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Abstract: Classical Genetic Algorithms (CGA) are known to find good sub-optimal solutions for complex and intractable 
optimization problems. In many cases, problems undergo frequent minor modifications, each producing a new problem 
version. If these problems are not small in size, it becomes costly to use a genetic algorithm to reoptimize them after each 
modification. In this paper, we propose an Incremental Genetic Algorithm (IGA) to reduce the time needed to reoptimize 
modified problems. The idea of IGA is simple and leads to useful results. IGA is similar to CGA except that it starts with an 
initial population that contains chromosomes saved from the CGA run for the initial problem version (prior to modifying it). 
These chromosomes are best feasible and best infeasible chromosomes to which we apply two techniques in order to ensure 
sufficient diversity within them. To validate the proposed approach, we consider three problems: Optimal regression software 
testing, general optimization, and exam scheduling. The empirical results obtained by applying IGA to the three optimization 
problems show that IGA requires a smaller number of generations than those of a CGA to find a solution. In addition, the 
quality of the solutions produced by IGA is comparable to those of CGA.
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1. Introduction
Genetic algorithms are based on the mechanics of 
natural evolution [4, 7]. They mimic natural 
populations reproduction and selection operations to 
achieve efficient and robust optimization.  Through 
their artificial evolution, successive generations search 
for beneficial adaptations in order to solve a problem. 
Each generation consists of a population of 
chromosomes, also called individuals, and each 
chromosome represents a possible solution to the 
problem. The initial generation consists of randomly 
created individuals. Each individual acquires a fitness 
level, which is usually based on a cost function given 
by the problem under consideration.
Reproduction, survival of the fittest principle, and 

the genetic operations of recombination (crossover) 
and mutation are used to create new offspring 
population from the current population. The 
reproduction operation involves selecting, in 
proportion to fitness, a chromosome from the current 
population of chromosomes, and allowing it to survive 
by copying it into the new population. Then, two mates 
are randomly selected from this population, and 
crossover and mutation are carried out to create two 
new offspring chromosomes. Crossover involves 
swapping two randomly located sub-chromosomes 
(within the same boundaries) of the two mating 
chromosomes. Mutation is applied to randomly 
selected genes, where the values associated with such 
genes are randomly changed to other values within an 

allowed range. The offspring population replaces the 
parent population, and the process is repeated for many 
generations with the aim of maximizing the fitness of 
the individuals. In this paper we refer to genetic 
algorithms that start with randomly- generated initial 
population as Classical Genetic Algorithms (CGA). An 
outline of CGA is given in Figure1.

Figure 1. Classical genetic algorithm.

CGAs have been adapted for solving a variety of 
engineering, science, economics, and operational 
research problems.  Some examples of such 
applications can be found in [1, 2, 6, 8, 9, 12, 13, 14, 
15]. Usually, a CGA starts with random chromosomes 
that make up the initial generation. Then, it evolves 
until it converges to one (best) solution. A CGA can be 
hybridized and augmented with a variety of techniques 
to improve its efficiency, to ensure feasibility of final 
solution, etc… Examples of such techniques can be 
found in [3, 5]. But, all these CGAs are ‘ab-initio’ 
algorithms. That is, if they are to re-solve a problem 

Random generation of initial population, size POP;
Evaluate fitness of individuals;
Repeat
        Rank individuals and allocate reproduction trials;
        For (I = 1 to POP step 2) do

 Randomly select 2 parents from the list of
reproduction trials

             Apply crossover and mutation;
         Endfor
         Evaluate fitness of offspring;
 Until (convergence criterion is satisfied)
 Solution = Fittest
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that has undergone a small modification, they start 
again with a random population of chromosomes. Ab-
initio runs take a comparable number of generations 
(and time) to the first run of the CGA on the initial 
version of the problem prior to its modification. For 
example, the modification can be due to a change in a 
parameter or in a feasibility constraint. If the problem 
size is not small, it may be too costly to spend the same 
evolution time for every modification. This would be 
particularly costly if such modifications are frequent 
and for large problem sizes.
In this paper, we propose a different approach to re-

solving modified problems by genetic algorithms. Our 
approach is based on saving chromosomes from the 
first CGA run (for the initial problem). The 
chromosomes to be saved are the best feasible 
chromosomes and the best infeasible ones. We apply 
two techniques in order to ensure diversity among 
these saved chromosomes. Then, we construct the 
initial population of the genetic algorithm from these 
chromosomes, in addition to random ones. The 
underlying assumption is that a solution to a modified 
problem might lie close to that of the initial version, 
but it may be on either side of the border of the 
feasibility region. Thus, starting with the saved 
chromosomes ensures faster convergence to a new 
solution. Obviously, the random portion of the 
population is included in order to increase diversity. 
We refer to genetic algorithms that are based on this 
approach as Incremental Genetic Algorithms (IGA), 
since they deal with incremental changes. 
We empirically explore the IGA approach by 

comparing it with CGAs for re-solving modified 
optimization problems. The subject problems used are: 
Optimal regression testing, general optimization, and 
exam scheduling. The empirical results show that the 
IGA idea is simple and yet leads to useful results. For 
the three problems, IGA takes a smaller number of 
generations (and less execution time) than CGA. Yet, it 
yields comparable or slightly better solution quality.
This paper is organized as follows. Section 2 

describes the IGA.  Section 3 presents the empirical 
results.  Section 4 contains our conclusion. 

