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1. Introduction 

Human activities that are automatically recognizing 

from video sequences are still need to be studied 

consequent to their major prospects for many 

implementations in numerous domain and situation 

[13]. For human action recognition, there is a 

probably one common field so-called Human 

Computer Interaction (HCI), in which there is no 

available actions as mouse and keystrokes to get the 

user input. Throughout the state-of-the-art, the human 

activity can be recognized and classified using diverse 

graphic twines like motion [4] and shape [14]. Several 

frameworks characterize the action as a sequence of 

emissions (i.e., observations) matrices, which 

represent the extracted feature vectors from video 

data. Thus, the activity of human can be recognized 

via searching for such sequence [18]. In [3], the 

authors explore an approach for representing and 

recognizing the actions of human, where the main 

idea was based on capturing the silhouettes of both 

shape and motion as temporal templates. Here, 2D 

images of motion history and motion energy instead 

of upholding the 3D volume (i.e., spatio temporal) are 

used as an action templates for classification. Using 

space-time shapes, Gorelick et. al. [7] introduces an 

action model to represent shape, which obtained from 

the detection of silhouette information with respect to 

background subtraction. Numerous features such as 

local saliency, angle and shape are extracted by the 

properties of Poisson’s equation [11]. Figure 1 

demonstrations three examples of these shapes that 

appeared in [7]. In [17], the authors propose a 

framework, which extracts the spatio temporal features 

in various scales to cluster and isolate the human 

actions. So, they analysed and scaled the video volumes 

temporally to interact with the speed disparities of 

human activities. In addition, the local intensity 

gradients are calculated and then normalized for every 

point through the 3D volume. 

 

 

 
 

Figure 1. Space-time volume depended on silhouette information.  

Shectman and Irani [16] introduced a framework to 

compute the human motion flows to recognize the 3D 

volume correlation, which spot correspondences 

amongst image segments. Ahmad and Lee proposed an 

approach to recognize human action from multivites 

videos sequence, which use the integration between 

shape and the information of motion flow with 

variability investigation [1]. In this method, the features 

vector of shape flow in addition to local global optic are 

united as a multi-dimensional Hidden Markov Model 

(HMM) set for modelling the human activity. The key 

contribution of our framework is to motivate and 

recognize human action relied on the descriptor of affine 
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invariant shape as an elliptic Fourier, Zernike 

moments, optic flow and mass center for wave 

features. Using 3D spatio temporal volumes, the 

extracted features are positioned to the discriminative 

model of LDCRFs for classifying the human activity 

in video sequences.  

Our experiments on standard benchmark action 

Weizmann dataset are carried out and show that the 

proposed approach yields promising results than 

previously reported anywhere the literature with no 

sacrificing real-time execution.  

2. Proposed Methodology 

In this section, the main steps of human activity 

throughout the proposed framework are explored in the 

next subsections (Figure 2). 

 

Figure 2. Concept of the action recognition approach. 

2.1. Preprocessing 

In this stage, an approach for modelling the 

background is proposed to discriminate the moving 

objects (i.e., foreground) from affecting cast shadows 

in image sequences. Briefly, these are detailed below. 

2.1.1. Background Subtraction 

The procedure of background subtraction is broadly 

used to detect the infrequent motion along scene. It is 

value stating that the Gaussian Mixture Model 

(GMM) is one instance of greater label for density 

model, which has numerous functions like 

preservative elements [2]. Properly talking, suppose 

that x refers to a pixel in current image frame j and M 

refers to Gaussian distributions number. Every pixel 

can be measured using a mixture of Gaussian M 

separately as next; 
M

j 1

p(x) p(x | j).p( j)


  

To decide the number of Gaussian components, a 

method is used to observe the histogram of the dataset 

in which the selection of M is based on the number of 

peaks for this histogram. Based on the principles of 

maximizing likelihood function, a constructive 

algorithm is used in order to obtain the number of 

Gaussian elements [10]. In Equation (1), p(j) 

represents the prior probability of j
th
 component. It is 

also called weighting function, which is generated 

from the component j of the mixture. p(x|j) refers to 

Gaussian density of j
th
 element (Equation 2). 
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where µj and Ʃj represent the mean and the covariance of 

j
th
 component, respectively. Additionally, f refers to the 

feature space. After deciding the number of component’s 

M, the parameters of the mean, covariance and the prior 

probability for each component are calculated from 

given dataset. EM algorithm [10] is considered to 

compute these parameters and then they optimized relied 

on the minimization error of function E. 
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Here, N refers to the data points number xn. Using 

threshold γ with 0.5, it is being noted that the 

background distribution be on the topmost with the 

lowermost change. So, each pixel with no of component 

is marked as foreground. Figure 3 illustrates the 

estimation results of background with M=5 

2.1.2. Shadow Elimination and Filtering 

Designing a color model that separates the brightness 

from the chromaticity component plays a significant role 

in shadow elimination from images [1]. Generally, the 

background value Bt = [µr, µg, µb] in RGB color space is 

(1) 

