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Abstract: This paper proposes an integrative model of fall motion detection and fall severity level estimation. For the fall 

motion detection, a continuous stream of data representing time sequential frames of fifteen body joint positions was obtained 

from Kinect’s 3D depth camera. A set of features is then extracted and fed into the designated machine learning model. 

Compared with existing models that rely on the depth image inputs, the proposed scheme resolves background ambiguity of the 

human body. The experimental results demonstrated that the proposed fall detection method achieved accuracy of 99.97% with 

zero false negative and more robust when compared with the state-of-the-art approach using depth of image. Another key 

novelty of our approach is the framework, called Fall Severity Injury Score (FSIS), for determining the severity level of falls as 

a surrogate for seriousness of injury on three selected risk areas of body: head, hip and knee. The framework is based on two 

crucial pieces of information from the fall: 1) the velocity of the impact position and 2) the kinetic energy of the fall impact. 

Our proposed method is beneficial to caregivers, nurses or doctors, in giving first aid/diagnosis/treatment for the subject, 

especially, in cases where the subject loses consciousness or is unable to respond. 
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1. Introduction 

Falls are a leading cause of injury, disability, and 

accidental death. Consequential injuries could lead to 

worsen outcomes such as fracture [18] and prolonged 

hospitalization [41]. An effective fall motion detection 

system should be able to monitor a subject’s movement 

[1, 45], promptly report any fall event with high 

accuracy and have the ability of estimating the fall 

severity level. This is crucial for the caregiver or 

healthcare personnel, especially when the subject lives 

alone and is unable to respond. This motivated our 

research work in two areas: robust real-time fall motion 

detection during Activity of Daily Living (ADLs) [35] 

and a novel framework of fall severity estimation. 

For the real-time fall detection area, there are many 

studies of fall motion detection systems equipped with 

traditional hardware such as mobile, sensor, 2D camera, 

microphone, etc. Nevertheless, most of them are too 

complex, intrusive, lack of privacy, or are expensive to 

be practically deployed for home use. Previous 

researches also have two common technical issues 

which are the background ambiguity and the 

unavailability of incident information for estimation of 

fall severity level. 

While the fall detection method is an active domain 

of research, fall severity estimation seems to be a 

laggard one. There are quite a number of measuring 

schemes for the Injury Severity Scale (ISS), e.g., Head 

Injury Criterion (HIC), Head Injury Models (HIMs), 

and Abbreviated Injury Scale (AIS), but mostly they  

 
are devised for discretizing the level of trauma in a car 

crash, sport, or pedestrian accident [31].  

In response to these challenges, we propose an 

integrative intelligent system extending the framework 

of our previous work [38] for:  

1. Online fall motion detection based on time-

dependent body-joint data using a Kinect camera.  

2. Supporting estimation of fall severity level.  

For the first integral ability, we studied pattern 

recognition for fall detection from a huge amount of 

data obtained from Kinect. The proposed system relies 

on a machine learning algorithm which is very capable 

in distinguishing the various real-life fall motions 

from fall-like motions which may be a losing balance 

or ADLs such as sitting down abruptly or performing 

exercise on the floor. In this study, we compared two 

of the most prominent techniques which are 

Multilayer Perceptron (MLP) and Support Vector 

Machine (SVM) to gain technical insights into their 

performance. Moreover, advantages of Kinect enable 

us to devise a method that can resolve the background 

ambiguity of the human body, especially the case of a 

subject sitting or lying on furniture as troublesome in 

previous research [32]. Kinect’s natural user interface 

[6] properties also eliminate the requirement of the 

subjects to wear any device on their body, which can 

be very cumbersome or obtrusive. 

In addressing the estimation of fall severity level, 

this research proposes a framework for fall severity 

level estimation called Fall Severity Injury Score 
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(FSIS). The measure is based on two basic physics 

principles: the velocity of the impact position and the 

kinetic energy of the fall impact. The main risk areas of 

the body are defined as head, hip, and knee positions as 

reported by medical researches [10, 26, 30, 36, 42]. The 

severity level is discretized by the statistically 

variability analysis of inter-quartile values that is well 

known for being robust to the problem of outliers in the 

training data [9]. 

