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Null Steering of Dolph-Chebychev Arrays
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Abstract: Dolph-Chebychev arrays are known to exhibit the best compromise between sidelobe level and directivity. However,
they place a conmstraint on the null locations. Any attempt to impose nulls or get them deeper will impact the
directivity/sidelobe level trade-off. In this work, null placement in Dolph-Chebychev arrays through element position
perturbation is carried out based on Taguchi method while preserving the array aperture. Several examples are considered for
single, double, multiple and broad null placement to demonstrate the ability of the Taguchi method to explore the search space

and reach the global optimum.
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1. Introduction

In modern wireless communication systems, reducing
and/or canceling the interference is a vital issue. This is
because capacity of the system is directly proportional
to the amount of interference that it can tolerate. The
control of the radiation pattern has its importance also.
To improve the radiation efficiency, this pattern must
be oriented to the desired directions, while nulls (zero
radiation energy) directed towards the interferers. The
null steering in antenna radiation pattern of a linear
array aims at rejecting unwanted interference while
receiving the desired signal from a chosen direction
has received considerable attention in the past and is
still of great interest [2].

The null steering techniques are based on the
variations of the array parameters such as the element
excitations (amplitude and/or phase) and positions of
array elements. The element position control with the
use of a mechanical driving system, such as
servomotors, is an alternative way to create nulls in the
radiation pattern. These techniques, however, turn out
to be expensive considering the cost of the controllers
used for phase shifters and variable attenuators.
Moreover, when the number of elements in the array
increases, the computational time to find these
parameters will also increase [2].

Dolph-Chebychev arrays have the important
property that all side lobes in their radiation pattern are
of equal magnitude. Furthermore, the relationship
between the directivity and sidelobe level for these
arrays is optimum in that for a specified sidelobe level
the beam width is the smallest, and, alternatively, for a
given beam width the sidelobe level is the lowest [1,
5]. These fine radiation characteristics, however, put a
restriction on the flexibility of placing nulls in the

sense that once the sidelobe level or directivity is fixed,
the nulls have directions dictated by the Dolph-
Chebychev excitations. Ideally, one would require an
array with the best directivity/sidelobe level
compromise such as the one of Dolph-Chebychev
along with flexibility in null placement. This turns out
to be unachievable as any attempt to impose nulls in
directions other than the ones constrained by the
Dolph-Chebychev coefficients or force the nulls to be
deeper will alter the trade-off and introduce
deterioration in sidelobe level or directivity.

Thanks to the rapid development of computer
technology, many optimization techniques such as
Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Simulated Annealing (SA), Artificial Neural
Network (ANN), and gradient-based techniques have
been implemented in the form of computer codes [11].
These global optimizers while more familiar,
traditional techniques such as conjugate gradient and
the quasi-Newtonian methods are classified as local
optimizers. The distinction between local and global
search of optimization techniques is that the local
techniques produce results that are highly dependent
on the starting point or initial guess, while the global
methods are highly independent of the initial
conditions [1]. Though they possess the characteristic
of being fast in convergence, local techniques, in
particular the quasi-Newtonian techniques have a
direct dependence on the existence of at least the first
derivative. In addition, they place constraints on the
solution space such as differentiability and continuity,
conditions that are hard or even impossible to deal with
in practice [1]. Compared with traditional optimization
techniques, Taguchi’s optimization method is easy to
implement and very efficient in reaching optimum
solutions. Taguchi’s optimization method is developed
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based on the Orthogonal Array (OA) concept, which
offers a systematic and efficient way to select design
parameters. In addition, it reduces the number of tests
required in the optimization process compared to GA
or PSO[11, 12].

In this work, the problem of imposing nulls in
arrays fed by Dolph-Chebychev excitations through
element position perturbation is carried out based on
the Taguchi method. The idea is to keep the trade-off
directivity/sidelobe level within an allowable rate with
the nulls constrained to be as deep as possible in the
desired directions. Another constraint is imposed
which is that the array size must stay unchanged which
is beneficial as the perturbed array occupies the same
size of the original Dolph-Chebychev one.