2. Incremental Genetic Algorithm
The idea of an IGA for optimizing modified problems 
is simple. Instead of starting with randomly generated 
population of chromosomes, start by using information 
saved from running an ab-initio CGA on the initial
problem (before modification). The underlying 
assumptions of the IGA idea are:

1. A modification made to a problem does not shift 
optimal and good sub-optimal solution points much 
in the solution space.

2. The information saved during the application of a 
CGA for the initial problem will be useful for 

subsequent application of a genetic algorithm to 
modified versions of this problem. 

The aim is to reduce evolution time, measured in 
number of generations, of a genetic algorithm used for 
re-optimizing modified problems. This is particularly 
useful for complex and large-scale optimization 
problems, which take many generations and long 
execution times. This approach leads to faster solutions 
for incrementally modified problem. Thus, we refer to 
genetic algorithms based on this approach as 
incremental genetic algorithms.
IGA is based on two phases. In phase 1, we collect 

useful information during the execution of a CGA on 
the initial version of the problem. Useful information 
consists of best feasible and best infeasible 
chromosomes in every generation of CGA. To ensure 
diversity in these chromosomes, we use two 
techniques: Duplication- prevention and FCL-
enriching. In phase 2, we run IGA starting with 
chromosomes selected from the useful information 
saved, in addition to randomly generated 
chromosomes. Figure 2 shows the steps involved in 
IGA, which are described in the following subsections.

Create empty best feasible chromosome list (FCL);
Create empty best infeasible chromosome list (ICL);
gen_counter = 0;

Phase 1: In every generation of CGA (run for the initial problem):
Determine best feasible chromosome and apply duplication-
prevention with FCL

If no duplicates found then 
    add it to FCL;
    reset gen_counter; 
Else increment gen_counter;

Determine best infeasible chromosome and apply duplication-
prevention with ICL

If no duplicate found then add it to ICL;
If gen_counter = 3 then 

                          apply the FCL-enriching technique and add selected  
                          chromosomes to FCL;
                          reset gen_counter;

Phase 2:  IGA (run for the modified problem): 
Sort FCL and ICL according to fitness;
Run IGA starting with initial population which is typically

                composed of:  
50 %  best  feasible  from FCL
25 % best infeasible from ICL 
25 % randomly generated

Figure 2. Incremental genetic algorithm.

2.1. Saving Chromosomes in CGA
In phase 1, we save chromosomes from every 
generation of CGA. The candidate chromosomes are 
normally the best feasible and the best infeasible, 
which have the highest fitness in their feasible and 
infeasible regions, respectively. We apply diversity-
assuring techniques, described next, to the candidate 
chromosomes and the selected ones are added to the 
feasible and infeasible chromosome lists, FCL and 
ICL, respectively. For diversity purposes, the candidate 
chromosomes may be those other than the best one. 
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This is also explained next in the FCL-enriching 
technique.

2.2. Duplication-Prevention Technique
To prevent duplication of chromosomes in the FCL 
and ICL lists, we find the Hamming distance between a 
candidate chromosome and all chromosomes in the 
relevant list. The number of bits by which the two 
chromosomes differ gives the Hamming distance. If 
the Hamming distance is different from zero, the 
candidate chromosome is added to the list. Otherwise, 
the chromosome is not added. For best feasible 
chromosomes, if they fail to be added to the FCL for 3 
generations, we apply the FCL-enriching technique, 
which aims to ensure that FCL contains sufficient and 
diverse chromosomes for IGA. A similar technique to 
FCL-enriching is not applied to infeasible 
chromosomes, since any shortage in infeasible 
chromosomes can be substituted in IGA with 
randomly-generated ones without losing useful/feasible 
information.