This paper is organized as follows: section 2 

presents related works; section 3 describes the 

methodology of our proposed system; section 4 

presents the experimental results and discussions; 

finally, section 5 presents the conclusion and future 

work directions. 

2. Related Work 

The review of the two integral parts of the proposed 

model is presented in the order of processing stages: the 

fall motion detection and followed by the fall severity 

estimation. 

2.1. Kinect and Fall Motion Detection 

Considering the fall detection system in terms of time 

sequential data as input, most of previous works use 

Red, Green, and Blue (RGB) [4]. RGB requires large 

amount of low-level vision tasks like foreground-

background segmentation, boundary detection and 

probably lead to a privacy issue. As technology having 

evolved, the depth image takes its place by the 

advantages of less processing and abstraction that 

automatically eliminates the privacy problem [27, 29, 

32, 43]. However, the use of depth of image can be 

unreliable because of background ambiguity in the case 

of the subject sitting or lying on furniture. Body joint 

positions detection technology can overcome all 

mentioned issues and luckily that it is now available as 

a built-in feature inside commercial devices such as 

Kinect. Figure 1 shows the visual difference for the 

three technologies: RGB, depth image and body joint 

positions. 

Many researchers are now turning to body joint 

position as a reliable source of input data for movement 

and fall analysis using specific positions such as head 

center, torso or other body joint positions [5, 16, 24, 34, 

40, 44]. Based on our preliminary study and 

experiment, when compared to other positions, the 

torso position alone can achieve best performance for 

fall detection with a low degree of freedom of 

movement in all views and near the pelvis region. The 

very importance of torso is also confirmed in many 

reports [7, 21, 23].  

 

 
a) RGB.                           b)  Depth image.                                 c) Skeleton. 

                    (body joint positions) 

Figure 1. Different types of data for fall detection. 

2.2. Fall Severity Level Estimation 

To our knowledge, the direct fall severity estimation 

method has never been explicitly defined to classify 

the probable seriousness of accidental fall that may 

happen in the daily routines. Such an information is 

valuable not only for first aid but also for supporting 

decision on subsequent care. Unfortunately, most of 

the existing models have been designed for situational 

context to assess trauma severity on a variety of body 

regions (i.e., head, hip, knee, face, neck, abdomen, and 

spine) [3] in several accidents such as falls from 

heights [2, 25, 46], falls from a bed [8, 42], falls of 

infants from an accident [13], and car crashes [3]. 

Generally, the severity of injury can be evaluated 

based on key influencing factors, e.g., the height of the 

fall, post velocity or acceleration of impacted position, 

and kinetic energy of the fall [2, 3, 8, 13, 25, 33, 42]. 

Some examples of existing models that measure injury 

severity are AIS [3], HIC [31, 42, 46], and HIMs [13]. 

For AIS, this model assesses injury severity on body 

more than one area based on human judgment, e.g., a 

physician. AIS is based on a scale of one to six, one 

being a minor injury and six being maximal. AIS 

grades all injuries of each body area and use the most 

severe position as a representative of severity level to 

represent the threat to life associated with the injury. 

For HIC, the model is intended to judge the head 

injury risk based on the acceleration. HIC does not 

provide the interval scale that enables comparison 

about kind and severity of eventual injuries, but it 

gives an initial orientation for an estimation of the 

general injury risk. Based on HIC, HIMs assesses 

severity of childhood head injuries from impact after a 

fall from a height such as jump or throw up from an 

elevated surface which uses maximum of acceleration 

(peak g). 

Essentialness of the model for scaling severity of 

falls in ADLs is to take into account the discernable 

levels of morbidity using online data that, without 

intention to replace the specialist’s judgment, warns 

and supports caregivers to take actions on first aids or 

assist specialists for deciding on subsequent care. 

Unfortunately, as described above, most of the 

existing models are off-line post-fall analyses and 

focusing on the seriousness of injury, threat to life or 

curing process. 

Next, we discuss in details the designed 

methodology for systematically determining a fall and 
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estimating the severity in online mode. 

