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Abstract: Cloud computing is a technology in distributed computing that facilitate pay per model to solve large scale 

problems. The main aim of cloud computing is to give optimal access among the distributed resources. Task scheduling in 

cloud is the allocation of best resource to the demand considering the different parameters like time, makespan, cost, 

throughput etc. All the workflow scheduling algorithms available cannot be applied in cloud since they fail to integrate the 

elasticity and heterogeneity in cloud. In this paper, the cloud workflow scheduling problem is modeled considering make span, 

cost, percentage of private cloud utilization and violation of deadline as four main objectives. Hybrid approach of Particle 

Swarm Optimization (PSO) and Memetic Algorithm (MA) called Self-Adaptive Particle Swarm Memetic Algorithm (SPMA) is 

proposed. SPMA can be used by cloud providers to maximize user quality of service and the profit of resource using an 

entropy optimization model. The heuristic is tested on several workflows. The results obtained shows that SPMA performs 

better than other state of art algorithms. 
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1. Introduction 

Large scale business applications are composed of 

multitasking, big data, time variant and fluctuating 

workloads. Cloud computing with its elastic computing 

property facilitates the scaling up and scaling down 

mechanism. The cloud provider takes care of the 

provisioning of resources. This paper emphases on 

how the heterogeneous resources are provisioned to 

users. The instances referred here are Virtual Machines 

(VMs) under execution.  

The workflow scheduling in cloud environment is 

done in two stages. The first is the provisionisng stage 

in which the resources that are fit to run the task are 

selected. The second is the scheduling stage in which 

each task is mapped to the suitable resource without 

affecting the dependency among tasks. A workflow 

model is an application that has tasks and flow of data 

among tasks. A Workflow scheduling problem is a 

problem of assigning tasks to processors in 

multiprocessor environment [2, 14, 15]. This 

scheduling problem is NP-complete and it can be 

represented as a Directed Acyclic Graph (DAG) in 

which the nodes represents processes and edges 

represents the workflow among processors. The 

direction of edges represents the data dependencies 

among tasks and they are always directed.  

Resources in cloud are allocated by the broker to the 

user on request. The scheduling algorithms use Quality 

of Service (QoS) constraints and solves the problem as 

single objective optimization problem. Two main 

algorithms like ‘LOSS’ and ‘GAIN’[10] use a  

 

 

schedule and reassigns each task to another processor 

until it fits to budget. ‘LOSS’ algorithm saves larger 

money by assigning tasks with largest saving first. 

‘GAIN’ algorithm starts assigning the tasks that 

require lest money. Some algorithms use the Pareto 

Swarm Optimization algorithm (PSO) for generating 

trade off among cost and make span. In this paper, we 

propose a cost minimized and deadline constrained 

heuristic algorithm that can be applied in cloud 

resource scheduling. The algorithm proposed considers 

the features such as dynamic provisioning and 

variation in performance of VM. The proposed 

algorithm is a hybrid algorithm called Self-adaptive 

Particle Swarm Memetic Algorithm which has 

Memetic algorithm and PSO as its predecessors. 

SPMA can be applied to real world pay-per-use pricing 

strategies and is based on IaaS instances. The 

algorithm gives the schedule that defines the mapping 

of task to VM and the time to lease and release the 

VM. Memetic operators like encoding, generating 

initial population, fitness function evaluation, 

crossover, mutation and reproduction are used in 

SPMA. The PSO algorithm is blended with memetic in 

selection of off springs for crossover and in the 

selection of population for the next generation. 

The rest of the paper is organized as follows. The 

section 2 of paper provides a brief description of 

scheduling algorithms used and challenges on IaaS 

platforms. The section 3 provides problem definition. 

The section 4 explains the memetic algorithm and the 

way how it is merged with PSO algorithm to make 
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SPMA. Section 5 shows the test results and we provide 

concluding remarks in section 6. 

2. Related Work 

Workflow scheduling problem in a distributed 

environment is a wide area and it is proven to be NP- 

hard and it is impossible to guarantee an optimal 

solution in polynomial time. In cloud model, the 

amount charged to a user is purely based on the 

quantity of resource utilized. The pricing scheme used 

is based on two assumptions. First, the total cost of 

schedule is the sum of cost of all subtasks. Second, the 

cost cannot be changed when the provision is under 

progress. 

