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Abstract: The huge number of data streams makes it impossible to mine recent frequent itemsets. Due to the maximal frequent 

itemsets can perfectly imply all the frequent itemsets and the number is much smaller, therefore, the time cost and the memory 

usage for mining maximal frequent itemsets are much more efficient. This paper proposes an improved method called Recent 

Maximal Frequent Itemsets Mining (RMFIsM) to mine recent maximal frequent itemsets over data streams with sliding 

window. The RMFIsM method uses two matrixes to store the information of data streams, the first matrix stores the 

information of each transaction and the second one stores the frequent 1-itemsets. The frequent p-itemsets are mined with 

“extension” process of frequent 2-itemsets, and the maximal frequent itemsets are obtained by deleting the sub-itemsets of 

long frequent itemsets. Finally, the performance of the RMFIsM method is conducted by a series of experiments, the results 

show that the proposed RMFIsM method can mine recent maximal frequent itemsets efficiently. 
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1. Introduction 

The scale of collected data information shows an 

explosive growth in various domains with the rapid 

development of Internet of Things (IoT) technology, 

information technology and network technology [1]. In 

order to analyze the collected data information better, 

the association rules [3] among data should to be 

mined effectively, and the generation of frequent 

itemsets is the most critical technique and procedure in 

mining association rules. The frequent itemsets [7, 12] 

mean the itemsets whose support is not smaller than 

predefined minimum support (denoted as min_sup). In 

general, the number of frequent itemsets generated by 

most frequent itemsets mining methods is very large 

because all frequent itemsets of a given dataset need to 

be mined, it can easily consume the memory usage. 

Due to the number of maximal frequent itemsets is 

relatively smaller and they can imply all frequent 

itemsets perfectly, in this case, the efficiency of time 

cost for mining maximal frequent itemsets is very good 

and the memory usage is also much smaller. Therefore, 

the problems of mining frequent itemsets can be 

transformed into the operation of mining maximal 

frequent itemsets. 

The massive use of sensors makes the collected data 

exist in the form of data streams. One common 

definition of data streams is that it is made up of 

massive unbounded sequences with a large amount of 

data elements and existed in the form of continuous 

streams [11]. Data streams are generated in many 

aspects of applications, such as: sensor data streams 

are generated from sensor networks [4], online  

transaction data streams are generated from shops, 

network data streams are generated from website, etc. 

Due to people need to grasp the relevance of the 

information generated from online applications in real 

time, the mining process should be treated 

immediately. 

The differences of data streams mining and static 

data mining are list as follows [8]. First, each element 

of data streams is allowed to be checked for most once. 

Second, memory usage of the analysis for data streams 

should be restricted finitely although new data 

elements generated continuously. Third, the newly 

generation of the data should be processed as fast as 

possible. Fourth, the up-to-data analysis result of data 

streams should be instantly available when user 

requested. To satisfy these requirements, the method of 

data streams mining should indulge the rapidity and the 

memory usage should be as small as possible. 

However, the huge number of data streams makes it 

impossible to store all the data into main memory. 

Moreover, previous methods that studied for mining 

static datasets are not feasible for mining data streams, 

in this case, new structures and mining methods are 

eager for using to support one-time and continuous 

mining process. In this paper, we use the matrix 

structure to store the data information of data structures, 

and then propose an improved method called Recent 

Maximal Frequent Itemsets Mining (RMFIsM) to mine 

recent maximal frequent itemsets over data streams. 

The rest of this paper is organized as follows. The 

related work is introduced in section 2. The definitions 

and problems statement are given in section 3, the 

structure and main idea of our proposed maximal 
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frequent itemsets mining method are described in 

section 4. The experimental analysis is presented in 

section 5, and the conclusion is given in section 6. 

2. Related Work 

At present, several methods have proposed to mine the 

frequent itemsets over data streams. The models of 

frequent itemsets mining can be divided into: 

1. Landmark window model. 

2. Damped window model. 

3. Sliding window model according to the processing 

models of data streams. 