3. Methodology 

In this section, we describe our integrative model to 

detect a falling of a subject and estimate fall severity 

level. The system is divided into four phases: data 

preprocessing, real-time segmentation, fall detection, 

and fall severity level estimation as shown in Figure 2. 

 

Figure 2. Integrative model of the proposed system. 

Each phase of our proposed system is described in 

detail, next. 

3.1. Data Preprocessing 
 

In holistic view of the preprocessing, a series of 150 

frames (or, a clip) of streamed 3-dimensional data of 

selected body joints, represented by a set of vector (X, 

Y, Z), is fetched and normalized. Next, a frame-to-

frame Euclidean distance of the body joint position is 

then calculated for being input in the next phase of 

segmenting the body transition. Detail is presented 

next. 

3.1.1. Selection of Body Joint Positions 

We performed preliminary experiments to select 

representative body joint positions which could 

optimize both accuracy and processing time of the fall 

detection. We compared three alternatives:  

1. All body joint positions [24]. 

2. Head, shoulder, torso, hip and knee position [39]. 

3. Torso only position.  

Based on the result of our preliminary experiment 

(Table 1), the alternative of using only the torso 

position was chosen as it provides a slightly higher 

accuracy and a significantly faster run time when 

compared to the other choices.  

 
Table 1. Comparative performances of fall detection using 
different set of body joint positions. 

body joint position(s) 
Fall motion 

detection Accuracy 

processing time 

(seconds) 

all body joint positions [24] 99.70% 7 

head, shoulder, torso, hip and 

knee position [39] 
99.60% 4 

only torso position 

(our proposed feature set) 
99.97%* 2* 

3.1.2. Data Normalization 
 

Due to the fact that people are with varied body sizes, 

the learning process for generalized model of fall 

detection needs the normalized measure of body 

movement to effectively detecting fall of any persons. 

For each clip, says clip A, each dimensional value (d) 

in the whole clip {d} of a body joint vector in a frame 

will be transformed into normalized values (d’) in the 

range of [0, 1], where 0 represents minimum 

normalized value of that dimension in the clip and 1 

represents the maximum. The min-max normalization 

scheme was implemented here as depicted in Equation 

(1) [22]. 

               

 
   

  A clip,
minmax

min





 dd

pp

pd
d   

Where  pmin  = minimum value of set {d}.  

            pmax = maximum value of set {d}. 

3.1.3. Data Transformation 
  

In the second step, we map the normalized body-joint 

positions into a time series of Euclidean distance 

between two consecutive Kinect video frames. The 

larger distance the human subject moves his body, the 

larger value the Euclidean distance will be. The 

calculation of Euclidean distance [28] is depicted in 

Equation (2). 

                            

     222
),( zqzpyqypxqxpqpd        

Where p = (px, py, pz) and q = (qx, qy, qz), are the vector 

(X, Y, Z) of torso position, head position, hip position, 

and knee position at time t and time t+1 respectively. 

3.2. Real-time Segmentation of Body 

Transition 
 

For effective segmentation, we propose a framework 

that decomposes a fall event into three sequential 

phases:  

1. The pre-fall phase (stably continuing daily life 

motions). 

(1) 

(2) 
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2. The body transition phase. 

3. The post-fall phase (sustaining inactivity or 

recovered) [35] as seen in Figure 3. 

 

Figure 3. Comparison of number of frames in during body 

transitionn stage (Fall vs. ADL). 

The critical information is in the transition phase. 

From our eye inspection on Kinect videos in our 

experiment and other videos [27], mostly, the body 

transition phase in fall motion occurred within 1-2 

seconds, while, that in ADL motions (for example 

transition from sit to stand) occurred within 3-8 seconds 

depending on varied conditions, e.g. age, muscle 

strength, etc., of a subject. This observation agreed with 

previous findings in the medical field [47]. Based on 

these findings, hence, we continually process the fall 

detection using a shifting cache of 5 seconds of time 

series of torso position data. 
 

K-means clustering model [19] configured with the 

number of clusters=3 is applied to detect the boundaries 

of the transition phase, denoted as [ts, ..., tf]. ts states the 

possible start frame of transition and tf represents the 

finish frame of transition. 

