
928 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Self-Adaptive PSO Memetic Algorithm For Multi

Objective Workflow Scheduling in Hybrid Cloud

Padmaveni Krishnan and John Aravindhar

Department of Computer Science and Engineering, Hindustan Institute of Technology and Science, India

Abstract: Cloud computing is a technology in distributed computing that facilitate pay per model to solve large scale

problems. The main aim of cloud computing is to give optimal access among the distributed resources. Task scheduling in

cloud is the allocation of best resource to the demand considering the different parameters like time, makespan, cost,

throughput etc. All the workflow scheduling algorithms available cannot be applied in cloud since they fail to integrate the

elasticity and heterogeneity in cloud. In this paper, the cloud workflow scheduling problem is modeled considering make span,

cost, percentage of private cloud utilization and violation of deadline as four main objectives. Hybrid approach of Particle

Swarm Optimization (PSO) and Memetic Algorithm (MA) called Self-Adaptive Particle Swarm Memetic Algorithm (SPMA) is

proposed. SPMA can be used by cloud providers to maximize user quality of service and the profit of resource using an

entropy optimization model. The heuristic is tested on several workflows. The results obtained shows that SPMA performs

better than other state of art algorithms.

Keywords: Cloud computing, memetic algorithm, particle swarm optimization, self-adaptive particle swarm memetic

algorithm.

Received April 3, 2017; accepted May 29, 2017

1. Introduction

Large scale business applications are composed of

multitasking, big data, time variant and fluctuating

workloads. Cloud computing with its elastic computing

property facilitates the scaling up and scaling down

mechanism. The cloud provider takes care of the

provisioning of resources. This paper emphases on

how the heterogeneous resources are provisioned to

users. The instances referred here are Virtual Machines

(VMs) under execution.

The workflow scheduling in cloud environment is

done in two stages. The first is the provisionisng stage

in which the resources that are fit to run the task are

selected. The second is the scheduling stage in which

each task is mapped to the suitable resource without

affecting the dependency among tasks. A workflow

model is an application that has tasks and flow of data

among tasks. A Workflow scheduling problem is a

problem of assigning tasks to processors in

multiprocessor environment [2, 14, 15]. This

scheduling problem is NP-complete and it can be

represented as a Directed Acyclic Graph (DAG) in

which the nodes represents processes and edges

represents the workflow among processors. The

direction of edges represents the data dependencies

among tasks and they are always directed.

Resources in cloud are allocated by the broker to the

user on request. The scheduling algorithms use Quality

of Service (QoS) constraints and solves the problem as

single objective optimization problem. Two main

algorithms like ‘LOSS’ and ‘GAIN’[10] use a

schedule and reassigns each task to another processor

until it fits to budget. ‘LOSS’ algorithm saves larger

money by assigning tasks with largest saving first.

‘GAIN’ algorithm starts assigning the tasks that

require lest money. Some algorithms use the Pareto

Swarm Optimization algorithm (PSO) for generating

trade off among cost and make span. In this paper, we

propose a cost minimized and deadline constrained

heuristic algorithm that can be applied in cloud

resource scheduling. The algorithm proposed considers

the features such as dynamic provisioning and

variation in performance of VM. The proposed

algorithm is a hybrid algorithm called Self-adaptive

Particle Swarm Memetic Algorithm which has

Memetic algorithm and PSO as its predecessors.

SPMA can be applied to real world pay-per-use pricing

strategies and is based on IaaS instances. The

algorithm gives the schedule that defines the mapping

of task to VM and the time to lease and release the

VM. Memetic operators like encoding, generating

initial population, fitness function evaluation,

crossover, mutation and reproduction are used in

SPMA. The PSO algorithm is blended with memetic in

selection of off springs for crossover and in the

selection of population for the next generation.

The rest of the paper is organized as follows. The

section 2 of paper provides a brief description of

scheduling algorithms used and challenges on IaaS

platforms. The section 3 provides problem definition.

The section 4 explains the memetic algorithm and the

way how it is merged with PSO algorithm to make

Self-Adaptive PSO Memetic Algorithm For Multi Objective Workflow Scheduling... 929

SPMA. Section 5 shows the test results and we provide

concluding remarks in section 6.