For landmark window model, the researchers always 

focus on the data in the entire data streams, and get the 

global frequent itemsets through the analysis of 

historical data. Li et al. [8] referred to Apriori 

algorithm to present a method called Data Stream 

Mining for Maximal Frequent Itemsets (DSM-MFI), it 

used prefix tree structure to store the data information 

of data streams, and then the maximal frequent 

itemsets mining process was realized with the 

constructed prefix tree structure. INSTANT method 

was presented by Mao et al. [10], it defined some sub-

operators of itemsets and maintained itemsets with 

different level of support in memory, the advantage of 

INSTANT method was that the maximal frequent 

itemsets could be displayed directly to user through a 

serious of sub-operations when the new transaction 

arriving. 

For damped window model, each transaction has a 

corresponding value and the value decreases gradually 

with the increase of time, therefore, preserve and 

reduce the related information of historical data need to 

be considered in the control of the value. Chang and 

Lee [2] developed a method called estDec in 2003, this 

method examined each transaction in turn without the 

generation of any candidate, the occurred count of the 

itemsets that appeared in each transaction was 

maintained with a prefix-tree structure, and the effect 

of old transaction on current mining result was 

diminished by defining the parameter called 

debilitating factor. Lin et al. [9] presented the Mining 

Recently Frequent Itemsets with Variable Support over 

Data Streams (MRVSDS) algorithm to store frequent 

itemsets in current window into PFI-tree structure, the 

itemsets were deleted from PFI-tree when the degree of 

the transaction was less than min_sup. In addition, the 

authors also designed the Decaying Synopsis Vector 

(DSYV) structure to store the processed transaction, 

and the frequent itemsets were found by re-mining the 

transactions from DSYV when the current itemsets’ 

support was less than historical min_sup. 

For sliding window model, the focus is always on 

the recent transactions, therefore, the mining results are 

the local frequent itemsets over a certain period of 

time. Yang et al. [13] designed an efficient algorithm 

named DSM-Miner to mine maximal frequent itemsets 

over data streams, it used appropriate method to reduce 

the effects of old transactions, and then the Sliding 

Window Maximum frequent pattern Tree (called 

SWM-Tree) was proposed to maintain the latest 

pattern’s information. In the process of mining 

maximal frequent patterns, DSM-Miner used 

appropriate pruning operations, calculation pattern of 

bit items group and “depth-first” search strategies, the 

experimental results showed that DSM-Miner was 

better in time performance and memory usage. A new 

algorithm that based on the prefix-tree data structure 

was proposed by Deypir et al. [5] to find and update 

frequent itemsets of the windows, a batch of 

transactions were used as the unit of insertion and 

deletion within the window to improve the 

performance, moreover, an effective traversal strategy 

for the prefix-tree and the suitable representation for 

each batch of transactions were used in the algorithm, 

the required information in each node of the prefix-tree 

was stored and the old batch of transactions were 

deleted directly. 

However, some disadvantages also have existed in 

the proposed methods. The drawbacks of INSTANT 

algorithm [10] were the amount of arrays designed for 

maintaining all maximal frequent itemsets was very 

large and the cost of memory usage was also very 

expensive, moreover, no efficient superset or subset 

were used to check the newly identified maximal 

frequent itemsets of each array, therefore, the 

comparison times were increased very fast and the 

memory usage was enlarged rapidly when the average 

length of the transactions became longer. 

3. Definitions And Problems Statement 

In this section, we first provide some formal 

definitions of the important terms used in this paper 

and then give the problems statement. 

3.1. Definitions 

Let I= {i1, i2, i3,…, im} be a finite set of m distinct 

items. The data streams DS= [T1, T2, T3, …, Tn), where 

each transaction Tj∈DS is a subset of I with a unique 

identifier TID. If the relation of itemset α and β 

is  , α is called the sub-itemset of β and β is called 

the super-itemset of α. If the length of itemset is k, it is 

called k-itemset. Table 1 shows an example of data 

stream as the running example to clearly explain the 

definitions. In this example, assume that min_sup is 

0.33 and the size of sliding window is 6. 
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Table 1. An example of data streams. 