Relying on the obtained boundaries, we can derive 

three unique features (fduration, faverage distance, fslope) for 

being inputs of fall motion detection as shown in Figure 

4. 

 
Figure 4. Three extracted features based on the segmented 

boundary.  

fduration denotes the duration of the transition phase, 

which is distance from point A to point C in Figure 4. 

This can be measured by counting number of frames 

within the boundary of the transition phase as depicted 

in Equation (3). 

  fduration = count m;  m  [ts, ..., tf]   

Where m is the number of frame within the transition 

phase 

faverage distance denotes the average distance, or mean 

value of the frame-to-frame distance (ts,…,tf) of torso 

joint position, denoted as B in Figure 4, as depicted in 

Equation (4). 

                              faverage distance = 

 

duration

f

si

i

f

tdistance


          

Lastly, fslope denotes the derived ratio of faverage distance 

over the half span of transition phase. The obtained 

figure represents the speed of change in Euclidean 

distance of torso and can be calculated [12] using 

Equation (5). 

                                        Slope = 
duration

distance average

f

f2
       

3.3. Fall Motion Detection Based on a Machine 

Learning Approach 
 

Relying on the real-time segmentation of body 

transition as illustrated in 3.2, fall motion detection 

can be performed as described next.  

To gain insights into the machine learning 

performance, we compared two well known classifiers 

in performing fall motion: MLP [20] and SVM [14]. 

MLP is a kind of neural network which is a 

feedforward artificial neural network model that maps 

a set of input data onto a set of appropriate outputs. An 

MLP consists of multiple layers of nodes in a directed 

graph, with each layer fully connected to the next one. 

MLP utilizes a supervised learning technique called 

back propagation for training the network as seen in 

Figure 5. 

 

Figure 5. Architecture of MLP for fall motion detection. 

Figure 5 shows the optimal architecture of the MLP 

classifier for fall motion detection, achieved from our 

empirical experiment. There are three layers (input 

layer, hidden layer, and output layer) with 3, 3, and 2 

nodes, respectively. We set the learning rate at 0.3 and 

momentum at 0.2. The input layer consists of three 

(3) 

(4) 

(5) 
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extracted features (fduration, faverage distance, fslope). The 

hidden layer is with three nodes (as suggested by [11]: 

input +class/2). The output node suggests two possible 

values: fall or non-fall. 

SVM is a novel approach that is capable of 

classifying linear or nonlinear data. The basic discipline 

of SVM is to compute a hyperplane, defined by support 

vectors, between each class and the rest in a way that 

the margin between two classes is maximized. We find 

a hyperplane  xf , which makes category “-1” of y fall 

into the range of  xf < 0 and category “+1” of y fall 

into the range of  xf >0. Thus, we can distinguish the 

categories according to the sign of  xf as shown in 

Equation (6). 

  bxTwxf   

Where w is the normal vector of this hyperplane 

           x is the input vector 

         wb is the distance from origin perpendicular to 

hyperplane 

Maximum margin and minimum square error are 

derived to solve SVM as seen in Equation (7). 
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Where  m ,...,1  is coefficient of Lagrange and

mii ,...,,, 210 
 
 

Our research has been tested with various kernel 

functions (linear, polynomial with a default order of 3, 

and a radial basis function with a default scaling factor 

of 1). Among these, radial basis function, as shown in 

Equation 8, yielded the best performance and had been 

used as kernel function in our experiment. 

         

  









2
exp, jj xxxxk    

Where  is radial’s size. 

3.4. Fall Severity Level Estimation 
 

Once a fall is detected, the estimation of severity level 

of injury on three key body joints: head, hip and knee 

will be preceded. Empirically, the importance of these 

three body positions was agreed by a domain expert 

(Rehabilitation Medicine) and literature review. To 

show a few, a report from the Center for Disease 

Control and prevention (CDC) [10] estimated that the 

number of hip fractures, a serious fall related injury, 

will rise from 350,000 admissions per year to over 

500,000 by 2040. Magaziner et al. [30] indicated that 

hip fractures are the major category of injury produced 

by falls with 87% of all fractures occurring in the 

subject. The second highest ranked injury from falls is 

head trauma [36, 42], and the next one is knee fracture 

[26].  