2. Related Work

Workflow scheduling problem in a distributed

environment is a wide area and it is proven to be NP-

hard and it is impossible to guarantee an optimal

solution in polynomial time. In cloud model, the

amount charged to a user is purely based on the

quantity of resource utilized. The pricing scheme used

is based on two assumptions. First, the total cost of

schedule is the sum of cost of all subtasks. Second, the

cost cannot be changed when the provision is under

progress.

List based heuristic algorithm finds the best

assignment by traversing through all available

processors in every selection step but this type of

search cannot be applied every time in cloud

scheduling as the resources are enormous and it is not

possible to do such traversals every time and it will

affect the make span. One of the well-known existing

heurist search algorithm is Genetic algorithm in which

few genetic operators represent the mapping of task to

resources by strings. But, the existing genetic

approaches might not be always suitable to the cloud

environment because the VM instances are not fixed.

Durillo and Pordan [3] proposed a list based heuristics

that can be used in cloud. This algorithm constructs an

instance pool of limited size and provides the possible

schedules in advance for scheduling.

Sonia et al. [12] proposed a fault tolerant

mechanism for real time tasks in cloud computing.This

concentrats in fault tolerance and resource utilization.

Sahni and Vidyarthi [9] proposed a cost effective

deadline constrained algorithm by calculating

minimum execution time of a workflow.

Artificial bee colony algorithm is used for

scheduling and reliability analysis in machines and is

verified with case examples [6]. Cloud task schduling

based on Ant colony optimization is proposed by

Tawfeek et al. [13] and is compared with Fist come

First Serve and Round Robin algorithm. Optimal and

sub optimal resouce allocation technique is proposed

by Sharkh et al. [11]. This gives a promising level in

connection request average tardiness Least squares

support vector machines and particle swarm

optimization is used to generate order and to evaluate

the system failure probability of soil slopes [7].

3. Problem Formulation

3.1. Workflow Definition

 A workflow can be denoted by means of Direct

Acyclic Graph (DAG). Here workflow

WORKFLOW=(T,E) where T is the set of ‘n’ vertices

or tasks. T={T0 ,T1 ,….,Tn} and E is the set of edges or

data dependencies. E={(Ti,Tj)/ Ti, Tj ЄT}. Each data

dependency is assigned with the weight that represents

the amount of data transferred among tasks. If there is

an edge from Ti to Tj, Ti is the parent of Tj and needs to

wait for the completion of the parent task. The task

with higher priority has to be considered first [5].

3.2. Cloud Resource Management

 A virtual machine that is running is called as an

instance. There are different range of instance types

having different execution time of tasks and

bandwidths in IaaS platform. We have assumed that a

customer can demand for any number of instances of

their choice. Hence the set of instances I={I0 ,I1 ,….,} is

infinite whereas, the set IT={IT0 ,IT1 ,….ITm} is the

type of instances offered by the cloud provider and it is

fixed. We can say that the processing capacity of

Instance Ii is PIi and cost per unit time for Instance Ii is

CIi. Each task fits on one instance from the available

type in T based on the properties defined in each

instance type.

Assumption is made such that parallel execution of

the tasks is also possible. The partial utilization of the

rented VM is assumed as full utilization for that unit

time. For instance, if the unit time is 5 minutes and the

user uses 11 minutes, the user will pay for three

periods.

Cloud providers like Amazon Elastic Compute

Cloud (EC2), International Business Machines (IBM),

Microsoft Azure, etc., support different pricing

schemes. The algorithm proposed is flexible enough to

fit for any pricing model. There are ‘k’ different

pricing models supported in our algorithm. P={P0 ,P1

,….Pk}.

3.3. The Scheduling Problem

 The aim is to produce few meaningful scheduling

choices with different instance, type and scheduling

order of tasks and to reach the optimal or near optimal

solution. The pricing scheme once chosen remains

unchanged till the usage is completed. The goal for the

cloud provider is to use a schedule that is better among

all possibilities. The hybrid cloud model is represented

in the Figure 1.

Figure 1. Hybrid cloud model.

Public Cloud

Private

Cloud

Task Request Manager

DAG

Task Scheduling Manager

Deadline

Constraint
Cost Constraint

Multi objective

Optimization

User

User

Interface

930 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

According to the model, user submits the following as

request to the request manager.

 No of task.

 The dependency among tasks.

 Properties of each task. This includes.

 Memory.

 No of instructions in that task.

 No of CPUs needed.

 Network preference if low or high.

The scheduling manager deploys the scheduling

strategies under deadline and cost factors. The

computing power of both private and public resource

will be available with the scheduling manager.