TID Transaction TID Transaction 

T1 {i1,i2,i3} T6 {i1,i2,i3,i5,i6} 

T2 {i1,i2,i4} T7 {i1,i2,i5} 

T3 {i2,i3,i5} T8 {i1,i2,i3,i4} 

T4 {i1,i2,i3,i5} T9 {i2,i3,i5} 

T5 {i1,i3,i5} … …… 

 Support: The frequency of itemset xi in DS is 

defined as support, that is, support ({xi})= count(xi, 

DS) / |SW|, where count(xi, DS) is the number of 

contained itemset xi in DS and |SW| is the size of 

sliding window. 

For example, itemset {i1} is existing in T1, T2, T4, T5 

and T6 in current sliding window, therefore, support 

({i1}) = 5/6. Itemset {i1, i2} is existing in T1, T2, T4 and 

T6 in current sliding window, therefore, support ({i1, 

i2})= 4/6. 

 Frequent Itemsets (FIs): The frequent itemsets mean 

that the itemsets’ support is not less than the 

predefined minimal support threshold min_sup. 

For example, itemset {i1, i3} is existing in T1, T4, T5 

and T6, support ({i1, i3})=4/6>0.33, therefore, {i1,i3} is 

a frequent itemset. 

 Infrequent Itemsets (IFIs): The infrequent itemsets 

mean that the itemsets’ support is less than the 

predefined minimal support threshold min_sup. 

For example, itemset {i2, i4} is existing in T2, 

support ({i2, i4})=1/6<0.33, therefore, {i2,i4} is an 

infrequent itemset. 

 Maximal Frequent Itemsets (MFIs): The itemsets are 

the maximal frequent itemsets should satisfy the 

following two conditions: 

1. They are frequent itemsets. 

2. No super-itemset of them is frequent. 

For example, itemset {i4} is not a MFI due to support 

({i4})=1/6<0.33. Itemset {i1} is not a MFI though 

support ({i1}) = 5/6>0.33, the reason is that its super-

itemset {i1, i2} is frequent. Itemset {i1, i2, i3, i5} is a 

MFI due to support ({i1, i2, i3, i5})=2/6>0.33 and no 

super-itemset of it is frequent. 

 Dictionary order: If the appeared sequence of 

itemset A is earlier than itemset B in dictionary, the 

dictionary order of itemset A and itemset B can be 

recorded as: A » B. Similarly, the next itemsets can 

be recored as: A » ABD » ACD » BD in dictionary 

order. 

3.2. Problems Statement 

For mining useful information over data streams, the 

final mining results should be send to users 

immediately, it means that any useful data should be 

processed in an efficient way, in this case, the real-time 

response is very important to users. In addition, the 

huge nature of data streams makes it impossible to 

store all the data information into main memory or 

even in secondary storage due to they can easily 

consume all resources of system and bring difficulties 

to the underlying mining tasks. 

Specifically, the DSM-MFI method [8] took the 

structure of summary frequent itemset forest to store 

every sub-projection of affairs, and two main problems 

of DSM-MFI method could be included as:  

1. Large memory storage was wasted to store the sub-

projections for a part of sub-projections were not 

frequent. 

2. Much time was wasted for deleting the sub-

projections from summary frequent itemset forest to 

achieve the lower memory occupancy. 

The size of prefix tree that generated by estDec method 

[2] was very large with the increasing number of 

frequent itemsets, and more seriously, the estDec 

method would stop working once the prefix tree 

occupies full of the memory. The drawback of TMFI 

method [6] was the infrequent 1-itemsets were also 

stored in matrix structure, therefore, some meaningless 

“extension” operation of infrequent itemsets also were 

conducted to gain longer itemsets. 

In general, the time cost, the memory storage and 

the accuracy rate of mining process are the most 

important problems we should to deal with. 

4. Mining Recent Maximal Frequent 

Itemsets 

In this section, we refer TMFI method [6] to propose 

an improved method called RMFIsM to mine the 

recent MFIs over data streams. The RMFIsM method 

uses two matrixes (record as: matrix A and frequent 

matrix B) to store the information of each item, and the 

infrequent itemsets need to be deleted from matrix 

immediately to reduce the time cost and memory usage 

based on downward closure property. 