The process of severity estimation comprises two 

main steps, namely, the analysis of factors related to 

fall severity and the scaling of the severity. 

3.4.1. Investigating Factor Related to Fall Severity 

As seen in Figure 6, the velocity of the impacted 

position and the kinetic energy of the fall impact [13] 

will be considered when investigating body injuries 

possibly sustained from falls.  

 

Figure 6. Velocity and Kinetic energy measured for fall severity. 

The velocity (v), in this context, identifies the speed 

of each joint position (i.e., head, hip, and knee 

position) hitting the floor [17]. The formulation is 

shown in Equation (9), where definition of notations 

refers to Figure 4. 

                                t

s
v


     

Where s = distance from position A to position C 

(metre)  

             t = fduration(second)  

Kinetic energy (EK) that is transmitted to and 

immersed by the impact surface and/or impact body 

[15] can be computed as defined in Equation (10). 

 Kinetic energy (EK) = 2

2

1
mv       

Where m = mass of the body (75 ± 35 kg, and height 

165 ±15 cm of sample subject)  

 v = velocity (metre/second) 

3.4.2. Division of fall severity level 
 

We propose an anatomical-based coding system called 

FSIS as a framework to classify severity level of falls. 

The scales are derived from computed value of 

velocity or kinetic energy on selected body regions 

(head, hip, and knee).  

FSIS scales, in this study, were trained using 1,320 

fall video clips of eight subjects randomly selected 

from a total of 1,650 (10×11×15) fall video clips. Each 

individual subject performed a simulated fall without 

being specified characteristics of fall, which resulting 

in different types of actions performed at different 

speeds. The resulting FSISs are shown in Figure 7. 

(6) 

(7) 

(8) 

(9) 

(10) 
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a) Velocity. 

          
b) Kinetic energy. 

Figure 7. Fall severity level (FSIS) on major body joint position. 

At a glance, distribution of the velocity and kinetic 

energy of fall on each body joint position of head, hip 

and knee is used to divide fall severity levels into scales 

of four, using the inter-quartile. This approach is the 

fundamental method in statistics to learn the data 

dispersion with respect to the midpoint of the data set 

called the median. Using the inter-quartile analysis on 

the experimental data, Figure 7-a and Figure 7-b shows 

the Box-plot scales of velocity and kinetic energy on 

body joint positions of head, hip, and knee, 

respectively. The scale classifies fall severity into 4 

levels. Level 1 is the value lower than Q1. Level 2 is 

the value inside the range of Q1, median, and Q3. Level 

3 is the value beyond Q3 up to maximum. Level 4 is 

the value higher than the maximum. 

Some interesting notes based on the inter-quartile 

analysis (exposed in Table 2) are as follows. Firstly, 

mean and range of velocity and kinetic energy of the 

head is noticeably higher than those of the hip and 

knee. This suggests the need of special care for the 

head when a fall incurred.  

Table 2. Result of velocity and kinetic energy on head, hip, and 
knee position. 

 

velocity of fall (m/s) Kinetic energy (joules) 

Head Hip Knee Head Hip Knee 

max 3.93 3.86 3.83 492.76 467.7 426.98 

Q3 1.66 1.51 1.19 88.71 76.73 71.56 

median 1.33 1.22 0.93 58.14 47.81 47.3 

Q1 1.05 0.93 0.7 34.86 27.55 24.63 

min 0.02 0.02 0.02 0.01 0.01 0.01 

mean 1.38 1.24 0.97 72.25 60.05 57.25 

S.D. 0.47 0.45 0.39 57.54 48.96 42.14 

Secondly, the experiment was conducted using only 

simulated falls, the most severe cases that was set up 

cannot be comparable with the serious injury in real 

life. For the time being, the training data, thus, assumes 

only the severity level 1 up to 3 representing mild, 

moderate and high chance of having injury as shown in 

Figure 8. In fall simulation, the subjects in level 3 had a 

bruise and pain from fall, although, they performed it 

on thick mats. Level 4 represents extremely high 

velocity or kinetic energy that can cause serious 

damage to body/bone in real life. An imaginary 

example of such a serious fall may be that the subject 

accidentally slips/falls while walking or standing and 

is unable to slow down the transition of fall. The body 

joint position hits directly to the hard floor. Whenever 

the data of real life fall is available, the fall severity 

scale can be easily adjusted reflecting the higher 

accurate measurement system. 