(2) 

(3) 
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constituted by the brightness α and chromaticity 

distortion C. Furthermore, for a given pixel in each 

subsequent frame Ft, such that Cr = Fr(t) - αtµr, Cg = 

Fg(t)-αtµg and Cb = Fb(t)-αtµb; the brightness αt and 

chromaticity Ct distortions are estimated from 

background model as follows; 
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             a) Source input foreground. b) Output from our background subtraction 

where the foreground pixels are 

overlaid by red, the shadows are 

overlaid by blue and the ordinary 

background pixels are kept as black 

color.    

      
          c) Silhouette detection after                       d) Foreground detection. 

               eliminating shadow.     

Figure 3. A sequence of person moving in indoor scene. 

Where the chromaticity distortion Ct represents the 

perpendicular vector length between a pixel value Ft 

and a line that joins the background value µ and zero 

intensity point. Within the training phase, the 

variation β of the chromaticity distortion is estimated 

by Equation (6), in turn lead to a normalized 

chromaticity distortion. 
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For a given snapshot, the threshold τC is selected 

based on the shadow detection rate. As a result, pixels 

are either classified as a labelled background, 

foreground or cast shadow. Further precisely, a pixel 

is classified as a labelled cast shadow when the next 

two conditions are satisfied; 

1;ˆ
min  tCC    

After the shadow is eliminated, there still exists some 

small regions and noise. To remove these outlier’s 

erosion and dilation are employed in mixture to produce 

a desired effect of frame processing. Then, the 

foreground image is obtained using the median filter 

with size 5×5. After a labelled foreground frame is 

obtained, they are localized using a blob analysis 

function. An example with the result of foreground, 

shadow and background detection is illustrated in Figure 

3. 

2.2. Feature Extraction 

In this framework, we used an assortment of global and 

local features to designate the moving parts of human 

body (i.e., segmented silhouettes of f(x, y, t)). According 

to the global feature (i.e., shape feature), the silhouette 

image is segmented using a diversity of invariant 

descriptors like Zernike moments and elliptic Fourier’s 

descriptors. Furthermore, the local feature (i.e., local 

feature) of foreground frame is obtained by the action 

motion trajectory in conjunction optic flow motion. 

Thus, the result of feature matrix is given below;  




















ess

ess

t
i

t
i

t
i

t
i

t
i

t
i

features
LLL

GGG
Action

...

...

1

1

 

Where Gi and Li are to Global and Local features, 

respectively. The length of action feature represents a 

difference between the starting frame (ts) and the ending 

frame (te), in which ssss t

F

ttt

i gggG
1

,...,, 21  

and ssss t

F

ttt

i lllL
2

,...,, 21 . As a result, the feature matrix of 

global feature and local feature at every frame is equal to 

F1+F2. 

2.2.1. Global Feature 

The shape flow that considered as global flow of 

silhouette is itemised using an elliptic Fourier descriptor 

in addition to Zernike moments Gi=[Cxk, Cyk, z00, z11, 

z22]
T
. This process is described according to the 

following points. 
 

 Elliptic Fourier descriptor: In this work, the feature 

of action silhouettes is determined by the 

trigonometric form of curve's shape Ck. The 

representation of trigonometric is supplementary 

instinctual to implement. Referring to Equation (9), 

the elliptic coefficients are calculated using Equation 

(10). 
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ω represents the fundament frequency with value T/2π. 

Here, T represents function period and the harmonic 

number is assigned with k. It being noted that, the 
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selection of elements guarantee that the curve 

description is invariant to shape translation, scaling 

and rotation. In addition, they are self-regulating 

based on the selection of contour start point. For 

additional specifics, the reader can reference to [12]. 
 

 Zernike Moments: the silhouette image invariance 

can be realized via Zernike moments that provide 

rotation invariant moments orthogonal set. 

Furthermore, translation invariance and scale can 

proceed by the moment normalization [1]. 

Mathematically, Equation (12) gives the complex 

Zernike moment Zpq of image intensity f(ρ, θ). 
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where p (i.e., order) represents positive integer value, 

λN refers to a normalization factor, whereas q (i.e., 

repetition) either positive or negative integer with 

respect to conditions |q| ≤ p and p-|q| = even. 