Make span of a workflow is the total time elapsed

from the start of the first task till the completion of the

last job. Make span will be less if more parallel

execution is done.

3.4. SPMA for Optimization

3.4.1. Memetic Algorithm

Memetic algorithm is anevolutionary population-based

global search approach that can be used to optimize

scheduling problems. For a heuristic search problem,

the memetic algorithm generates a set of schedules.

These schedules are modified using the genetic

operators and the optimal solution or near optimal

solution is reached within polynomial time.

3.4.2. PSO Scheduling Algorithm

Particle Swarm optimization is a population based

optimization technique developed by Kennedy and

Eberhart [8]. The algorithm is based on particles (ie.,

fish or bird) that has the capability to move around the

solution space and reach to a solution. PSO has

advantage of quick convergence, high precision

solution and easier implementation [4]. The velocity

factor says about the best solution of a particle. This is

represented as Pbest and Gbest as the best solution of

that particle based on the current iteration and history

of the particles movement in solution space [1].

Velocity is updated for each iteration.

3.4.3. Self-Adaptive PSO Scheduling Algorithm

In self-adaptive approach the velocity updating

strategy differs from the traditional PSO. There are

three different velocity updating strategies Depending

on the percentage of difference to the best for any

particle, the strategy is selected [16].

 Strategy 1: Here the velocity is updated based on the

difference in information of particles. It is shown in

Equation

Vid(g)=xkd(g)-xjd(g)

Vid(g+1)=cvid(g)+c[pid(g)-xid(g)]

Where C is a random no in range [0, 1]; xkd(g) and

xjd(g) are dth variable of two random values in gth

generation.

 Strategy 2: Here the velocity is updated based on the

pbest of other particle.

Vid(g+1)= Ω vid(g)+cr[pkd(g)-xid(g)]

Where C is N(0,1);r is a uniformlu distributed real no

in range [0,1]; pkd(g) is the pbest of a randomly

selected particle. Ω is the weight or inertia. Ω says how

far the previous velocities have impact on current

velocity

 Strategy 3: This strategy is used in places where

search is in smaller region. The velocity updation

here is as follows.

Vid(g+1)= vid(g)+0.5*cr[pkd(g)-xid(g)+ pid(g)-xid(g)]

 Selection of Velocity Updating Strategies: The

strategies are selected based on the generation

number and the difference to the gbest for any

particle. A strategy count here is the number of

different velocity updating strategies we have. Since

we have three velocity updating strategies, the

strategycount we take is 3. The strategy is selected

based on the iteration count and the difference

between Pbest and Gbest of particle.

 If the iteration is 1 to log(N) and the % of difference

of pbest to gbest is less than N/log(n) it is likely to

be closer to solution and the search space is small.

So strategy 3 is selected and updation is done based

on Equation (4).

 If the iteration is log(n) +1 to log(N)*log(N) and the

% of difference of pbest to gbest is less than

N/log(N)*log(N) the strategy 2 is selected and

updation of velocity is done with Equation (3).

 For all remaining casesthe strategy 1 is selectedand

updation of velocity is done with Equations (1) and

(2).

3.4.4. The SPMA Scheduling Algorithm

The SPMA scheduling algorithm is a hybrid version of

Self-adaptive PSO and Memetic algorithm. It is shown

in Algorithm 1

1. DDimension of Search space.

2. Generate the initial population with N particles.

3. Randomly initialize the velocity for all particles.

4. For each particle in the space, assess the fitness

value.

a. Pbesti is the best fit schedule of particle i

b. Gbest is the best fit schedule among all particles.

c. Perform crossover for all particles to the best

schedule.

d. Perform mutation repetitively until a better

schedule is reached or the no of mutations is

log(D).
 (1)

 (2)

 (3)

(4)

Self-Adaptive PSO Memetic Algorithm For Multi Objective Workflow Scheduling... 931

e. Choose only best D particles among the available

schedules after crossover and mutation operation.

f. Update the velocity and position of all particles.

5. If stopping criterion is not reached, repeat step 3 for

all particles. Else output the gbest as the best

schedule.

There are two main aspects in modelling the SPMA.

First one is how the solution is represented as a particle

and second is telling the goodness of the solution. The

goodness of the solution is called as fitness function.

Four main objectives of our problem are Make span,

Total cost, Weightage for not missing deadline and

minimal use of private cloud resource.

