
192 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

A Heterogeneous Framework for the Global
Parallelisation of Genetic Algorithms

Mohammad Hamdan
Department of Computer Science, Yarmouk University, Jordan

Abstract: There is a big need for the parallelisation of genetic algorithms. In this paper, a heterogeneous framework for the
global parallelisation of genetic algorithms is presented. The framework uses a static all-worker parallel programming
paradigm based on collective communication. It follows the single program multiple data parallel programming model. It
utilises the power of parallel machines by allowing multiple crossover and mutation operators being used within a single
genetic algorithm. This mixture of operators can be applied to the strings of a population in parallel without changes
to the canonical sequential genetic algorithm. These features help the parallel genetic algorithm in exploiting the search
space efficiently and thoroughly when compared to the sequential genetic algorithm. The framework is instantiated with
specific parameters to solve an NP-hard problem, the asymmetric travelling salesman problem. The results for the parallel
genetic algorithm are very good in terms of solution quality. Also very good speedup and scalability results were achieved
on the parallel machine.

Keywords: Genetic algorithms, parallel processing, parallel genetic algorithms, crossover, mutation, TSP.

Received November 14, 2006; accepted February 28, 2007

1. Introduction
Genetic algorithm (GA) is part of what is called
evolutionary computing that have been used
successfully in solving search and optimization
problems. They were invented by John Holland and his
students in 1975 [13]. They have studied Darwin's
theory about evolution and developed an algorithm that
mimics selection in biological systems. However,
there are few problems in GAs such as computational
time and failure to achieve optimal or near optimal
solutions.

In order to overcome these problems and improve
GAs, the concept of parallel processing has been
introduced in designing and implementing GAs. This
is due to many reasons such as: GAs are
inherently parallel, long execution time of GAs and
the use of parallel machines for exploiting the search
space thoroughly. There are different parallel
approaches to GAs such as global parallelisation where
the fitness function of the GA is evaluated in parallel
using a dynamic master slave paradigm, island models
where subpopulations reside on different processing
nodes, fine grain where each string resides on a single
node and in few cases hybrid of these approaches.
This is clearly noted in the uses of parallel genetic
algorithms for different application domains such as
optimization [21], scheduling [17], image
reconstruction [15], design problems [2] and analysis
problems [14].

However, approaches in parallelizing GAs such as
cellular and Island models [9] did alter the canonical

structure of GA [19] and introduced new parameters in
the parallel GA such as number of subpopulations,
migration size and frequency, replacement strategy
and islands topology.

Also these approaches had super linear results due
to very strong selection pressure caused by excessive
migration [24, 1]. Nonetheless, global parallelisation
was useful only when evaluating the fitness function
was computationally expensive. However, this
approach relied on a dynamic master slave
paradigm for data parallelism which suffers from
extra communication overhead at the master node.

The main motivation of this work is to parallelize
GAs without altering the canonical structure of
sequential GA. Therefore an improved heterogeneous
framework is presented for the global
parallelisation of GAs. It is called heterogeneous
since different crossover and mutation operators are
applied to different subpopulation strings
simultaneously. It was engineered by integrating
the following techniques and operators into a truly
novel heterogeneous framework: global single
population, collective communication, static all-worker
parallel programming model, multiple crossover
operators, multiple mutation operators and application
specific heuristics.

The rest of the paper is organized as follows.
Section 2 presents the novel framework for
parallelizing GAs. The model is customized in Section
3. In Section 4, the results are presented and
discussed. Comparison with related work is outlined

A Heterogeneous Framework for the Global Parallelisation of Genetic Algorithms 193

…

Crossover operator j
Mutation operator k

Sub-
population 1

Sub-
population i …

Sub-
population N

Root Worker Secondary Worker i Secondary Worker N

in Section 5 and finally the work is summarized and
future work is outlined in Section 6.

2. The Framework
The heterogeneous framework presented in this paper
builds on previous work by the author. Initial study
looked at the role of collective communication in a
homogeneous framework for the global parallelisation
of Gas [12].

In this paper, we are proposing a heterogeneous
framework for the parallelization of the classical GA
without altering its structure that uses collective
communication in order to reduce communication
overhead. Nonetheless, we are utilizing the power
of Multiple Programs Multiple Data (MPMD) [20]
approach by using different crossover and mutation
operators in order to exploit the search space
efficiently. However, the framework follows Single
Program Multiple Data (SPMD) model of parallelism
since all processing nodes have the same copy of code.
Once the parallel program is executed each processing
element will enter different parts of the code in order to
execute different crossover and mutation operators.