The rest of the paper is organized as follows:
section 2 presents the problem with its mathematical
formulation to cast it as an optimization task. Section 3
describes briefly the idea behind the taguchi method
along with the algorithm this technique follows
towards the optimum solution. The results are given in
section 4 and finally concluding remarks are drawn in
section 5.

2. Problem Formulation

For a linear array of isotropic elements placed and
excited symmetrically along the x-axis, the array factor
is given as [9]:

AF(6) = i a, cos[ 2mx, (cos @ —cosd, )] (1)

k=1
where:
2N is the number of elements.

a, is the element excitation.

6 is the scanning angle range and varies from 0° to

180°.

6 is the main beam direction (90° for broadside).
The pattern produced is symmetrical with respect to
the broadside angle which suggests placing the nulls
just on half the angle range (0-90°) and the other half
will be automatically symmetrical. Particularly, the
Dolph-Chebychev coefficients are known to be
symmetrical with respect to the center which justifies
the use of the above formula.

The position symmetry dictates that the
optimization on this dimension should be done on half
the array with the other half symmetrically constructed.
The outmost element is fixed to have the same length
of the original dolph-chebychev array while the other
elements are varying which reduces the problem of
optimizing a 2N element array to an N-/ dimensions.
Starting from an equally spaced dolph-chebychev array
with an a priori set sidelobe level and directivity, the
optimization process tries to alter the positions of the
elements so that the null(s) in the desired direction(s) is
(are) placed with the directivity/sidelobe level ration
kept within a tolerable change from the original one.
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The desired pattern is a modified version of the initial
Dolph-Chebychev absolute array factor with the nulls
imposed in the desired directions as follows:

. 0 for the desired null directions
Desired pattern ={ . . (2)
Initial array factor elsewhere
This process is summarized by the fitness function:
180°
S =2 W, AF,(@)-AF,(@)|+SLL (3)
q=0°

where, AF,(6) and AF,(0) are the desired and produced
patterns at the angle 0, respectively. W, is a weighting
coefficient to force the pattern to exhibit nulls at the
desired angles and preserving the initial pattern
elsewhere. It is defined as:

100 if @ = desired directions
)=
1 elswhere

4)

The term SLL is introduced to force the sidelobe level
to stay within an allowable value set at the starting of
the optimization procedure. The initial Dolph-
Chebychev array is designed to have a sidelobe level
of -40dB which is a value largely satisfactory for
modern communication systems. Throughout the
optimization procedure, we allow a 2dB increase in
sidelobe level due to null imposing without any change
in directivity. If we denote SLL, to be the produced
sidelobe level, the last sentence is interpreted by
introducing a penalty of 10 if the sidelobe level
increases above -38dB i.e., SLL is then:

)

10 if SLL > -38 dB
SLL = ’
0 Otherwise

3. The Taguchi Method

Taguchi’s method was developed based on the concept
of the OA, which can effectively reduce the number of
tests required in a design process [11, 12]. It provides
an efficient way to choose the design parameters in an
optimization procedure.

Before presenting the Taguchi procedure, it is worth
understanding what OAs are and how are they
generated [11, 12]. Let S be a set of s symbols or levels
(the simplest symbols are integers 1, 2, 3...). A matrix
A of N rows and k columns with entries from S is said
to be an OA with s levels and strength ¢ (0< < k) if in
every Nxt subarray of A, each #tuple based on S
appears exactly the same times as a row. The notation
OA (N, k, s, 1) is used to represent an OA.

3.1. Initialization Procedure

The optimization procedure starts with the problem
initialization, which includes the selection of a proper
OA and the design of a suitable fitness function. The
selection of an OA (N, k, s, ) mainly depends on the
number of optimization parameters. In general, to
characterize the nonlinear effect, three levels (s=3) are
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found sufficient for each input parameter. Usually, an
OA with a strength of 2 (#=2) is efficient for most
problems because it results in a small number of rows
in the array [11, 12].