4.1. The Structure of RMFIsM Method 

Matrix A is constructed to store the information of 

each item of data streams, and frequent matrix B is 

built to record the information of frequent 1-itemsets. 

The rows of matrix A stand for the information of 

transactions Ti and the columns of matrix A stand for 

the information of each item of {i1, i2, i3,…, im}, the 

size of matrix A is (n+1)*m, where row (n+1) records 

the support of each item. Specifically, the transactions 

are scanned in order when the current sliding window 

is not full, and Ad,k is marked as 1 if item ik is appeared 

in transaction Td, otherwise, Ad,k is marked as 0. 

In order to effectively mine the recent information 

of data streams, old transactions need to be replaced by 

new ones directly. The position of new transaction Td 
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is calculated by Equation 1, where n is the size of 

sliding window, and the information of transaction Td 

is recorded in row n if the result of pos is 0. 

%pos d n  

Frequent matrix B is built to store the data information 

of frequent 1-itemsets in dictionary order, the original 

element of matrix B is 0 and the real size of matrix B is 

(k-1)*(k-1), where k is the number of frequent 1-

itemsets. The construction process of matrix B is 

shown as follows: for frequent 1-itemsets ip and iq with 

the order of ip » iq, doing “logic and” operation process 

for every element of columns p and q in matrix A, Bp,q 

is marked as 1 if the result of “logic and” for itemset 

{ip,iq} is not less than min_sup, otherwise, Bp,q is 

marked as 0. 

Matrix A and frequent matrix B are the basis for 

mining maximal frequent itemsets, the pseudo-code of 

constructing matrix A and frequent matrix B is shown 

in Algorithm 1. 

Algorithm 1: Construct matrix A and frequent matrix B 

Input: Data streams, n(the maximal |SW|), m(maximal number 

of different items), min_sup 

Output: matrix A, frequent matrix B 

for (|SW|=1 to n) 

{ 

   for (k=1 to m) 

   { 

      if (ik in Td) 

         Ad,k=1 

      else 

         Ad,k=0 

      } 

} 

return matrix A 

for (k=1 to m) 

{ 

   if (support(ik) ≥min_sup) 

      add ik to matrix B 

   else 

      delete ik 

} 

for (k=1 to |B|) 

{ 

   for (s=k+1 to |B|) 

   { 

      if (support({ik,is}) ≥min_sup) 

         Bk,s=1 

      else 

         Bk,s=0 

   } 

} 

return matrix B 

4.2. Downward Closure Property 

The downward closure property is an important part of 

RMFIsM method, it is the foundation of pruning 

strategy for reducing the meaningless “extension” 

process to save the time cost and memory usage. 

 Theorem 1. If Xk is a frequent k-itemset, then, any 

nonempty sub-itemset Xk-1 of Xk is also frequent. 

 Proof. Since
1k k

X X

 , the transactions contains 

itemset Xk must contains the itemset Xk-1, that is: 

( ) ( )
k k-1

TID X TID X , it follows that: support(Xk-1)≥ 

support(Xk)≥ min_sup. Hence, any nonempty sub-

itemset Xk-1 of Xk is also frequent if Xk is a frequent 

itemset. 

 Theorem 2. If Xk is an infrequent k-itemset, then, any 

super-itemset Xk+1 of Xk is also infrequent. 

 Proof. Since
1k k

X X


 , the transactions contains 

itemset Xk+1 must contains the itemset Xk, that is: 
1

( ) ( )
k k

TID X TID X


 , it follows that: 

support(Xk+1)≤ support(Xk)≤ min_sup. Hence, any 

super-itemset Xk+1 of Xk is also infrequent if Xk is an 

infrequent itemset. 

It can be easily known from downward closure 

property that the “extension” process of infrequent 

itemsets is meaningless, thus, the downward closure 

property should to be considered in every step of 

maximal frequent itemsets mining. More specifically, 

the infrequent itemsets that existing in matrix A should 

not add into frequent matrix B as the basic element of 

“extension” process for RMFIsM method, that is, if 1-

itemset ip is an infrequent itemset, its super-itemsets 

are impossible being the frequent itemsets, therefore, ip 

should not appear in matrix B to reduce the time cost 

and memory usage in both constructing matrix B and 

calculating the support value of these meaningless 

extended itemsets. 