The main features of the framework are as follows:

• Global parallelisation of GAs by using a static
all-worker paradigm based on collective
communication for parallel processing. In this
model, all processing nodes apply the genetic
operators to its local subpopulation. By static we
mean divide the population into equally-sized
number of subpopulations, send all strings for a
given subpopulation using a big send message to the
corresponding worker. The all worker paradigm
differs from a standard dynamic master-slave
paradigm in the utilization of the master node as it
computes tasks in addition to communication.

• Collective communication rather than point to point
communication due to the advantages of the former
over the latter [8]. This approach fits very well with
the static all-worker design for performing the
computation due to the regular computation.

• Behaviour found in crossover and mutation
operators. Also, this feature had good results
on the scalability of the PGA as discussed in
Section 4.

• Multiple crossover operators where it is possible to
use a different crossover operator on different
processing nodes.

• Multiple mutation operators where it is possible to
use a different mutation operator on different
processing nodes.

• Application-specific heuristics where it is possible
to decode population strings then apply few
heuristics to them then encode them back into GA
strings.

The selection of either crossover or mutation operators
is performed in the following manner. Assume there is
C different crossover operators numbered from 1 to C
and M different mutation operators numbered from 1 to
M. Then worker i will use the jth crossover operator
and the kth mutation operator where j = i % C and k = i
% M. Figure 1 illustrates the process.

The new framework utilises the power of parallel
computing as it uses different crossover operators on
different parts of the population by using different
processors in the parallel environment. This has the
advantage of the possibility of introducing a bigger
number of new strings every generation when
compared with using only one crossover operator
especially when the different crossover operators are
applied to the same parents. However, it is not
necessarily that the same parents will be copied across
different processors as it depends on the similarity of
strings in the population.

The framework consists of two parts; the root
worker and the secondary workers. Assume there are
N nodes in the cluster numbered from 1 to N then node
number 1 will be root worker and remaining nodes are
secondary workers. The root and secondary worker are
described in the following subsections.

Figure 1. Applying different crossover and mutation operators to
the subpopulations.

2.1. The Root Worker
Figure 2 illustrates the pseudo-code for the root
worker that is going to be executed only on the root
node. It is called root worker rather than master node
as it not only controls the behaviour of the processing
nodes but also performs work similar to the secondary
workers. It is possible for the root worker to process
tasks since the common communication bottleneck in
standard master slave paradigm has been reduced by
the use of collective communication rather than point
to point sends and receives.

The role of the root worker is to generate the initial
population where all strings in the population are
generated randomly according to the representation
system used. Global parent selection is then carried
out where parents are selected from the current
population. The parents are divided across all
processors evenly. Each processor (secondary worker)
will get its corresponding piece of the population. The

194 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

root worker will then select and a crossover operator
and a mutation and apply it to its local subpopulation.

After collecting the new subpopulations it will
repeat the process until the PGA converges. It is
important to note that this framework preserves the
behaviour of the canonical GA as it performs global
selection only on the root worker.
1. Generate initial population randomly.
2. Evaluate initial population.
3. Apply parent selection operator and generate candidate parents.
4. Divide the single population into equally-sized number
of subpopulations.

5. Use a scatter operation in order to send to every worker
 its corresponding subpopulation. Keep one subpopulation
for local processing.

6. Select and apply crossover operator to the local subpopulation.
7. Select and apply mutation operator to the local subpopulation.
8. Decode strings apply problem-specific heuristics to the
 local subpopulation and encode strings.

9. Evaluate local subpopulation.
10. Use a gather operation in order to collect the new
subpopulations from the slave workers.

11. Apply an elitism operation on the gathered single population.
12. Repeat steps 3 through 12 until convergence criteria are met.
13. Broadcast Termination message to secondary Workers.

Figure 2. Pseudo-code for the root worker.

2.2. Secondary Workers
Figure 3 illustrates the pseudo-code for the secondary
workers. This code will be executed on all processing
nodes except the root node. The role of the secondary
workers is to receive its corresponding piece of the big
population then perform the required operators on the
population. The selected crossover and mutation
operators will be applied to all strings of the worker’s
subpopulation. Different workers will use different
crossover and mutation operators. Once the
termination message is received from root worker
all secondary workers will stop.