3.4.4.1. Total Cost

The total cost is the sum of cost involved in private

cloud and cost involved in public cloud.

According to the Amazon cloud service model, the

cost for public cloud resource Public Cloud Cost or

(PUCOST) depends upon

 Computing Power (CP).

 Computing Cost (CC).

 Transmission Power (TP).

 Transmission Cost (TC).

 Storage Cost (SC) of the resource used.

PUCOST = ∑ 𝑐𝑜𝑠𝑡 < 𝐶𝑃𝑖, 𝐶𝐶𝑖, 𝑇𝑃𝑖, 𝑇𝐶𝑖, 𝑆𝐶𝑖 >

𝑛

𝑇𝑖 Є𝐼∗

A private cloud does not include the Transmission

power and the transmission capacity. The cost for

private cloud resource (PRCOST) depends upon

 Computing Power (CP).

 Computing Cost (CC).

 Storage Cost (SC).

PRCOST = ∑ 𝑐𝑜𝑠𝑡 < 𝐶𝑃𝑖, 𝐶𝐶𝑖, 𝑆𝐶𝑖 >𝑛
𝑇𝑖 Є𝐼∗

A task Ti is a unit of task request. This is a node in the

DAG graph. The cost for execution of a task Ti is

calculated based on the

 Millions of Instructions (MI).

 Data Associated (DA).

 Deadline of Task (DL).

The cost for a task Ti will depend upon the Instance

Type (IT) to which it is mapped to and the type of

cloud it is mapped to i.e., whether public or private.

Costis calculated using the Equations (5) or (6)

depending on whether private or public cloud resource

is used.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑃𝑈𝐶𝑂𝑆𝑇 + 𝑃𝑅𝐶𝑂𝑆𝑇

3.4.4.2. Make Span

The Start time of any task will depend upon the finish

time of its previous task and delay if any. If the task Ti

belongs to instance Ij, we can say Ins (Ti)=Ij. The

make span is calculated as the difference in Start Time

(ST) and Completion Time (CT) of starting task and

finishing task respectively.

ST(Tfirst)=0

𝐶𝑇(𝑇𝑖) = 𝑆𝑇(𝑇𝑖) +
𝑀𝐼(𝑇𝑖)

𝐶𝑃(𝐼𝑇)
+

𝐷𝐴(𝑇𝑖)

𝑇𝑃

Make span=CT(Texit)-ST(Tstart)

3.4.4.3. Deadlne Missing

 Another important factor is not to miss deadline for

any task. This is calculatd by the difference with the

deadline for each task to its completion time. If there is

zero no of task missing deadline, the objective function

value is ‘n‘. The Deadline Miss (DLMISS) is

calculated by the Equation (10).

𝐷𝐿𝑀𝐼𝑆𝑆 = ∑ i ∗ x𝑛
𝑖=1

Where x is calculated by Equation (11)

𝑥 = {
0 𝑖𝑓 𝐷𝐿(𝑇𝑖) − 𝐶𝑇(𝑇𝑖) < 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.4.4.4. Private Cloud Utilization

 In order to have an efficient schedule, the resource

needs to be provisioned in private cloud as maximum

as possible. The factor is considered as as follows. The

private cloud usage (PVTUSAGE) is calculated by the

Equation (12)

𝑃𝑉𝑇𝑈𝑆𝐴𝐺𝐸 = ∑ i ∗ y𝑛
𝑖=1

Where y is calculated by Equation (13)

𝑦 = {
1 𝑖𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑐𝑙𝑜𝑢𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The fitness function is the combination of all the four

objectives. It is calculated by Equation (14). Objective

function for this problem is a combination of all four

objectives mentioned ie., Obji is Make span, Obj2 is

 total cost, Obj3 is Deadline missed and Obj4 is Private

cloud usage.

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ (𝑤𝑖𝑂𝑏𝑗𝑖)4
𝑖=1

Where Obji is the value obtained in the objective

function i and 0≤𝑤𝑖 ≤1

3.5. Encoding Procedure

 The problem is encoded as following. The order of

schedule is the sequence of tasks. The sequence is

represented as S1, …..Sn where Si will start execution

only after the completion of Si-1. The task_instance is

an array of size ‘n’ where the ith element represents the

instance type of ith task. The instance_type is an array

of size ‘m’ where the ith element has the instance type

of ith instance. A sample DAG workflow is shown in

Figure 2.

 (5)

(6)

(7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

932 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Figure 2. Example DAG workflow.