4.3. The Main Idea of RMFIsM Method 

The main idea of RMFIsM method can be included 

into next three parts: 

1. Extend the short frequent itemsets into long itemsets. 

2. Calculate the support value for the extended long 

itemsets and save the frequent long itemsets into 

maximal frequent itemsets library MFIs_L. 

3. check and move the frequent sub-itemsets of the 

extended frequent long itemsets out from MFIs_L. 

Note that, each itemset need to be checked before 

“extension” process to discard the infrequent 

itemsets to further improve the mining efficiency. 

Once matrix A is constructed and each element is 

written into matrix A, the support value of each item is 

calculated and written in row (n+1), and the frequent 

1-itemsets are stored into MFIs_L. After constructing 

matrix B and the corresponding items are written into 

matrix B, the frequent 2-itemsets where the item is 

marked in 1 are stored into MFIs_L, and then all 1-

itemsets are checked and each sub-itemset of frequent 

2-itemsets are moved out from MFIs_L. 

If itemset {ik1, ik2, …, ikp} is a frequent p-itemset, the 

“extension” process of frequent p-itemset into (p+1)-

(1) 
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itemset can be summarized as follows. Frequent p-

itemset {ik1,ik2,…,ikp} can be extended into (p+1)-

itemset if and only if every B(ky,k(p+1))= 1, where y∈
[1, p]. Next, doing “logic and” operation for the 

corresponding (p+1) column to calculate the support 

value, itemset {ik1,ik2,…,ikp,ik(p+1)} is retained and stored 

into MFIs_L if its support value is not less than 

min_sup, otherwise, it is discarded directly. If the 

current extended (p+1)-itemset is frequent, all p-

itemsets are checked and each sub-itemset is moved 

out from MFIs_L. Repeat the above “extension” 

operation until no itemset can be further extended. The 

specific pseudo-code is shown in Algorithm 2. 

Algorithm 2: RMFIsM 

Input: Frequent matrix B 

Output: MFIs 

call Algorithm 1 

delete each frequent sub-itemsets of frequent 2-itemsets 

for (k=1 to |B|) 

{ 

   foreach (B(ky,k(p+1))=1)  // y∈[1,p] 

   { 

      extend p-itemset of {ik1,…,ikp}  into (p+1)-itemset of 

{ik1,…,ikp,ik(p+1)} 

      calculate support({ik1,…,ikp,ik(p+1)}) 

      if support({ik1,…,ikp,ik(p+1)}) ≥min_sup 

         add {ik1,…,ikp,ik(p+1)} into MFIs_L 

         move every sub-itemsets of {ik1,…,ikp,ik(p+1)} out from 

MFIs_L 

      else 

         delete {ik1,…,ikp,ik(p+1)} 

   } 

} 

return MFIs 

4.4. An Example of RMFIsM Method 

In order to describe our proposed RMFIsM method 

better, we take the example that shown in Table 1 to 

illustrate the specific mining process of maximal 

frequent itemsets, the min_sup is set into 0.33 and the 

size of sliding window is set into 6. 

Matrix A is constructed and each data information 

of transactions is marked into when they pass the 

sliding window, the original information of each item 

(T1-T6) is shown in Figure 1-a. When the sliding 

window is full, we built matrix B and implement 

maximal frequent mining process. When the new 

transactions flowing into the sliding window, the oldest 

transaction is covered by the latest one directly based 

on Equation (1) to get better time efficiency. Figure 1 

shows the change process of matrix A that T1 is 

covered by T7 and T2 is covered by T8, the new matrix 

A is shown in Figure 1-b. 
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b) New matrix structure. 

Figure 1. The change process of matrix A. 

Next, we take the transactions of {T7, T8, T3, T4, T5, 

T6} as the example to explain the MFIs mining process 

more clearly, the whole process is divided into next 

steps. 

 Retaining the 1-itemsets whose support value are 

not less than min_sup and saving them into MFIs_L, 

these frequent 1-itemsets are the basic elements of 

matrix B. Here, the frequent 1-itemsets in MFIs_L 

are {i1}, {i2}, {i3}, {i5}. 