Additionally, the function f is then normalized 

according to translation and scaling via the scale 

factored a as well as the centre of silhouette 

image ),( yx . Rpq(ρ) is to a redial polynomial [12]. As 

a result, the invariant of Zernike moment features 

within the features of geometric to shape scaling, 

rotation and translation which salient likeness to 

invariant moments. Hu is specified via Gz=[z00, z11, 

z22]. Experimentally, it is being noted that the 

percentage errors for invariants are lower than 0.5%. 

2.2.2. Local Feature 

Here, the local feature is expressed by the motion flow 

of foregrounds and is specified using the gravity 

center and optic flow ]),([ opi vtzL


 ;  

 Center of Silhouettes Motion (CM): the using of 

motion information persuades us a fuze through 

global features in order to constitute a classifier of 

LDCRFs. The features of motion are extracted and 

relied on computing centroid )(tz


, which carries 

motion center. Furthermore, the feature )(tv


 that 

explaining the motion distribution is generally 

provided by; 
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 in current frame with respect to the 

total number n of moving pixels. By using these 

features, it would be eligible to differentiate, i.e., 

among human actions such that the motion occurs 

along a comparatively considerable area (i.e., 

running). Additionally, the action is localised in a 

minimal region, such that the slight parts of human 

body are in activity (i.e., moving one or two hands).  
 

 Optic Flow: The activity of body parts includes an 

optical flow velocity. We can say that the person who 

manage the action (i.e., hand waving), the motion can 

appear on the hand only. When the user carries out 

the walking action, the motion will squeeze the full 

body. Moreover, the pruning value of estimated flow 

seems to be a suspicion to truthful the flow field and 

tolerates the best estimation for motion. The pruning 

method of optic flow contains two phases, each of 

which relied on Euclidean length of optic flow vector 

to isolate appropriate from inappropriate flow vector 

[5]. For first phase, we remove each flow vector with 

relatively small or very large in magnitudes. So, we 

identify two thresholds; minimum and maximum to 

control and filter the flow vectors for that purpose. 

Momentarily talking, by the given two thresholds ρ1 

and ρ2, the flow vector opv


= [x, y]
T
 is acknowledged 

as true when it verifies valid condition: ρ1< || opv


||<ρ2 

in which ||.|| refers to the flow vector magnitude in 

regard to Euclidean metric. Or else, it is supposed as a 

noisy flow element and then detached. In the second 

phase, the vector 
opv


 is pickled as a true flow element 

when the distance between flow center and analysed 

vector does not overdo the definite threshold . 

Correctly, it is stated by; 

 zvop
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Such that, z


represents the centroid of human motion 

region. Experimentally, the best performance of pruning 

is verified with the setting values of ρ1= 5, ρ2= 20. In 

addition, the average of image frames height h and width 

w (i.e., 2/)( hwl  ) is verified when the  equal 25%.  

2.3. Classification 

In this stage, the activities of human are classified based 

on the label number of LDCRFs. In general, LDCRFs 

are treated as undirected graphical models, which 

sophisticated for labelling sequential data [6, 8]. Here, 

every label belongs to a specific human action (Figure 

4). The models of LDCRFs are normally considered to 

classify un-segmented sequence since it includes a class 

state (label) for each observation. Additionally, they can 

capably model and inference the human action sequence 

within the testing and learning processes. 

  x m   

h 1   h 2   h m   

  x 1   

  y 1     y 2     y m   

  x 2   

      

 
Figure 4. LDCRFs approaches, such that xj is to the jth equivalent 

emission value, hj is to hidden states assigned to xj . yj refers to xj 

label in which the grey circles signify the observed vector. 

(12) 

(13) 

(14) 
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With respect to every sequence, we suppose that 

the vector of sub-structure with hidden variables is h 

= h1, h2,…, hm. So, the probability of state action y for 

a specified an emission sequence x is estimated by; 


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Where hi represents one member of the set Hyi for the 

likely hidden states of the label action yj 
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Where parameter  = (λ1, λ2, … λNf; µ1, µ2, … µNg), Nf 

is to the number of transition feature, Ng is to state 

feature function number and n refers to the length of 

emission action vector x. Thus, the function Fθ is 

realized by; 
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Where tf (hi-1, hi, x, i) represents a function of 

transition feature at location i-1 and i. Also, sg(hi, x, i) 

represents a function of state feature at location i. 