List based heuristic algorithm finds the best 

assignment by traversing through all available 

processors in every selection step but this type of 

search cannot be applied every time in cloud 

scheduling as the resources are enormous and it is not 

possible to do such traversals every time and it will 

affect the make span. One of the well-known existing 

heurist search algorithm is Genetic algorithm in which 

few genetic operators represent the mapping of task to 

resources by strings. But, the existing genetic 

approaches might not be always suitable to the cloud 

environment because the VM instances are not fixed. 

Durillo and Pordan [3] proposed a list based heuristics 

that can be used in cloud. This algorithm constructs an 

instance pool of limited size and provides the possible 

schedules in advance for scheduling. 

Sonia et al. [12] proposed a fault tolerant 

mechanism for real time tasks in cloud computing.This 

concentrats in fault tolerance and resource utilization. 

Sahni and Vidyarthi [9] proposed a cost effective 

deadline constrained algorithm by calculating 

minimum execution time of a workflow.  

Artificial bee colony algorithm is used for 

scheduling and reliability analysis in machines and is 

verified with case examples [6]. Cloud task schduling 

based on Ant colony optimization is proposed by 

Tawfeek et al. [13] and is compared with Fist come 

First Serve and Round Robin algorithm. Optimal and 

sub optimal resouce allocation technique is proposed 

by Sharkh et al. [11]. This gives a promising level in 

connection request average tardiness Least squares 

support vector machines and particle swarm 

optimization is used to generate order and to evaluate 

the system failure probability of soil slopes [7]. 

3. Problem Formulation 

3.1. Workflow Definition 

 A workflow can be denoted by means of Direct 

Acyclic Graph (DAG). Here workflow 

WORKFLOW=(T,E) where T is the set of ‘n’ vertices 

or tasks. T={T0 ,T1 ,….,Tn} and E is the set of edges or 

data dependencies. E={(Ti,Tj)/ Ti, Tj ЄT}. Each data 

dependency is assigned with the weight that represents 

the amount of data transferred among tasks. If there is 

an edge from Ti to Tj, Ti is the parent of Tj and needs to 

wait for the completion of the parent task. The task 

with higher priority has to be considered first [5].  

3.2. Cloud Resource Management 

 A virtual machine that is running is called as an 

instance. There are different range of instance types 

having different execution time of tasks and 

bandwidths in IaaS platform. We have assumed that a 

customer can demand for any number of instances of 

their choice. Hence the set of instances I={I0 ,I1 ,….,} is 

infinite whereas, the set IT={IT0 ,IT1 ,….ITm} is the 

type of instances offered by the cloud provider and it is 

fixed. We can say that the processing capacity of 

Instance Ii is PIi and cost per unit time for Instance Ii is 

CIi. Each task fits on one instance from the available 

type in T based on the properties defined in each 

instance type. 

Assumption is made such that parallel execution of 

the tasks is also possible. The partial utilization of the 

rented VM is assumed as full utilization for that unit 

time. For instance, if the unit time is 5 minutes and the 

user uses 11 minutes, the user will pay for three 

periods.  

Cloud providers like Amazon Elastic Compute 

Cloud (EC2), International Business Machines (IBM), 

Microsoft Azure, etc., support different pricing 

schemes. The algorithm proposed is flexible enough to 

fit for any pricing model. There are ‘k’ different 

pricing models supported in our algorithm. P={P0 ,P1 

,….Pk}.  

3.3. The Scheduling Problem 

 The aim is to produce few meaningful scheduling 

choices with different instance, type and scheduling 

order of tasks and to reach the optimal or near optimal 

solution. The pricing scheme once chosen remains 

unchanged till the usage is completed. The goal for the 

cloud provider is to use a schedule that is better among 

all possibilities. The hybrid cloud model is represented 

in the Figure 1. 

 

Figure 1. Hybrid cloud model. 
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According to the model, user submits the following as 

request to the request manager. 

 No of task. 

 The dependency among tasks. 

 Properties of each task. This includes.  

 Memory. 

 No of instructions in that task.  

 No of CPUs needed. 

 Network preference if low or high. 

The scheduling manager deploys the scheduling 

strategies under deadline and cost factors. The 

computing power of both private and public resource 

will be available with the scheduling manager.  

Make span of a workflow is the total time elapsed 

from the start of the first task till the completion of the 

last job. Make span will be less if more parallel 

execution is done.  