3. Using and Applying the Framework
The heterogeneous framework can be simply used by
specifying the following:

• Number of strings, probabilities for crossover and
mutation.

• Representation technique that best suits the
application which could be binary, arithmetic, float
or permutation.

• Encoding and decoding which simply explains how
to encode a possible solution of the problem using
the representation scheme and how to decode a
population string into a possible problem solution.

• Evaluation of strings by providing the fitness
function that can be used to evaluate the strings of
the population.

• Crossover operators: the user needs to provide
the framework with as many as possible
different crossover operators that work on the

given representation scheme in order to exploit the
search space thoroughly.
1. Receive subpopulation from root worker using a global scatter

operation.
 2. Select and apply crossover operator to local subpopulation.
 3. Select and apply mutation operator to local subpopulation.
 4. Decode Strings, apply problem-specific heuristic to

local subpopulation and encode strings.
 5. Evaluate subpopulation.
 6. Send subpopulation to root worker using a global gather

operation.
 7. Repeat steps 2 through 9 until a termination message is

received from root worker.

Figure 3. Pseudo-code for the secondary workers.

• Mutation operators: the user needs to provide the
framework with as many as possible different
mutation operators that work on the given
representation scheme in order to prevent premature
convergence.

• Heuristics: these are problem-specific heuristics that
can be used in order to help the GA. They may work
on the coded or decoded strings. It is up to the user
to use this feature or not.

• Number of workers: this includes root and
secondary workers.

• In order to test the framework, we have instantiated
the framework with the needed operators in order to
solve a combinatorial problem: the asymmetric
travelling salesman problem. Path encoding was
used and the fitness function is simply 1/(tour
length).

The rest of the operators are described below:

• The following crossover operators were placed on
different nodes [16]: order, modified order, cycle,
heuristic, alternating position, edge recombination
and partial matched.

• The following mutation operators were placed on
different nodes [16]: reciprocal exchange, inversion,
insertion, displacement, boundary and uniform
mutation.

• TSP-heuristics: modified 2-opt step where N
attempts are performed to shorten the tour and
modified or-opt step where all possible subtours of
length 3, 2 or 1 city are relocated into all possible
pairs of cities. The new tour is taken if it results in a
shorter tour.

4. Results
To verify the instantiated framework, the following
five anti-symmetric TSP instances: p43, ftv44, ry48p,
ft53 and kro124 were taken from TSPLIB[22] and used
as input data to the PGA. Two types of experiments
were conducted where each used a different type of
GA termination: 1) run the PGA for a fixed number of
generations i.e., 5000 iterations and 2) stop the GA
when the best solution found so far has not improved

A Heterogeneous Framework for the Global Parallelisation of Genetic Algorithms 195

for a given number of generations. The machine used
for the experiments had the following technical details:
IBM xSeries 335 with Intel Xeon 2.4 GHz processors,
1 GB RAM 512 KB L2 cache and a 1 GB Myrinet for
communication. Myrinet is known for its low latency
communication.

The first set of experiments was needed in order to
study the scalability behaviour of the framework. Two
major points were addressed in the experiments:
increasing the number of processors and the use
of TSP instances that have bigger number of cities.
The second set of experiments were needed in order to
find out if the parallel GA will converge after evolving
less or more populations when compared to the
sequential GA. This is needed in order to prove that the
speedup reported is not due to generating less number
of generation caused by excessive migration or other
issues as found in [1].

For both cases, the global population size is 384
individuals, used fitness proportionate selection over
the global population, applied the selected crossover
operator to 80% of the population, applied the selected
mutation operator to 0.05% of the population and
applied the modified 2-opt and or-opt to 25% of the
population.

The following crossover operators were used on
different processors: order, modified order, cycle,
heuristic, alternating position, edge recombination and
partial matched. Also the following different mutation
operators were used on different processors: reciprocal
exchange, inversion, insertion, displacement, boundary
and uniform mutation. We report results for average
number of generations needed for the GA to converge
and percentage quality difference for the best, average
and the worst solutions found from the optimal known
solution to each TSP instance. Also speedup of the
parallel GA over the sequential GA is presented. The
heuristic crossover operator and insertion mutation
operator were used for the SGA. All results were
averaged over 50 runs.