 

Figure 8. Four proposed levels of fall severity. 

4. Experimental Results and Discussions 

In this section, we explain the experiment setup and 

provide an evaluation of comparative performance of 

fall motion detection. In addition, we also examined 

the effectiveness of our proposed framework for fall 

severity level estimation. The case study demonstrated 

the effectiveness of the proposed system. 

4.1. Experiment Setup and Dataset 
 

In our experiment, we established an indoor 

environment setting with a Kinect camera to track the 

movement of sample subjects in three different 

viewpoints (side, frontal, and back view) and generate 

a video stream with 640×480 resolution at the rate of 

30 Frames Per Second (FPS). The Kinect device is set 

up at approximately 1 meter above the floor. The size 

of our room is approximately 5×7 m. as seen in Figure 

9-a. 

The depth sensor of Kinect uses the UserGenerator 

method of OpenNI [37] to extract the vectors (X, Y, 

Z) of fifteen body joint positions. We decided to use 

OpenNI in our research because it is a well-known 

reliable open source tool in 3D sensing middleware 

applications. Thus, developers can develop new 

routines to enhance the capabilities of the existing 

tool. Our research was implemented as a series of 

Kinect’s video stream analysis modules. These 

modules, written in C#, read Kinect’s depth 

information of a scene as a time series of fifteen body 

joint positions. 

In our experiment, an additional dataset was 

collected, with approval of the Institutional Review 

Board (IRB) of our University. There were ten adult 
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subjects (age 30 ± 8 years, body mass 75 ± 35 kg, and 

height 165 ±15 cm with an equal number of males and 

females of various weights and heights). They 

performed all activities on safety mats. 

 
a) Room plan showing the room setup of our experiment. 

 
b) Sitting on a sofa.                  c) Falling down on the floor. 

Figure 9. Experiment setup for fall detection system.  

Our study simulated falls according to the definition 

of falls by Noury et al. [35] and Kwolek and Kepski 

[27], but used an extended version of scenarios on 

various falls and ADLs from the positions of standing, 

walking and sitting on a variety of seat types such as 

sofas, chairs with a backrest, and stools as seen in 

Figure 9-b and 9-c with different types of actions 

performed at different speeds as shown in Table 3. 

Table 3. Various combinations of activities for motion detection. 

Type of activities Situations Direction 

Falls (11 types) 

sit on chair with 

backrest/stool/sofa, 

stand, and walking 

backward/forward/left/right 

ADLs (18 types) 

sit on chair with 

backrest/stool/sofa 
backward 

lie on the floor/sofa left/right 

bend down on the 

floor 
left/right/forward 

Each scenario was repeated 15 times per subject, the 

extensive number of video clips in our study was used 

to ensure low variance of our results and high reliability 

and accuracy of our system. Hence, there are a total of 

4,350 (10x29x15) video clips in our experiment. To 

control the bias in model evaluation, our model was 

evaluated using 5-fold cross-validation, where the 

whole dataset was spilt into a training dataset for 1,320 

falls and 2,160 ADLs from eight subjects, while data of 

the remaining subjects was used to test our model. 

4.2. Discussion and Comparison of Performance 

of Fall Motion Detection 

To gain an insightful experimental result, we 

conducted an experiment evaluating comparative 

performance of the MLP and SVM for being 

candidates for the fall detection algorithm on our 

dataset and another dataset. Furthermore, our proposed 

algorithm is compared with state-of-the-art approaches 

using depth of image. 

The results of evaluating 870 video clips (330 falls 

and 540 ADLs) using MLP versus SVM are depicted 

in terms of True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN) values as 

shown in Table 4. 

Table 4. Results of evaluating our fall detection approaches. 

 
TP TN FP FN 

MLP 323 537 3 7 

SVM 330 539 1 0 

Table 4 exposes that both models are very good in 

detecting fall motions. SVM is better off, anyway. It 

has 0 FN which means all the simulated fall events in 

our experiment can be detected perfectly.  