3.4. SPMA for Optimization 

3.4.1. Memetic Algorithm 

Memetic algorithm is anevolutionary population-based 

global search approach that can be used to optimize 

scheduling problems. For a heuristic search problem, 

the memetic algorithm generates a set of schedules. 

These schedules are modified using the genetic 

operators and the optimal solution or near optimal 

solution is reached within polynomial time. 

3.4.2. PSO Scheduling Algorithm 

Particle Swarm optimization is a population based 

optimization technique developed by Kennedy and 

Eberhart [8]. The algorithm is based on particles (ie., 

fish or bird) that has the capability to move around the 

solution space and reach to a solution. PSO has 

advantage of quick convergence, high precision 

solution and easier implementation [4]. The velocity 

factor says about the best solution of a particle. This is 

represented as Pbest and Gbest as the best solution of 

that particle based on the current iteration and history 

of the particles movement in solution space [1]. 

Velocity is updated for each iteration. 

3.4.3. Self-Adaptive PSO Scheduling Algorithm 

In self-adaptive approach the velocity updating 

strategy differs from the traditional PSO. There are 

three different velocity updating strategies Depending 

on the percentage of difference to the best for any 

particle, the strategy is selected [16]. 

 Strategy 1: Here the velocity is updated based on the 

difference in information of particles. It is shown in 

Equation 

Vid(g)=xkd(g)-xjd(g) 

Vid(g+1)=cvid(g)+c[pid(g)-xid(g)] 

Where C is a random no in range [0, 1]; xkd(g) and 

xjd(g) are dth variable of two random values in gth 

generation.  

 Strategy 2: Here the velocity is updated based on the 

pbest of other particle. 

Vid(g+1)= Ω vid(g)+cr[pkd(g)-xid(g)] 

Where C is N(0,1);r is a uniformlu distributed real no 

in range [0,1]; pkd(g) is the pbest of a randomly 

selected particle. Ω is the weight or inertia. Ω says how 

far the previous velocities have impact on current 

velocity 

 Strategy 3: This strategy is used in places where 

search is in smaller region. The velocity updation 

here is as follows.  

Vid(g+1)= vid(g)+0.5*cr[pkd(g)-xid(g)+ pid(g)-xid(g)]  

 Selection of Velocity Updating Strategies: The 

strategies are selected based on the generation 

number and the difference to the gbest for any 

particle. A strategy count here is the number of 

different velocity updating strategies we have. Since 

we have three velocity updating strategies, the 

strategycount we take is 3. The strategy is selected 

based on the iteration count and the difference 

between Pbest and Gbest of particle. 

 If the iteration is 1 to log(N) and the % of difference 

of pbest to gbest is less than N/log(n) it is likely to 

be closer to solution and the search space is small. 

So strategy 3 is selected and updation is done based 

on Equation (4). 

 If the iteration is log(n) +1 to log(N)*log(N) and the 

% of difference of pbest to gbest is less than 

N/log(N)*log(N) the strategy 2 is selected and 

updation of velocity is done with Equation (3). 

 For all remaining casesthe strategy 1 is selectedand 

updation of velocity is done with Equations (1) and 

(2). 

3.4.4. The SPMA Scheduling Algorithm 

The SPMA scheduling algorithm is a hybrid version of 

Self-adaptive PSO and Memetic algorithm. It is shown 

in Algorithm 1 

1. DDimension of Search space. 

2. Generate the initial population with N particles. 

3. Randomly initialize the velocity for all particles. 

4. For each particle in the space, assess the fitness 

value. 

a. Pbesti is the best fit schedule of particle i 

b. Gbest is the best fit schedule among all particles.  

c. Perform crossover for all particles to the best 

schedule. 

d. Perform mutation repetitively until a better 

schedule is reached or the no of mutations is 

log(D). 
 (1) 

 (2) 

 (3) 

(4) 



Self-Adaptive PSO Memetic Algorithm For Multi Objective Workflow Scheduling...                                                                931 

e. Choose only best D particles among the available 

schedules after crossover and mutation operation.  

f. Update the velocity and position of all particles. 

5. If stopping criterion is not reached, repeat step 3 for 

all particles. Else output the gbest as the best 

schedule. 

There are two main aspects in modelling the SPMA. 

