the range from 1KB to 1 MB

were transferred among two processes executing

across two independent machines. Figure 4 depicts the

ping-pong latency comparison between A-JUMP and

AA-JUMP while network throughput comparison of

the two models could be observed under Figure 5.

From Figure 4, it is obvious that in terms of

network communication, AA-JUMP wins over its

previous implementation as the test mainly emphasize

on the data transfer activity; which is the

responsibility of ZeroMQ in the proposed AA-JUMP

model unlike its parent AJUMP model where

ActiveMQ was solely responsible for its

communication layer. Figure 5 depicts that unlike

original A-JUMP, the proposed model is consuming

consistent network bandwidth across a large range of

message sizes.

434 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

Figure 4. Ping-pong latency for A-JUMP vs AA-JUMP.

Figure 5. Network throughput measurements (Higher is Better).

6. Summary and Conclusions

A-JUMP was built to enable MPI based java

applications to achieve inter-process communication

and code distribution over a cluster. But it was

observed that upon increase in message size up to or

over 256K, A-JUMP exhibits degraded performance in

terms of increased message latency and low network

throughput.

In quest of finding the solution to this limitation, we

have launched its advanced version known as AA-

JUMP which seems to resolve the persisting issue to a

reasonable extent such that around 40% performance

boost is successfully achieved under message passing.

The mission is accomplished by adding up an

additional layer of ZeroMQ messaging library in order

to entertain message transfer on top of ActiveMQ

middleware implemented by the original version.

 As the proposed AA-JUMP framework is

employing ZeroMQ on top of ActiveMQ, it

experiences a linear overhead during its message

passing. If one has to get rid of that overhead, a

complete replacement of the communication layer

should be aimed. In future we look forward to

further increase the performance by completely

replacing the ZeroMQ with a pure Java version of

ZeroMQ thereby likely to avoid the overhead

being faced due to an additional ZeroMQ Java

binding layer.

References

[1] ActiveMQ homepage, available at

http://activemq.apache.org, Last Visited, 2014.

[2] AMQP homepage, available at

http://www.amqp.org, Last Visited, 2014.

[3] Asghar S., Hafeez M., Malik U., Rehman A.,

and Riaz N., “A-JUMP, Architecture for Java

Universal Message Passing,” in Proceedings of

the 8
th
 International Conference on Frontiers of

Information Technology, Islamabad, 2010.

[4] Bull J. and Kambites M., “JOMP- an OpenMP-

Like Interface for Java,” in Proceedings Of ACM

Java Grande Conference, San Francisco, pp. 44-

53, 2000.

[5] Carpentar B., Fox G., Hoon S., and Lim S.,

“Mpijava 1.2: API Specification,” available at

www.open-mpi.org/papers/mpi-java-spec, Last

Visited, 2014.

[6] Hafeez M., Asghar S., Malik U., Rehman A.,

and Riaz N., “Survey of MPI Implementations,”

in Proceedings of International Conference on

Digital Information and Communication

Technology and Its Applications, Dijon, pp. 206-

220, 2010.

[7] Hafeez M., Asghar S., Malik U., Rehman A.,

and Riaz N., “Secure Peer to Peer Message

Passing using A-JUMP,” in Proceedings of The

International Symposium on Grids and Clouds

and the Open Grid Forum Academia Sinica,

Taipei, pp. 1-9, 2011.

[8] Java 7 homepage, available at

https://jdk7.java.net, Last Visited, 2014.

[9] Judd G., Clement M., and Snell Q., “ Distributed

Object Group Metacomputing architecture,”

Concurrency and Computation, vol. 10, no. 11-

13, pp. 977-983, 1998.

[10] Munir E., Ijaz S., Anjum S., Khan A., Anwar

W., and Nisar W., “Novel Approaches for

Scheduling Task Graphs in Heterogeneous

Distributed Computing Environment,” The

International Arab Journal of Information

Technology, vol. 12, no. 3, pp. 270-277, 2015.

[11] ZeroMQ website, available at

http://www.zeromq.org, Last Visited, 2014.

Adeel-ur-Rehman has received his

M.S. degree in Computer Sciences

from Shaheed Zulfikar Ali Bhutto

Institute of Science and Technology

(SZABIST), Pakistan. His areas of

interest include software

development methodologies,

parallel and distributed computing, and information

security.

Naveed Riaz has received his PhD

degree in Computer Engineering

from Graz University of

Technology, Austria.. His areas of

interest include parallel and

distributed computing, Digital

Image Processing and Theoretical

Computer Sciences.

http://activemq.apache.org/
http://www.amqp.org/
http://www.open-mpi.org/papers/mpi-java-spec
https://jdk7.java.net/
http://www.zeromq.org/