2.3. FCL-Enriching Technique
The best feasible chromosome may fail to pass the 
duplication-prevention test in FCL. This means that 
FCL may end up with a small, insufficient number of 
chromosomes at the end of a CGA run. Equally 
important is that the chromosomes to be added to FCL 
be as diverse as possible. The FCL-enriching technique 
aims to fulfill the diversity objective while enriching 
FCL with useful feasible chromosomes. It is applied 
only if the duplication-prevention test fails 3 
successive times.
The FCL-enriching procedure is composed of the 

following steps:

1. Compute fi, the fitness value of every feasible 
chromosome i in the current generation. 

2. Compute di, the Hamming distance from the local 
feasible chromosome i to the best-so-far 
chromosome in FCL.

3. Compute the average of both the fitness values and 
Hamming distances of the feasible chromosomes, 
avf and avd.

4. Add to FCL feasible chromosomes i that satisfy the 
following three conditions:

1. Passes the duplication-prevention test in FCL.
2. fi > avf  (i. e., i has high fitness).
3. di < avd (i. e., i is close to best-so-far 
chromosome).

2.4. Constructing the Initial Population for 
IGA

At the end of a CGA run on the initial problem version, 
the FCL and ICL lists are constructed. These lists are 
then sorted by fitness value. A typical initial 

population of IGA, to be run for a modified version of 
the problem, is constructed as follows: 50% of the 
population size is taken from the best FCL 
chromosomes, 25% from the best ICL chromosomes, 
and the remaining 25% are generated randomly. In 
cases where these typical percentages from FCL and 
ICL cannot be achieved, the random component is 
increased to compensate for the shortage. Obviously, 
these typical percentages are empirically determined. 
They emphasize the contribution of the feasible 
chromosomes without undermining the possibility that 
the solution of the modified problem might lie near 
‘good’ infeasible solution points. Further, a random 
component is kept in the initial population in order to 
increase the level of diversity.

3. Empirical Comparison of IGA and CGA
In order to support our claim about the performance of 
IGA, we compare it with CGA for three optimization 
problems from software engineering and operations 
research: Optimal regression software testing, general 
optimization, and exam scheduling. For each problem, 
we run CGA and incorporate into it the Phase 1 steps 
necessary for IGA. Then, we introduce small 
modifications to the initial formulation of the problem. 
We compare IGA and CGA by running both for re-
solving the modified problem and counting the number 
of generations each algorithm take to converge to a 
solution. The quality of the solutions obtained by IGA
and CGA are also recorded to ensure that a reduction 
in the number of generations of IGA is not 
accompanied by deterioration in the solution quality.

3.1. Results for Optimal Regression Software 
Testing

Optimal regression software testing aims to select 
minimum number of tests from an initial suite of N 
tests such that the paths affected by fixing a program 
segment are covered. We assume the program is made 
up of M segments. Given that program segment k has 
been modified, the optimal retesting problem consists 
of finding values for (X1, X2, …, XN ) that minimize 
the cost function:

N21 X+.......+X+X=Z

Subject to the constraints :

∑
=

N

1j
jijXa ≥ bi; i = 1, .., M

Where Xj = 1 (or 0) indicates the inclusion (or 
exclusion) of test case j in the selected subset of 
retests. The matrix [aij] is derived directly from the 
test-segment coverage table, i. e., aij  = 1 if segment i 
covered by test case j; bi = 1 (or 0) indicates whether 
segment i needs to (or need not) be covered by the 
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subset of retests due to the modification of segment k, 
where the values bi are derived from the segment 
reachability information [11].                    
Tables 1-4 show the number of generations and the 

objective function value of the final solution for CGA 
and IGA. The different tables show the results for 
different problem sizes and for different modifications 
made to the initial problem. The modifications are 
made to a small number of constraints, specifically to 
the values on the right-hand side of the inequalities. 
This corresponds to a change in the number of the 
affected paths that are required to be covered by the 
selected tests.
The results in Tables 1-4 show that: 

1. IGA evolves a solution faster (in number of 
generations) than CGA in most cases; this 
advantage is clearer for larger problem sizes.

2. The solution quality of IGA is comparable to that of 
CGA, even where the number of generations is 
significantly less (see Table 4). 

Further, to give an idea about the actual saving in 
execution time, we note that for the 6000x6000 
problem with 256 changes, CGA takes 1hour on a 
1GHz-Pentium based PC, whereas IGA takes 0.65 
hour.

3.2. Results for General Optimization
In general optimization, we minimize:

i

N

1i

1i- X(1)∑
=

Subject to the constraints:

∑
=

N

1j
jijXa ≥ bi; i = 1, .., M

Where bi varies between 0 and 20, or it could be only 0 
and 1.
Two optimization problems are used.  In the first 

problem, the variables can take values in {–1, 0, 1}, 
and the right-hand values of the constraints range 
between 0 and 20. In the second problem, the variables 
can be {–1, 0, 1}, and the right-hand side values can be 
{0, 1}. The changes for this problem are made to the 
values on the right-hand side of the 
constraints/inequalities.

Table 1. Results for regression testing, MxN = 1000x1000.