4. Spma Operators

4.1. Crossover

Crossover is a memetic operator. As the scheduling for

tasks is precedence constrained. The precedence

should always be maintained among the tasks. If Tk has

to get the output of Ti, then Ti should precede Tk in all

the possible orders generated. The crossover used is

Partially Matched Crossover (PMX) shown in

Algorithm 2. For two schedules ‘X’ and ‘Y’ the PMX

randomly picks over two crossover points. The

crossover point chosen is used for the construction of

next generation schedule. The crossover is performed

by considering the following facts.

 Repetition of task is not allowed in schedule.

 The dependencies among tasks are strictly

maintained.

Algorithm 2: PMX and mutation to find the new chromosome

1. n= number of tasks

2. r1= random value between 0 and n-1

3. r2=random number between 0 and n-1 where r1<>r2

4. if r1 > r2, swap r1 and r2

5. Swap the allels in positions r1 and r2. Generate the new

schedule

6. Check if dependency among tasks is maintained.

7. If dependency is not maintained, repeat all three

previous steps

8. Check the fitness of new string generated. Above four

steps until a better fit schedule is obtained or if the number

of mutation done is 𝑙𝑜𝑔𝑛

4.2. Mutation

 This is a memetic operator that maintains alteration in

one or more gene values. Mutation does an occasional

random alteration of a value in a schedule with small

probability as in Algorithm 3.

Algorithm 3: Mutation of off springs

1. n= number of tasks

2. r1= random value between 0 and n-1

3. r2=random number between 0 and n-1 where r1<>r2

 4. if r1 > r2, swap r1 and r2

5. Substring1 A(r1:r2)

6. Substring1 B(r1:r2)

7. For all allels (Tasks) in Substring1 and Substring2

8. If the allels in substring (A,0,r1-1)and substring (A,r2+1,n-1)

does not contain entries from substring (B,r1,r2)

9. Find the remaining allels in A and B and place them in

Newspring1 and Newspring2 from left to right

4.3. Initial Population Generation

 The initial population generation plays a major role in

the convergence towards the optimal solution. For a

problem size of ‘N’ tasks, the initial population of ‘N’

possible schedules are generated. Among the ‘N’

schedules, first three schedule (particles) are based on

 Shortest Job First (SJF).

 Ascending order of task size.

 Topological ordering based on indegree of DAG.

The other n-3 particles are generated on random

ordering. Any schedule generated will be considered

only if the dependency is maintained.

4.4. Complexity Analysis

 Complexity of memetic operators crossover and

mutation are O(n2) and O(n) for n tasks. The

dependency check and fitness evaluation, require only

conditional judgments. Hence, the complexity of

optimization for this is linear, namely, O(n). Any graph

of ‘n’ vertices could have a maximum of n2 edges.

considering ‘h’ iterations, the overall complexity is

O(hn2). The complexity of initial three algorithms also

needs to be included. The SJF, Topological ordering

and ascending order of task size has O(n2) complexity

each. The complexity of Self-adaptive PSO operations

include the comparison of particle fitness value in two

stages. This is O(n). Updating velocity is O(n). The

overall complexity is O(n)+O(4n2) + O(hn2) Which is

O(hn2) in general.

5. Testing

5.1. Experiment Setup

 The performance is verified using the cloud simulation

software Cloudsim 3.0. Three data centers A, B and C

are created with different VM setup. as in Table 1. The

task parameters are in Table 2.

Table 1. Parameter setup of VM.

Parameter
Instance setup

in A

Instance setup

in B

Instance setup

in C

Number of CPU 1 1 2

CPU computing

capacity
200 MIPS 400 MIPS 800 MIPS

RAM 1GB 4GB 4GB

Bandwidth 2M/s 4 M/s 4 M/s

Storage 4G 4G 8G

Table 2. Task parameters.

Parameter Setup of Tasks

Length [400,800]MIPs

File [200,400]MB

Output Size [20,40]MB

The data center A and B are private cloud and the

data center C is public cloud.

Self-Adaptive PSO Memetic Algorithm For Multi Objective Workflow Scheduling... 933

The cloud tasks are randomly created as Cloudlet in

Cloudsim. The number of tasks is varied from 100-

800.

The price of public cloud includes an additional

parameter called transmission cost. The cost of public

cloud is depicted in the Table 3.

Table 3. Cost setup.