 Taking the frequent 1-itemsets that saved in MFIs_L 

to construct matrix B, the row of matrix B is the 

front (n-1) elements and the column of matrix B is 

the last (n-1) elements, where n is the size of 

frequent 1-itemsets. Thus, the row of matrix B is {i1, 

i2, i3} and the column of matrix B is {i2, i3, i5}. Next, 

the support of each 2-itemset ({i1, i2}, {i1, i3}, {i1, 

i5}, {i2, i3}, {i2, i5}, {i3, i5}) is calculated and their 

support values are marked into matrix B. Then, the 

frequent 2-itemsets are saved into MFIs_L. The 

specific information of matrix B is shown in Figure 

2. 

1

2

3

          

 1 1 1

 0 1 1

 0 0 1

2 3 5i    i   i  

i

i

i

 
 
 
  

  
Figure 2. The structure of matrix B. 

 After constructing matrix B, the infrequent itemsets 

need to be deleted first and each sub-itemsets of 

frequent 2-itemsets need to be moved out from 

MFIs_L. For the example, frequent 1-itemsets {i1} 

and {i2} are the sub-itemsets of frequent 2-itemset 

{i1, i2}, then, moving {i1} and {i2} out from 

MFIs_L. Continue this operation until no frequent 



966                                                    The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019 

 

1-itemsets is the sub-itemset of frequent 2-itemsets. 

Here, the itemsets in MFIs_L are {i1, i2}, {i1, i3}, {i1, 

i5}, {i2, i3}, {i2, i5} and {i3, i5}. 

 Then, the frequent 2-itemsets need to be extended 

into 3-itemsets. The frequent 2-itemset {i1,i2} is first 

selected as the conditional potential itemset, due to 

B(i1,i3)=1 and B(i2,i3)=1, {i1,i2} can be extended into 

{i1,i2,i3} and it is saved into MFIs_L due to 

support({i1,i2,i3})=0.5>0.33. Repeat the same 

process to gain the frequent 3-itemsets {i1, i2, i5}, {i1, 

i3, i5}, {i2, i3, i5}, and they are saved into MFIs_L. 

After gaining all frequent 3-itemsets, each frequent 

2-itemset is checked and all sub-itemsets need to be 

moved out from MFIs_L. 

 Next, the frequent 3-itemsets need to be extended 

into 4-itemsets. The frequent {i1,i2,i3} is first 

selected as the conditional potential itemset, due to 

B(i1,i5)=1, B(i2,i5)=1 and B(i3,i5)=1, {i1,i2,i3} can be 

extended into {i1,i2,i3,i5} and it is saved into MFIs_L 

for support({i1,i2,i3,i5})= 0.333>0.33. After gaining 

the frequent 4-itemsets, each frequent 3-itemset is 

checked and each sub-itemset need to be moved out 

from MFIs_L. 

After above steps, the MFIs_L is {i1, i2, i3, i5}. 

5. Experimental Analysis 

To verify the efficiency of our proposed RMFIsM 

method, the estDec method [2], the TMFI method [6] 

and the DSM-MFI method [8] are compared in our 

experiment. All experiments are conducting on a 

machine running Windows 7 with an Intel dual core i3-

2020 2.93 GHz processor, the development 

environment is Microsoft Visual Studio 2010. The 

performance of RMFIsM method is analyzed on 

synthetic sparse datasets of T10.I4.D1000K and 

synthetic dense dataset of T30.I20.D1000K that 

generated by IBM data generator, where |T| means the 

average size of the transactions, |I| means the potential 

size of frequent itemsets and |D| means the total 

number of transactions, K means one thousand. 

Experiments are conducted to investigate the 

efficiency of the RMFIsM method both in time cost 

and memory usage with different value of min_sup, 

different size of sliding window and different number 

of transactions, the experiments are also conducted to 

test the accuracy rate of RMFIsM method. Each group 

of experiments is repeated for 50 times, and the 

average time and memory usage are calculated. 