CGA IGA

Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

1000x1000
16 Changes 10 19 10 18

1000x1000
32 Changes 17 18 10 18

Tables 5-8 show the results for different problem 
sizes and number of changes. The advantage of IGA is 

remarkable over CGA in terms of the number of 
generations required to find a solution. Again, the 
solution quality of IGA is similar to that of CGA.

Table 2. Results for regression testing, MxN = 2000x2000.

CGA IGA
Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

2000x2000
16 Changes

17 20 10 20

2000x2000
64 Changes

10 21 10 20

Table 3. Results for regression testing, MxN = 4000x4000.
CGA IGA

Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

4000x4000
128 Changes

20 16 20 16

4000x4000
256 Changes

23 16 20 16

Table 4. Results for regression testing, MxN = 6000x6000.
CGA IGA

Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

6000x6000
256 Changes 26 45 16 45

6000x6000
512 Changes 35 44 10 45

Table 5.  Results for general optimization, variables {-1, 0, 1} and 
constraints {0, 1}.

CGA IGA
Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

1000x1000
16 Changes

36 100 15 99

1000x1000
32 Changes

43 111 32 111

Table 6.  Results for general optimization, variables {-1, 0, 1} and 
constraints 0..20.

CGA IGA
Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

1000x1000
16 Changes

37 195 10 194

1000x1000
32 Changes

29 199 20 189

Table 7.  Results for general optimization, variables {-1, 0, 1} and 
constraints {0, 1}.

CGA IGA
Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

4000x4000
128Changes

23 163 10 151

4000x4000
192 Changes

56 150 10 151
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Table 8.  Results for general optimization, variables {-1, 0, 1} and 
constraints 0..20.

CGA IGA
Number of 
Generations

Objective 
Function

Number of 
Generations

Objective 
Function

4000x4000
128 Changes

31 449 10 440

4000x4000
192 Changes

31 459 10 440

3.3. Results for Exam Scheduling
The exam scheduling problem is a complex 
optimization problem. It refers to assigning exams to 
periods so that the following quantities are minimized: 
The number of students with simultaneous exams 
(SSE), the number of students with consecutive exams 
(SCE), and the number of students having multiple 
exams on the same day (SME). In addition, we have 
constraints, such as the total number of exam periods, 
total number of available rooms with predetermined 
capacities, etc… The objective function is given by a 
weighted sum of SSE, SCE, SME, and the number of 
room violations [10]. We use three instances of the 
exam scheduling problem based on real data for the 
semesters S95, F96, F98. The three instances differ in 
the number of exams and students.
Table 9 shows the results for the three semesters. 

For S95, the modification to the problem instance is 
made by forcing the exams of the sections of the same
course to be scheduled to the same period. For F96 and 
F98, the modification is made by deleting some 
courses (i. e., reducing the number of variables). Table 
10 shows the results for S95, where the modification is 
made to the maximum number of exam periods 
allowed. Figure 3 illustrates the results of Table 10 
graphically. All these results clearly show that IGA 
yields a solution in a smaller number of generations 
than CGA and that its solutions are comparable or 
somewhat better. To give an idea about the reduction 
in execution time, we note that in Table 10, periods = 
40, CGA takes 1.1 hours, whereas IGA takes 0.55 
hours (50 % reduction).

Table 9. Results for exam scheduling, 3 semesters, 32 periods.

SSE SCE SME

No. of 
Rooms 
Used

Violation
of Room 
Capacity

Objective 
Function

No. of 
Generations

S95 CGA 0 344 810 21 0 1154 84

IGA 0 345 802 21 0 1147 62

F96 CGA 0 268 600 21 0 868 43

IGA 0 224 494 21 0 718 32

F98 CGA 0 41 197 21 0 238 59

IGA 0 45 185 21 0 230 33

Table 10. Results for exam scheduling for S95 with different 
periods.

CGA Periods = 24 Periods = 28 Periods = 36 Periods = 40
SSE 2 0 0 0
SCE 879 572 231 95
SME 1680 1060 647 422
Room 
Violation 0 0 0 0

Objective 
Function 2759 1632 878 517

Generations 60 89 72 77
IGA Periods = 24 Periods = 28 Periods = 36 Periods = 40

SSE 2 0 0 0
SCE 804 455 180 91
SME 1477 1109 527 423
Room 
Violation 0 0 0 0

Objective 
Function 2481 1564 707 514

Generations 40 40 63 34
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Figure 3.  Bar chart for the results in Table 10.

4. Conclusion
We have presented an Incremental Genetic Algorithm 
(IGA), which is useful for re-optimizing problems that 
undergo small changes. Instead of starting with a 
randomly generated initial population, as in CGA, IGA 
uses information collected from the first run of a CGA 
on the initial version of the problem (prior to the 
changes). 
The empirical results for three subject problems 

show that IGA evolves solutions faster than CGA and 
that these solutions have similar quality to those of 
CGA.
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