Parameter Cost

Computing cost 0.07 $ per hour

Storage price 0.05 $ per GB

Transmission cost 0.04 $ per GB

5.2. Evaluation Metrics

 The SPMA algorithm is compared with three

algorithms.

 IaaS Cloud Partial Critical Path (IC-PCP).

 Genetic algorithm.

 PSO.

Four parameters are used to evaluate the performance

of the scheduling strategies:

 The make span.

 The cost.

 The violation of deadline.

 The utilization of private cloud resources.

Violation of deadline is taken as a penalty. The

transmission cost is less in case of private cloud and

even negligible in certain cases and high whenever a

resource from public cloud is used.

6. Results and Analysis

The result represents average performance of 200 tasks

done 10 time and compared with three algorithms as

mentioned in section V B. The performance of SPMA

is the best of all. This is because of the self-adaptive

approach and its convergence towards the solution.

Comparison graph is generated based on the four

objectives. In the No of Tasks Vs Make span graph it

was found that, IC-PCP was totally outplayed by the

other algorithms. SPMA gave an accuracy of 4 to 5 %

better than PSO.

Considering the cost minimization parameter,

Genetic algorithm and PSO performed with a close %

of accuracy. Whereas the SPMA gave better result as

the number of jobs increase.

While comparing the utilization of private cloud, the

SPMA gave a better utilization of private cloud. The

PSO also performed closer till the task count was 150.

This is because the impact of self-adaptive approach

which selects the necessary strategy in updating of

velocity.

While comparing the Figures, we can say that IC-

PCP is out performed by the other three algorithms.

Out of the other three algorithms SPMA has proven

better than GA. Comparative graph is in Figure 3.

a) Makespan analysis.

b) Cost analysis.

c) Private cloud utilisation.

d) Deadline violation.

Figure 3. Analysis graphs.

7. Further Analysis

The algorithms performance was analyzed for different

instances. Results says that the solution was generated

with lower make span and minimized cost most of the

time. The private cloud was also used to the maximum.

As a future work, the algorithm could be compared

with other optimization techniques available.

A significant point is the impact on the selection of

initial population. The initial three algorithms selected

helps in faster convergence towards solution.

When checked with the input condition of one

virtual machine of every type in each task, it was found

that the algorithm takes more execution time for longer

0

2000

4000

6000

50 100 150 200

M
ak

es
p

an
 *

 1
0

^3
 (

S)

No of Task

No of Task Vs Makespan

 IC-PCP

 Genetic
algorithm

 PSO

0

5

10

15

50 100 150 200

C
o

st
 (

$
)

No of Task

No of Task Vs Cost ($)

 IC-PCP

 Genetic
algorithm

 PSO

SPMA

0

50

100

150

200

250

50 100 150 200

P
ri

va
te

 c
lo

u
d

 U
ti

lis
at

io
n

No of Task

No of Task Vs Private colud utilisation

 IC-PCP

 Genetic
algorithm

 PSO

SPMA

0

10

20

30

50 100 150 200

N
o

 o
f

D
ea

d
lin

e
V

o
ila

ti
o

n
s

No of Task

No of Task Vs Deadline violation

 IC-PCP

 Genetic
algorithm

 PSO

934 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

tasks when compared to shorter tasks. Overall SPMA

algorithm performs better than other algorithms.

Further analysis can be done with hybrid algorithms of

ACO or PSO algorithm with bees algorithm.

8. Conclusions and Future Work

Many scheduling algorithms are available for

heterogeneous cloud environment. Most of these

algorithms have difficulty when directly applied in

cloud. SPMA overcomes the issues as it uses the real-

world cloud computing model. The pricing could be

varied according to the need of cloud provider.

To provide a solution to the multi-objective cloud

scheduling problem, a DAG based encoding is used.

Different instances of tasks and their types are

considered here. The memetic operators like evaluation

function, crossover and mutation are merged along

with the PSO algorithm.

The future work can be a hybrid algorithm of Bees

algorithm or any other optimization algorithm using

more than one pricing scheme. The resource allocation

algorithm can also include the priorities among task for

scheduling. The work can be extended with privacy

metrics so that the scheduling locations can be kept

safe.

References

[1] Al-Maamari A. and Omara F., “Task Scheduling

Using PSO Algorithm in Cloud Computing

Environments,” International Journal of Grid

Distribution Computing, vol. 8, no. 5, pp. 245-

256, 2015.