First one is how the solution is represented as a particle 

and second is telling the goodness of the solution. The 

goodness of the solution is called as fitness function. 

Four main objectives of our problem are Make span, 

Total cost, Weightage for not missing deadline and 

minimal use of private cloud resource. 

3.4.4.1. Total Cost 

The total cost is the sum of cost involved in private 

cloud and cost involved in public cloud. 

According to the Amazon cloud service model, the 

cost for public cloud resource Public Cloud Cost or 

(PUCOST) depends upon  

 Computing Power (CP). 

 Computing Cost (CC). 

 Transmission Power (TP). 

 Transmission Cost (TC). 

 Storage Cost (SC) of the resource used. 

PUCOST = ∑ 𝑐𝑜𝑠𝑡 < 𝐶𝑃𝑖, 𝐶𝐶𝑖, 𝑇𝑃𝑖, 𝑇𝐶𝑖, 𝑆𝐶𝑖 >

𝑛

𝑇𝑖 Є𝐼∗

 

A private cloud does not include the Transmission 

power and the transmission capacity. The cost for 

private cloud resource (PRCOST) depends upon  

 Computing Power (CP). 

 Computing Cost (CC). 

 Storage Cost (SC). 

PRCOST = ∑ 𝑐𝑜𝑠𝑡 < 𝐶𝑃𝑖, 𝐶𝐶𝑖, 𝑆𝐶𝑖 >𝑛
𝑇𝑖 Є𝐼∗   

A task Ti is a unit of task request. This is a node in the 

DAG graph. The cost for execution of a task Ti is 

calculated based on the 

 Millions of Instructions (MI).  

 Data Associated (DA). 

 Deadline of Task (DL). 

The cost for a task Ti will depend upon the Instance 

Type (IT) to which it is mapped to and the type of 

cloud it is mapped to i.e., whether public or private. 

Costis calculated using the Equations (5) or (6) 

depending on whether private or public cloud resource 

is used. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑃𝑈𝐶𝑂𝑆𝑇 + 𝑃𝑅𝐶𝑂𝑆𝑇  

3.4.4.2. Make Span 

The Start time of any task will depend upon the finish 

time of its previous task and delay if any. If the task Ti 

belongs to instance Ij, we can say Ins (Ti)=Ij. The 

make span is calculated as the difference in Start Time 

(ST) and Completion Time (CT) of starting task and 

finishing task respectively. 

ST(Tfirst)=0 

𝐶𝑇(𝑇𝑖) = 𝑆𝑇(𝑇𝑖) +
𝑀𝐼(𝑇𝑖)

𝐶𝑃(𝐼𝑇)
+

𝐷𝐴(𝑇𝑖)

𝑇𝑃
  

Make span=CT(Texit)-ST(Tstart )  

3.4.4.3. Deadlne Missing 

 Another important factor is not to miss deadline for 

any task. This is calculatd by the difference with the 

deadline for each task to its completion time. If there is 

zero no of task missing deadline, the objective function 

value is ‘n‘. The Deadline Miss (DLMISS) is 

calculated by the Equation (10). 

𝐷𝐿𝑀𝐼𝑆𝑆 = ∑ i ∗ x𝑛
𝑖=1   

Where x is calculated by Equation (11) 

𝑥 = {
0 𝑖𝑓 𝐷𝐿(𝑇𝑖) − 𝐶𝑇(𝑇𝑖) < 0

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

3.4.4.4. Private Cloud Utilization 

 In order to have an efficient schedule, the resource 

needs to be provisioned in private cloud as maximum 

as possible. The factor is considered as as follows. The 

private cloud usage (PVTUSAGE) is calculated by the 

Equation (12) 

𝑃𝑉𝑇𝑈𝑆𝐴𝐺𝐸 = ∑ i ∗ y𝑛
𝑖=1   

Where y is calculated by Equation (13) 

𝑦 = {
1 𝑖𝑓 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑐𝑙𝑜𝑢𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     

The fitness function is the combination of all the four 

objectives. It is calculated by Equation (14). Objective 

function for this problem is a combination of all four 

objectives mentioned ie., Obji is Make span, Obj2 is 

 total cost, Obj3 is Deadline missed and Obj4 is Private 

cloud usage. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ (𝑤𝑖𝑂𝑏𝑗𝑖)4
𝑖=1   

Where Obji is the value obtained in the objective 

function i and 0≤𝑤𝑖 ≤1  

3.5. Encoding Procedure 

 The problem is encoded as following. The order of 

schedule is the sequence of tasks. The sequence is 

represented as S1, …..Sn where Si will start execution 

only after the completion of Si-1. The task_instance is 

an array of size ‘n’ where the ith element represents the 

instance type of ith task. The instance_type is an array 

of size ‘m’ where the ith element has the instance type 

of ith instance. A sample DAG workflow is shown in 

Figure 2. 