Moreover, we compare the performance of the two 

classifiers with three important performance measures: 

accuracy, recall, and precision as shown in Table 5. 

Table 5. Measures for evaluating our fall detection approaches.  

 

Our dataset 
dataset of Kwolek and 

Kepski [27] 

MLP SVM MLP SVM 

Accuracy 99.77% 99.97%* 99.49% 99.72% 

Recall 0.9974 1.000* 0.9967 0.9989 

Precision 0.9988 0.9996* 0.9921 0.9945 

*Perfect detect fall using SVM versus MLP 

From the results reported in Table 5, fall detection 

using SVM achieves 99.97% accuracy, and 99.77% 

accuracy when using MLP. In addition, with SVM, 

our method achieves 1.00 recall and 0.9996 precision, 

While recall and precision of MLP achieve 0.9974 and 

0.9988, respectively. 

To reduce bias of our dataset, we further evaluated 

the proposed algorithm with another dataset [27]. The 

dataset of Kwolek and Kepski [27] contains 70 

sequences of depth image using OpenNI (i.e., 30 falls 

and 40 ADLs). Data are recorded with 2 Kinect 

cameras (camera 0: parallel to the floor and camera 1: 

ceiling mounted). We used data on camera 0 for it 

setting is similar to our experiment. We have extracted 

torso position from depth image to test it with our 

algorithm. The obtained results are also shown in 

Table 5. The result shows that SVM also 

outperformed MLP. 

Additionally, we have a set of activities on furniture 

to test the background ambiguity of the human body, 

especially in the case of a subject sitting or lying on 

furniture. All cases also detect body joint position and 

obviously separate between furniture and body joint 

positions. Therefore, the system will still be able to 

detect a fall or non-fall. If a fall occurs, it will raise an 

alarm. From our study, we found that an occlusion 

with the angle of human body may cause ambiguous 
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detection using a single Kinect camera. To further 

enhance the performance of detection, future studies 

need to use multiple Kinect cameras to cover all areas 

of the subject’s body occluded by furniture. 

We further evaluated the proposed algorithm by 

comparing it with two state-of-the-art approaches as 

previously described in the literature [4, 32]. We re-

implemented algorithms of these approaches on our 

data set. The result is shown in Table 6. 

Table 6. Comparison of different approaches for fall detection. 

 

Proposed method State-of-the-art 

MLP SVM 
ɪ. depth of the 

3D [32] 

II. depth of the 

3D [4] 

Accuracy 99.77% 99.97%* 97.27% 97.87% 

Recall 0.9974 1.0000* 0.9727 0.9787 

Precision 0.9988 0.9996* 0.9610 0.9699 

* Perfect detect fall versus other methods 

From Table 6, our method outperforms the two 

existing approaches. Most errors in the two approaches 

are cases of performing abrupt activities such as sitting 

or lying down. Our system is, therefore, very effective 

for applying in real-life situations because it is highly 

accurate, reliable, affordable, and easy to use. Our 

approach has been implemented in C# and is able to 

detect falls in real-time on an Intel core i5 Central 

Processing Unit (CPU) @1.7GHz and 4 GB RAM 

processing platform. 

4.3. Demonstration and Evaluation of FSIS 

Let us illustrate the interpretation of FSIS scale with a 

simulated fall that the subject lose body balance and 

fallen on the floor. The first position hitting the floor is 

the hip position followed by head and knee positions, 

respectively as seen in Figure 10. 

 

Figure 10. Sample case in our study. 

In this case, just within a couple seconds after the 

transition phase of fall, the measured values of velocity 

and kinetic energy were transformed into FSIS scales 

and reported (possibly through LAN and social 

network) as shown in Figure 11. One can easily notice 

that only the hip position is worrisome since it is under 

level 3 severity. A simple, yet effective, visualization 

could help to grasp attention and self-explain urgency 

and risk of the situation. This information shall 

instantly urge and effectively support the caregiver or 

specialist to take properly care of the subject.  

 

 

Figure 11. Summary report of fall severity level of major body 

joint position. 