3.2. Design of input Parameters

The input parameters need to be selected to conduct
the experiments. When the OA is used, the
corresponding numerical values for the three levels of
each input parameter should be determined. In the first
iteration, the value for level 2 is selected at the center
of the optimization range. Values of levels 1 and 3 are
calculated by subtracting/adding the value of level 2
with a variable called Level Difference (LD). The
Level Difference in the first iteration (LD1) is
determined by the following equation:

Max — Min

LD, =
" Number of levels + 1 (©)

where Max is the upper bound of the optimization
range and Min is the lower bound of the optimization
range.

3.3. Conduct Experiments and Build a
Response Table

After determining the input parameters, the fitness
function for each experiment can be calculated. These
results are then used to build a response table for the
first iteration by averaging the fitness values for each
parameter » and each level m using the following
equation:

s
=— ; 7

av N ,-’OA%,){,:, ( )
as an example, consider that parameter x in an N
dimensional problem has levels 1, 2 and 3 as described
earlier. With s=2; the fitness values are evaluated
based on equation 7 for each level and hence a
response table is constructed for each parameter that
can be used to choose which level produces the best
fitness value (minimum value).

3.4. Identify Optimal Level Values and
Conduct Confirmation Experiment

Finding the largest fitness value ratio in each column
can identify the optimal level for that parameter. When
the optimal levels are identified, a confirmation
experiment is performed using the combination of the
optimal levels identified in the response table. This
confirmation test is not repetitious because the OA
based experiment is a fractional factorial experiment,
and the optimal combination may not be included in
the experiment table. The fitness value obtained from
the optimal combination is regarded as the fitness
value of the current iteration.

3.5. Reduce the Optimization Range

If the results of the current iteration do not meet the
termination criteria, the process is repeated in the next
iteration. The optimal level values of the current
iteration are used as central values (values of level 2)
for the next iteration. To reduce the optimization range
for a converged result, the LDi is multiplied with a
reduced rate (rr) to obtain LD, for the (i+1)"
iteration:

LD,,, =rrx LD, = RR(i)x LD, ®)

where RR(i) is called reduced function. When a
constant 1t is used, RR(i)=r#". The value of 7 can be set
between 0.5 and 1 depending on the problem. The
larger rr is, the slower the convergence rate.

If LD, is a large value, and the central level value is
located near the upper bound or lower bound of the
optimization range, the corresponding value of level 1
or 3 may reside outside the optimization range.
Therefore, a process of checking the level values is
necessary to guarantee that all level values are located
within the optimization range. A simple way is to use
the boundary values directly.

3.6. Check the Termination Criteria

When the number of iterations is large, the level
difference of each element becomes small from
equation 8. Hence, the level values are close to each
other and the fitness value of the next iteration is close
to the fitness value of the current iteration. The
following equation may be used as a termination
criterion for the optimization procedure:

LD,
LD,

< converged value 9

usually, the converged value can be set between 0.001
and 0.01 depending on the problem. The iterative
optimization process will be terminated if the design
goal is achieved or if equation 9 is satisfied.

4. Results and Discussions

The procedure described in section 2 and the algorithm
of section 3 have been applied to a set of null
placement tasks with satisfactory results obtained. The
dolph-chebychev array factor for a broadside main
beam and -40dB sidelobe level is shown in Figure 1.
This array factor exhibits a constant sidelobe level with
the nulls placed in fixed angles.

In the first example it is attempted to place a single
null in the pattern at the angle 76°. The placement has
been successfully achieved where the null depth
reached a value of -115.6dB with the sidelobe level of
-38.46dB and the same initial directivity. Figure 2
shows the resulting pattern.
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Figure 1. The radiation pattern of a broadside uniformly spaced
Dolph-Chebychev fed linear array.
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Figure 2. The produced radiation pattern with one null imposed at
76°.

This result is satisfactory as the null has been placed
exactly at the desired direction while the sidelobe level
kept within the tolerable value. The second example
concerns placing two distinct nulls at 55° and 65°.
Figure 3 shows the resulting pattern where it is clearly
shown that the placement is successful with the null
depth is at least at -115.8dB down the main beam and
the sidelobe level value of -38.58dB with the same
dolph-chebychev directivity. This demonstrates the
versatility of the Taguchi method to explore the search
space and find the optimal solution for the null
placement.