 (5) 

(6) 

(7) 

 (8) 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 
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Figure 2. Example DAG workflow. 

4. Spma Operators 

4.1. Crossover 

Crossover is a memetic operator. As the scheduling for 

tasks is precedence constrained. The precedence 

should always be maintained among the tasks. If Tk has 

to get the output of Ti, then Ti should precede Tk in all 

the possible orders generated. The crossover used is 

Partially Matched Crossover (PMX) shown in 

Algorithm 2. For two schedules ‘X’ and ‘Y’ the PMX 

randomly picks over two crossover points. The 

crossover point chosen is used for the construction of 

next generation schedule. The crossover is performed 

by considering the following facts. 

 Repetition of task is not allowed in schedule.  

 The dependencies among tasks are strictly 

maintained. 

Algorithm 2: PMX and mutation to find the new chromosome 

1. n= number of tasks 

2. r1= random value between 0 and n-1 

3. r2=random number between 0 and n-1 where r1<>r2 

4. if r1 > r2, swap r1 and r2 

5. Swap the allels in positions r1 and r2. Generate the new 

schedule 

6. Check if dependency among tasks is maintained.  

7. If dependency is not maintained, repeat all three 

previous steps 

8. Check the fitness of new string generated. Above four 

steps until a better fit schedule is obtained or if the number 

of mutation done is 𝑙𝑜𝑔𝑛 

4.2. Mutation 

 This is a memetic operator that maintains alteration in 

one or more gene values. Mutation does an occasional 

random alteration of a value in a schedule with small 

probability as in Algorithm 3. 

Algorithm 3: Mutation of off springs 

1. n= number of tasks 

2. r1= random value between 0 and n-1 

3. r2=random number between 0 and n-1 where r1<>r2 

  4. if r1 > r2, swap r1 and r2 

5. Substring1 A(r1:r2) 

6. Substring1 B(r1:r2) 

7. For all allels (Tasks) in Substring1 and Substring2 

8. If the allels in substring (A,0,r1-1)and substring (A,r2+1,n-1) 

does not contain entries from substring (B,r1,r2) 

9. Find the remaining allels in A and B and place them in 

Newspring1 and Newspring2 from left to right 

4.3. Initial Population Generation 

 The initial population generation plays a major role in 

the convergence towards the optimal solution. For a 

problem size of ‘N’ tasks, the initial population of ‘N’ 

possible schedules are generated. Among the ‘N’ 

schedules, first three schedule (particles) are based on 

 Shortest Job First (SJF). 

 Ascending order of task size. 

 Topological ordering based on indegree of DAG. 

The other n-3 particles are generated on random 

ordering. Any schedule generated will be considered 

only if the dependency is maintained.  

4.4. Complexity Analysis 

 Complexity of memetic operators crossover and 

mutation are O(n2) and O(n) for n tasks. The 

dependency check and fitness evaluation, require only 

conditional judgments. Hence, the complexity of 

optimization for this is linear, namely, O(n). Any graph 

of ‘n’ vertices could have a maximum of n2 edges. 

considering ‘h’ iterations, the overall complexity is 

O(hn2). The complexity of initial three algorithms also 

needs to be included. The SJF, Topological ordering 

and ascending order of task size has O(n2) complexity 

each. The complexity of Self-adaptive PSO operations 

include the comparison of particle fitness value in two 

stages. This is O(n). Updating velocity is O(n). The 

overall complexity is O(n)+O(4n2) + O(hn2) Which is 

O(hn2) in general. 

5. Testing 

5.1. Experiment Setup 

 The performance is verified using the cloud simulation 

software Cloudsim 3.0. Three data centers A, B and C 

are created with different VM setup. as in Table 1. The 

task parameters are in Table 2. 

Table 1. Parameter setup of VM. 