 

 

5.1. Time Cost for RMFIsM Method 

The time cost for mining recent MFIs on sparse dataset 

T10.I4.D1000K with different value of min_sup is 

shown in Figure 3-a. The time cost on T10.I4.D1000K 

with different size of sliding window is shown in 

Figure 3-b. The time cost on T10.I4.D1000K with 

different number of transactions is shown in Figure 3-c. 

The time cost on dense dataset T30.I20.D1000K is 

shown in Figure 4-a, Figure 4-b, and Figure 4-c 

separately. 

It can be seen from Figure 3-a and Figure 4-a that 

the time cost of RMFIsM, DSM-MFI, estDec and 

TMFI methods shows a decreasing trend with the 

increasing value of min_sup. The time cost of our 

proposed RMFIsM method is the lowest of the 

compared four methods, the reason is that in the 

process of mining MFIs, RMFIsM method just 

implements the “logic and” operation of each data 

information that stored in matrixes, which reduces the 

operations of iteration, sorting and pruning, moreover, 

the infrequent itemsets are discarded directly in 

RMFIsM method to avoid meaningless “extension” 

operation. Compared with DSM-MFI method, the 

saved time of RMFIsM algorithm is great in the first 

and becomes smaller gradually with the increasing 

value of min_sup, the reason is that the total frequent 

itemsets are decreasing significantly accompanied with 

large value of min_sup. Compared with dataset 

T10.I4.D1000K, the time cost of T30.I20.D1000K on 

MFIs mining process is much more, the reason is that 

the itemsets in dense dataset T30.I20.D1000K are more 

likely frequent for their larger support value. 

It can be seen from Figures 3-b and 4-b that with the 

increasing size of sliding window, the time cost of the 

compared four methods shows an increasing trends, the 

reason is that the number of frequent itemsets is rising 

rapidly as |SW| is becoming larger gradually. The time 

cost of our proposed RMFIsM method is the lowest of 

the four methods, and the time cost on 

T30.I20.D1000K is much larger than that on 

T10.I4.D1000K. 

We can obviously see from Figures 3-c and 4-c that 

the time cost of compared four methods is increasing 

with the increased number of transactions, the reason is 

that the frequent itemsets increase gradually when the 

number of transactions is rising. The time cost of 

RMFIsM method is less than DSM-MFI, estDec and 

TMFI methods, and the time cost on T30.I20.D1000K 

is much more than that on T10.I4.D1000K. 
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              a) Different min_sup.                                                                b) Different sizes of sliding window.                                         c) Different numbers of transactions. 

Figure 3. Time cost on sparse dataset T10.I4.D1000K. 
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a) Different min_sup.                                                                         b) Different sizes of sliding window.                                   c) Different numbers of transactions. 

Figure 4. Time cost on dense dataset T30.I20.D1000K. 
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a) Different min_sup.                                                                           b) Different sizes of sliding window.                                c) Different numbers of transactions. 

Figure 5. Memory usage on sparse dataset T10.I4.D1000K. 
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                     a) Different min_sup.                                                      b) Different sizes of sliding window.                                    c) Different numbers of transactions.   

Figure 6. Memory usage on dense dataset T30.I20.D1000K. 

5.2. Memory Usage for RMFIsM Method 

The memory usage is an important factor to measure 

the efficiency of our proposed RMFIsM method. The 

experiment to test the peak memory usage is also 

conducted with different value of min_sup, different 

size of sliding window and different number of 

transactions, the parameters used in this experiment is 

same with that in subsection 5.1, and the experimental 

results are shown in Figures 5 and 6. 

We can see from Figures 5-a and 6-a that with the 

increasing value of min_sup, the peak memory usage 

of the compared four algorithms shows a decreasing 

trend. It is owing to that the number of frequent 1-
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itemsets is decreasing gradually with the larger value of 

min_sup, therefore, the number of intermediate 

generated itemsets in MFIs mining process is also 

reduced much. The peak memory usage of our 

proposed RMFIsM method is lowest of the four 

methods, the reason is that the infrequent itemsets have 

been discarded in the beginning of RMFIsM method, so 

the meaningless “extension” operation hasn’t been 

conducted to occupy the additional memory storage. 