FSIS performance was evaluated using 330 video 

clips of various fall motions at different speeds and on 

a variety of seat types such as sofas, chairs with a 

backrest, and stools. The resulting performance of fall 

severity level estimation on body joint positions of 

head, hip, and knee, in terms of accuracy, precision, 

and recall are satisfactory with a range of 99.40%-

99.97% accuracy, 0.9914-0.9997 precision, and 

0.9930-1.000 recall. The evaluation is measured using 

the MLP model, 5-fold cross-validation with 1,320 fall 

video clips as the training dataset.  

Initially, FSIS scale is beneficial to estimate 

severity after fall on each of body joint position for an 

assist due to after consequent fall. The subject should 

not hurry to get up immediately, but the subject should 

estimate body injury before obtaining help to reduce 

risk of supplement injury. With information of FSIS 

scale, the subject and the caregiver can understand the 

effect of fall and consequent injuries on each of body 

joint position. Furthermore, the FSIS scale is utilized 

for assessing head impact injury instead of the use of 

HIC and HIMs without having to wear additional 

devices on the body. The FSIS scale can assist AIS in 

diagnosis by providing supplement knowledge. So, 

physicians diagnose quick, accurate, and specific case. 

Additionally, this keen insight of fall severity is 

important to caregivers and medical staff, especially, 

in case that the person loses consciousness and was 

unable to respond to caregivers. Fall severity 

information is used to support the decision making of 

caregivers in bringing the subject to see a doctor after 

a fall. For example, if a case of the fall severity level 

on the hip is in high or most severe level, the subject 

should see a doctor immediately to reduce risk of 

further injury. With this fall severity information, it 

would help a caregiver to make better decisions. In 

addition, if mild or moderate fall severity level occurs 

frequently, it means that the subject’s body is starting 

to behave abnormally such as losing balance, having 

visual issues, or suffering side effects of medicine. 

Caregivers should report a doctor immediately to 

examine the causes of the fall and the treatment. 

Finally, we have interviewed a rehabilitation 

physician. The physician accepts that the FSIS scale 

can quickly and accurately assist in diagnosis of the 
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patient’s condition in the initial stage, especially, in 

case of no incident information. As a result, future 

studies will extend the system by incorporating a 

decision support framework to support diagnosis, 

treatment, and rehabilitation of physician. 

5. Conclusions and Future Work 

In this paper, we propose an integrative model of fall 

detection and fall severity level estimation based on a 

live stream of joint positions obtained from Kinect 

camera. For fall detection, a set of three extracted 

features of a single joint of torso transitioning in 3 

phrases, pre-fall, transition, and post-fall, is proposed as 

effective determinants for efficiently classifying fall out 

of the other ADLs. The boundaries of the three phases 

are continuously and automatically detected by a 

software agent equipped with K-mean algorithm. A set 

of experiments varying machine learning of choices 

(MLP and SVM) and data sets (owned and external 

sources) show very satisfactory performances. The best 

achievement of 99.97% accuracy with Recall of 1.0 is 

obtained when applying SVM. MLP shew a little 

laggard performance, although giving impressively 

effective result. The experiment also proves that the 

proposed method outperformed two existing models 

relying on depth image technology which is treated as 

state-of-the-art by far, esp. in terms of robustness to 

obscured cases, for example, a situation that subject is 

sitting or lying on furniture. 

The last but not least, fall severity estimation is 

proposed to engineer the fall detection to be applicable 

and beneficial to the healthcare system. Velocity and 

kinetic energy are proposed as key features for 

estimating the severity and transformed into an FSIS 

framework that discretizes the severity into discrete 

level of seriousness of the fall on three important body 

parts: head, hip, and knee positions. This keen insight 

of fall severity is important to caregivers and medical 

staff, especially, in case the person lose consciousness 

and was unable to respond to caregivers. Thus, a 

subject could stay independent and safe within care 

facilities.  

For future work, we will extend the system by 

incorporating a decision support framework that 

enables the intelligence of information in all 3 phases to 

assist specialists and physicians in diagnosing and 

deciding proper care even in the prolonged period after 

post fall phase. In addition, we plan to deploy our 

prototype system in real use at an elderly care facility 

and in a hospital setting. 
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