Parameter 
Instance setup 

in A 

Instance setup 

in B 

Instance setup 

in C 

Number of CPU 1 1 2 

CPU computing 

capacity 
200 MIPS 400 MIPS 800 MIPS 

RAM 1GB 4GB 4GB 

Bandwidth 2M/s 4 M/s 4 M/s 

Storage 4G 4G 8G 

Table 2. Task parameters. 

Parameter Setup of Tasks 

Length [400,800]MIPs 

File [200,400]MB 

Output Size [20,40]MB 

The data center A and B are private cloud and the 

data center C is public cloud.  
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The cloud tasks are randomly created as Cloudlet in 

Cloudsim. The number of tasks is varied from 100-

800. 

The price of public cloud includes an additional 

parameter called transmission cost. The cost of public 

cloud is depicted in the Table 3. 

Table 3. Cost setup. 

Parameter Cost 

Computing cost 0.07 $ per hour 

Storage price 0.05 $ per GB 

Transmission cost 0.04 $ per GB 

 

5.2. Evaluation Metrics 

 The SPMA algorithm is compared with three 

algorithms. 

 IaaS Cloud Partial Critical Path (IC-PCP). 

 Genetic algorithm. 

 PSO. 

Four parameters are used to evaluate the performance 

of the scheduling strategies: 

 The make span. 

 The cost.  

 The violation of deadline. 

 The utilization of private cloud resources. 

Violation of deadline is taken as a penalty. The 

transmission cost is less in case of private cloud and 

even negligible in certain cases and high whenever a 

resource from public cloud is used. 

6. Results and Analysis 

The result represents average performance of 200 tasks 

done 10 time and compared with three algorithms as 

mentioned in section V B. The performance of SPMA 

is the best of all. This is because of the self-adaptive 

approach and its convergence towards the solution. 

Comparison graph is generated based on the four 

objectives. In the No of Tasks Vs Make span graph it 

was found that, IC-PCP was totally outplayed by the 

other algorithms. SPMA gave an accuracy of 4 to 5 % 

better than PSO. 

Considering the cost minimization parameter, 

Genetic algorithm and PSO performed with a close % 

of accuracy. Whereas the SPMA gave better result as 

the number of jobs increase. 

While comparing the utilization of private cloud, the 

SPMA gave a better utilization of private cloud. The 

PSO also performed closer till the task count was 150. 

This is because the impact of self-adaptive approach 

which selects the necessary strategy in updating of 

velocity. 

While comparing the Figures, we can say that IC-

PCP is out performed by the other three algorithms. 

Out of the other three algorithms SPMA has proven 

better than GA. Comparative graph is in Figure 3. 

 
a) Makespan analysis. 

 
b) Cost analysis. 

 
c) Private cloud utilisation. 

 
d) Deadline violation. 

Figure 3. Analysis graphs. 

7. Further Analysis 

The algorithms performance was analyzed for different 

instances. Results says that the solution was generated 

with lower make span and minimized cost most of the 

time. The private cloud was also used to the maximum. 

As a future work, the algorithm could be compared 

with other optimization techniques available.  

A significant point is the impact on the selection of 

initial population. The initial three algorithms selected 

helps in faster convergence towards solution. 

When checked with the input condition of one 

virtual machine of every type in each task, it was found 

that the algorithm takes more execution time for longer 
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tasks when compared to shorter tasks. Overall SPMA 

algorithm performs better than other algorithms. 

Further analysis can be done with hybrid algorithms of 

ACO or PSO algorithm with bees algorithm. 
 

8. Conclusions and Future Work 

Many scheduling algorithms are available for 

heterogeneous cloud environment. Most of these 

algorithms have difficulty when directly applied in 

cloud. SPMA overcomes the issues as it uses the real-

world cloud computing model. The pricing could be 

varied according to the need of cloud provider. 

To provide a solution to the multi-objective cloud 

scheduling problem, a DAG based encoding is used. 

Different instances of tasks and their types are 

considered here. The memetic operators like evaluation 

function, crossover and mutation are merged along 

with the PSO algorithm. 

The future work can be a hybrid algorithm of Bees 

algorithm or any other optimization algorithm using 

more than one pricing scheme. The resource allocation 

algorithm can also include the priorities among task for 

scheduling. The work can be extended with privacy 

metrics so that the scheduling locations can be kept 

safe. 
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