Compared with sparse dataset T10.I4.D1000K, the 

memory usage of MFIs mining process on dense 

dataset T30.I20.D1000K is much more. 

Figures 5-b and 6-b show that the peak memory 

usage of the compared four methods grows up 

gradually with the increasing size of sliding window, 

the reason is that the number of frequent itemsets 

becomes much larger with the extending size of 

sliding window. The peak memory usage on sparse 

dataset T10.I4.D1000K is much smaller than on dense 

dataset T30.I20.D1000K. 

We can see from Figures 5-c and 6-c that the peak 

memory usage of RMFIsM, DSM-MFI, estDec and 

TMFI methods is increasing smoothly with the 

increasing number of transactions and the occupied 

peak memory usage is linearly related to the number 

of transactions. In the compared four methods, the 

peak memory usage of RMFIsM method is lower than 

estDec, TMFI and DSM-MFI methods in a certain 

extent. The peak memory usage on dense dataset 

T30.I20.D1000K is also much larger than that on 

sparse dataset T10.I4.D1000K. 

Table 2. Accuracy rate of RMFIsM method. 

Dataset min_sup T10 T30 Dataset  |SW| T10 T30 Dataset Transactions T10 T30 

0.05 87.2% 89.6% 200 91.3% 92.2% 300K 92.1% 93.4% 

0.1 92.3% 93.4% 400 91.6% 92.6% 400K 92.4% 93.2% 

0.15 95.2% 96.1% 600 91.9% 92.8% 500K 92.3% 93.5% 

0.2 96.4% 96.9% 800 92% 93.1% 600K 92.2% 93.5% 

0.25 96.8% 97.3% 1000 92.3% 93.5% 700K 92.4% 93.3% 

0.3 97.1% 97.5% 1200 92.5% 93.6% 800K 92.1% 93.4% 

0.35 97.2% 97.6% 1400 92.7% 93.7% 900K 92.2% 93.2% 

0.4 97.3% 97.8% 1600 92.8% 93.9% 1000K 92.3% 93.5% 

5.3. Accuracy Rate of RMFIsM Method 

The accuracy rate of our proposed RMFIsM method is 

also tested with different value of min_sup, different 

size of sliding window and different number of 

transactions, the set of experimental parameters is same 

with subsection 5.1 and the experimental result is 

shown in Table 2. 

We can see from Table 2 that with the arising value 

of min_sup, the accuracy rate of the mining results is 

improving slowly both on datasets T10.I4.D1000K and 

T30.I20.D1000K, the reason is that the number of 

frequent itemsets shows a decreasing trend with the 

increasing value of min_sup, which results the 

influence of infrequent itemsets disappearing gradually. 

Furthermore, with the increasing size of sliding 

window, the accuracy rate of RMFIsM method is in 

rising trend, and the accuracy rate is relatively stable in 

general. Moreover, the accuracy rate of RMFIsM 

method is smooth between 92.1% to 92.4% on sparse 

dataset T10.I4.D1000K and between 93.2% to 93.5% 

on dense dataset T30.I20.D1000K with the increasing 

number of transactions, it is obvious that the number of 

transactions is a small factor that impact the accuracy 

rate of MFIs mining. The accuracy rate result indicates 

that our proposed RMFIsM method is suitable for 

mining the maximal frequent itemsets over online data 

streams under the larger value of min_sup. 

 

 

6. Conclusions 

It is often difficult to quickly mine the recent frequent 

itemsets over huge scale of data streams. In this paper, 

we propose an improved approach called RMFIsM to 

mine the maximal frequent itemsets instead of to mine 

all frequent itemsets. We first construct two matrixes 

to store the data information of each transaction and 

the information of frequent 1-itemsets. The frequent 

(p+1)-itemsets are mined by the “extension” process 

of frequent p-itemsets, the current maximal frequent 

itemsets are stored into MFIs_L and each sub-itemsets 

of frequent long itemsets are moved out from MFIs_L. 

Through the compared experimental with DSM-MFI, 

estDec and TMFI methods, it can be easily found that 

our proposed RMFIsM method is more effective both 

in time cost and memory usage, and the accuracy rate 

of MFIs mining is also very high. 
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