[2] Chen W. and Zhang J., “An Ant Colony

Optimization Approach to A Grid Workflow

Scheduling Problem with Various Qos

Requirements,” IEEE Transaction System Man

Cybern, vol. 39, no. 1, pp. 29-43, 2009.

[3] Durillo J. and Pordan R., “Multi Objective

Workflow Scheduling in Amazon EC2,” Cluster

Computing, vol. 17, no. 2, pp. 169-189, 2014.

[4] Garg R. and Singh A., “Multiobjective Workflow

Grid Scheduling Based on Discrete Particle

Swarm Optimization,” in Proceedings of

International Conference on Swarm,

Evolutionary, and Memetic Computing,

Visakhapatnam, pp. 183-190, 2011.

[5] John S. and Mohamed M., “A Network

Performance Aware QoS Based Workflow

Scheduling for Grid Services,” The International

Arab Journal of Information Technology, vol. 15,

no. 5, pp. 894-903, 2018.

[6] Kang F. and Li J.,

“Artificial Bee Colony Algorithm Optimized Sup

Port Vector Regression for System Reliability

Analysis of Slopes,” Journal of Computing in

Civil Engineering, vol. 30, no. 3, pp. 04015040,

2016.

[7] Kang F., Li J., and LiJ J., “System Reliability

Analysis of Slopes Using Least Squares Support

Vector Machines with Particle Swarm

Optimization,” Neurocomputing, vol. 209, pp.

46-56, 2016.

[8] Kennedy J. and Eberhart R., “Particle Swarm

Optimization,” in Proceedings of the 6th IEEE

International Conference in Neural Network,

Perth, pp. 1942-1928, 1995.

[9] Sahni J. and Vidyarthi D., “A Cost-Effective

Deadline-Constrained Dynamic Scheduling

Algorithm for Scientific Workflows in a Cloud

Environment,” IEEE Transactions on Cloud

Computing, vol. 6, pp. 2-18, 2016.

[10] Sakellaiou R., Zaho H., Tsiakkouri E., and

Dikaiakos M., Integrated Research in GRID

Computing, Springer, 2007.

[11] Sharkh M., Shami A., and Ouda A., “Optimal

and Suboptimal Resource Allocation Techniques

in Cloud Computing Data Centers,” Journal of

Cloud Computing: Advances, Systems and

Applications, vol. 6, no. 1, pp. 1-17, 2017.

[12] Soniya J., Sujana J., and Revathi T., “IEEE

Dynamic Fault Tolerant Scheduling Mechanism

for Real Time Tasks in Cloud Computing,” in

Proceedings of International Conference on

Electrical, Electronics, and Optimization

Techniques, Chennai, pp. 124-129, 2016.

[13] Tawfeek M., El-Sisi A., Keshk A., and Torkey

F., “Cloud Task Scheduling Based on Ant

Colony Optimization,” The International Arab

Journal of Information Technology, vol. 12, no.

2, pp. 129-137, 2015.

[14] Yu J., Kirle y., and Buyya R., “Multiobjective

Planning for Workflow Execution on Grids,” in

Proceedings of the 8th IEEE/ ACM International

Conference on Grid Computing, Austin, pp. 10-

17, 2007.

[15] Zhang F., Cao J., Hwang K., and Wu C.,

”Ordinal Optimized Scheduling Of Scientific

Workflows in Elastic Compute Clouds,” in

Proceedings of the 3rd IEEE International

Conference on Cloud Computing Technology and

Science, Athens, pp. 9-17, 2011.

[16] Zuo X., Zhang G., and Tan W., “Self Adaptive

Learning PSO- Based Deadline Constrained Task

Scheduling for Hybrid IaaS Cloud,” IEEE

Transactions on Automation Science and

Engineering, vol. 11, no. 2, pp. 564-573, 2014.

http://ascelibrary.org/journal/jccee5
http://ascelibrary.org/journal/jccee5

Self-Adaptive PSO Memetic Algorithm For Multi Objective Workflow Scheduling... 935

 Padmaveni Krishnan received

ME degree in computer Science

from Madurai Kamaraj University

in 2002. She is currently an

Assistant Professor in Hindustan

Institute of Technology and Science

and her main interest are in

virtualization and scheduling in cloud.

 John Aravindhar received PhD

degree in Data mining from

Hindustan University. He is

currently an Associate Professor in

Computer Science Department of

Hindustan Institute of Technology

and Science. His area of interest are

Data mining and cloud.