Relative array factor, dB

Theta, degrees

Figure 3. The produced radiation pattern with two nulls imposed at
55° and 65°.

In the third example, it is attempted to go further
with the null placement task by placing three distinct
nulls at 55°, 65° and 76°. Figure 4 shows the resulting
pattern. Surprisingly, the taguchi method again reached
our desired objectives by placing the three nulls at
exactly their corresponding angles with null depths
reaching even -114.3dB at a sidelobe level of -38.5dB
and the same initial directivity.
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Figure 4. The produced radiation pattern with three nulls imposed
at 55°, 65° and 76°.

This is again a proof of the capability of the Taguchi
method to explore the search space rigorously to find
the optimum solution of the problem. As an even
further null placement case, in the next example, it is
attempted to place six distinct nulls at 15°, 39°, 48°,
55°,65° and 72°. The optimization procedure has been
terminated successfully with the resulting radiation
pattern shown in Figure 5. It is clearly seen that the
nulls are placed as it was desired with some nulls
reaching -120dB with the trade-off sidelobe
level/directivity within the tolerable range. Indeed, the
sidelobe level is at -38dB. Here again we demonstrate
the usefulness of the Taguchi method in placing even a
large number of nulls with preservation of the best
characteristics of the initial Dolph-Chebychev array.
The previous examples treated the case of placing
distinct nulls and next it is desired to place a broad null
that centered at 57° and extends from 55° to 59°.
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Figure 5. The produced pattern with six nulls imposed at 15°, 39°,
48°, 55°, 65° and 72°.
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Theta, degrees

Figure 6. The produced pattern with a broad null imposed
extending from 55° to 59°.

Figure 6 shows the resulting pattern that reveals the
fact that this broad null has been placed despite the fact
that the depths vary along its width but on overall this
depth is less than -60dB. The achieved sidelobe level is
again within the tolerable range and is at -38.28dB.
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The cases treated previously have been devoted to
the broadside. In the next examples it is attempted to
explore the main beam angle steering case. As a first
example, assume the main beam is directed towards
60°. The initial radiation pattern of a uniformly spaced
dolph-chebychev fed linear array is shown in Figure 7.
The original pattern has already a very deep null at
120° with a null depth of -305.9dB. It is desired now to
place a null at 79° in this pattern. The null is
successfully placed as it is depicted by Figure 8 with a
null depth reaching -105.6dB while the original null
depth at 120° reduced to -54.14dB. The sidelobe level
again stayed within the limit and is at -38.15dB.
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Figure 7. The radiation pattern of a uniformly spaced dolph-
chebychev fed linear array steered towards 60°.

Relative array factor, dB

Theta, degrees

Figure 8. The produced pattern in the 60° steered case with one null
at 79°.

In the next example, consider that the main beam is
directed towards 130°. It is desired to impose a null at
87°. This null is place successfully as it is shown in
Figure 9 with a null depth of -98.21dB. The sidelobe
level is very good as it stayed close to the original
value and is at -39.21dB.
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Figure 9. The produced pattern in thel30° steered case with one
null at 87°.

5. Conclusions

The problem of null placement in dolph-chebychev
arrays using the taguchi optimization method has been
addressed. The idea is based on element position
perturbation with the extreme elements of the array
fixed. The null placement has been successfully
achieved with the characteristics of the initial array
kept within tolerable values. The Taguchi method has
proved to be powerful at reaching the global optimum
solutions. The produced arrays possess the
characteristics similar to the ones of the dolph-
chebychev arrays along with the imposed nulls having
significant depths and the overall array length kept the
same. Overall, the optimization procedure involving
the Taguchi method achieved the design objectives
with  appropriate  characteristics for modern
communication systems.

As a future work, the problem of using piratical
antenna elements in the array design is to be addressed.
This gives rise also to the problem of mutual coupling
between the elements that can dramatically affect the
performance of the array antenna in terms of
interference rejection.
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