Here, µg and λf are to the weight function of the state 

and transition features, respectively. Moreover, Z(x,θ) 

is a normalized factor in which it is computed by; 
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2.3.1. Training LDCRFs Model  

The parameter θ = (λ1, λ2, … λNf; µ1, µ2, … µNg) is 

derived by the learning action data Td

j

ii yxD 1

)()( },{  , 

in which x
(j)

 represents an emission sequence of 

learning action set. y
(j)

 is to correspondent label 

sequence of an emission sequence action x
(i)

. Here, Td 

represents the learning sequence number. The 

objective function which maximizes log-likelihood to 

learn parameter θ, is estimated using Equation (19). 
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Furthermore, BFGS optimization technique of 300 

iterations is to maximize the Likelihood using a 

gradient ascent technique for converging [8]; 

 

)
),,,(

)|(

),,,(
(

)(

1

)()()(
1)(

1 1

)()()(
1

 

 





 

















x

n

i

ij
i

j
ii

Td

j

n

i

ij
i

j
i

ixhhF
xhp

ixhhFL











 

2.3.2. Inferencing LDCRFs Model 

To obtain the probability p(y|x,θ) of the action labels y 

for the given specific emission features x [9], a matrix 

set is calculated. To facilitate some expressions, a start 

h0 and stop hn+1 labels are added that so-called dummy 

labels.  

Using the p(h|x,θ) which given using Equation (16) and 

for every location i in an emission sequence, Mi(x) is 

built as a |S×S| matrix Equation (21); 

M (h ,h | x) = exp(F (h ,h,x,i))θi    

Such that S = h1, h2,… hl represents a set of action label 

of training dataset. h
'
 and h refer to the human action 

labels of S at time i. For that, the probability of action 

labels sequence y for given an emission sequence and 

model parameters is estimated by; 
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Hence, the normalized Z(x,θ) represents the product 

access of this matrix: 
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2. Experiments and Results 

Weizmann dataset is one of the utmost generally used in 

human activity field [7]. This dataset is publicly 

available to the researchers in the action recognition 

field with no access charge. Furthermore, it includes ten 

various action categories so-called ’walk’, ’jump 

forward on two legs’ (i.e., jump), ’side’, ’skip’, ’jumping 

via two legs’ (i.e., p-jump), ’run’, ’wave one hand’ (i.e., 

wave1), ’bend’, ’jack’, and ’wave two hands’ (i.e., 

wave2). Every action is carried out using ten subjects by 

a static camera for given still background at the rate of 

25FPS, and 180 × 144 spatial resolution with 24 bits per 

pixel. The captured sequences are very short time (i.e., 

each sequence only about a few seconds) (Figure 5-a). 

We split this action dataset into learning set with two 

thirds and testing set with one third to hoard balanced 

estimator of LDCRFs ability of the recognition process. 

We take in consideration the testing samples are 

completely different than training samples.  

Table 1. The confusion matrix for per-frame classification with 
respect to weizmann dataset. 

Action Walk Run Jump p-jump Jack side Bend Skip Wave1 Wave2 

Walk 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Run 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Jump 0.00 0.08 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

P-jump 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Jack 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 

Side 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.07 0.00 0.00 

Bend 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

skip 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

Wave1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

Wave2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(22) 

(23) 

(21) 
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As a result, Table 1 brief in a confusion matrix for per 

frame classification, in which the valid echoes specify 

the main diagonal. Here, it is being notice that there is 

an obvious variance between leg and arm actions. The 

inaccuracies wherever confusions place is only 

between run action and walk human action. 

In similar, it also happened between run and jump, 

and between sides and skip human actions. This is due 

to the rise proximity in each action paid (Table 2). 

Table 2. Comparison with those previously reported on weizmann 
dataset. 

Method Recognition rate 

Our Method 97.80% 

Zhang et al. [18] 92.80% 

Sadek et al. [15] 98.00% 

Fathi and Mori [5] 100.00% 

Niebles et al. [11] 90.00% 
 [[[ 

 

 
 

 
 

 
 

  
 

 
a) Running action due to their silhouette image, spatial boundary and corresponding elliptic Fourier Descriptors (FDs). 

 
b) The optical flow result of walk and wave2 actions form left to right. 

 
c) Temporal evolution of the probabilities of running action. 

Figure 5. System outputs.

In the lighting of this differentiation, the proposed 

framework executes competitively with other 

previously reported as well as to proceed with no 

immolating real-time performance. But in Table 2, 

the mentioned methods in [5, 15] are more efficient 

than our method because the cost of used BFGS 

optimization technique of 300 iteration to verify the 

converging of learned parameters requires more time 

to reach the optimality. In future, LDCRFs will be 

employed with another gradient technique to alleviate 

this problem which in turn achieves promising 

results. Furthermore, our framework has realised a 

97.80% accurateness per-frame classification. The 

outcome of the proposed framework is shown in 

Figure 5. 

3. Conclusions 

In this work, we propose a framework for human 

action recognition relied on an affine-invariant shape 

descriptor such as Zernike moments and elliptic 

Fourier, as well as to mass centre and optic flow 

features. These features are integrated and employed 

for LDCRFs to build actions models. Experiments on 

normal benchmark action Weizmann dataset showed 

that the projected framework can successfully classify 

per frame human action with 97.80% recognition rate. 
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