Table 1 shows the results for the first case. In the
Table, #P stands for number of processors. The
sequential GA is when #P = 1. It is clear from the
results for all TSP instances that the average quality
solution of the parallel GA is better than the sequential
GA. This shows that the PGA has explored the search
space in a better way and managed to find better
solutions to the problem than the sequential GA. This
clearly noted for the last two TSP instances ft53 and
kro124 as the complexity of the problem increases due
to the bigger number of cities. For ft53, the average
quality difference solution is 3.39 for the SGA and
improves to 2.35 using 32 nodes for the PGA.
Also for kro124 the SGA failed to find the optimal
solution. The best quality difference solution was 2.06
while few instances of the PGA manage to find the
optimal solution.

The possible reason for the PGA outperforming the
SGA regarding quality of solution can be due to the
following: by having multiple processors, each
processor will be responsible for generating the initial
seed for its random number generator. It is expected
that each processor will have different sequences of
random numbers and as we know GA operators depend
heavily on a good random number generator. By
having different processors and thus different random
numbers the possibility of exploring the search should
be better in PGA.

In Figure 4, we show the speedup results for various
TSP instances and the scalability of the framework. It
is clear from the results that speedup improves as the
PGA uses more processors. This supports the claim
that the framework is scalable and it is interesting to
note that speedup also improves as the TSP instance
has a bigger number of cities. This is clearly noted as
we got a speedup of 12. 13 using 32 processors for the
p43 instance that has only 43 cities while we had a
speedup of 26.48 using 32 processors for the kro124
instance that has about 100 cities to be visited. This is
due to the increase in computation over
communication.

 Figure 4. Framework scalability.

The results for the second case are shown in Table
2. As mentioned earlier the aim of this experiment to
show that the PGA does not necessarily need less
number of iterations to converge when compared with
the SGA. For the first two TSP instances the PGA
needed nearly the same or slightly less number of
iterations to converge.

For the remaining TSP instances the PGA needed
more iteration to converge. Therefore, the PGA
generated more populations and this requires more
computation than the SGA. Due to the efficiency of the
framework it took less time to compute even though
there were more generations to be evolved. This
insures that premature convergence is avoided and the
search space is exploited properly by evolving as many
generations as possible.

5. Comparison with Related Work
The reader may refer to [5, 18, 23, 3] for detailed
surveys about the parallelization of GAs. In the
following paragraphs, more recent and related
techniques for parallel GAs are compared to the
framework presented in this paper.

196 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

Table 1. Results for case 1.

p43
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 655.26 570.58 726.8 518.88 527.56 480.8 626.64 731.7 553.9 497.46
Speedup 1 1.87 2.67 3.41 4.73 5.75 7.51 8.95 10.99 12.13
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.017 0.019 0.019 0.018 0.019 0.017 0.017 0.014 0.014 0.02
Worst 0.053 0.053 0.053 0.053 0.053 0.034 0.017 0.036 0.036 0.053

ftv44
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 814.26 734.92 848.4 908.22 770.4 893.82 837.88 818.02 682.08 951.16
Speedup 1 1.84 2.71 3.38 4.77 5.97 8.04 9.25 11.72 13.17
Best 0 0 0 0 0 0 0 0 0 0
Avg 2.23 2.18 2.17 ١L٩٤ ١L٩٩ ١L٩٤ ٢L٢٢ ٢L٠٦ ٢L٢٧ ١L٨
Worst 7.01 ٥L٨٩ ٦L٧٦ ٦L٧٦ ٦L٨٨ ٦L٨٨ ٤L٩ ٦L٨٨ ٦L٨٨ ٤L٩٠

RY48P
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 897.7 ٧٧٥L٧٨ ٧٧٤L٦ ٧١١L٠٤ ٨٧٨L٨ ٧٦٩L٩٤ ٨٦٥L٦٤ ٧٨١L٨٢ ٦٠٠L٩٦ ٧٤٣L٠٤
Speedup 1 1.92 2.79 3.57 5.06 6.39 8.28 10.04 12.72 14.52
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.79 0.65 0.78 0.62 0.64 0.5 0.66 0.69 0.54 0.66
Worst 2.69 2.67 2.69 1.84 2.63 1.91 2.63 2.22 1.84 2.69

ft53
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 1065.16 985.74 1130.66 1169.7 1258.2 1155.24 1089.34 972.78 1232.92 1083.68
Speedup 1 1.94 2.71 3.66 5.2 6.54 8.73 10.88 13.97 16.54
Best 0 0 0 0 0 0 0 0 0 0
Avg 3.39 2.4 2.76 2.33 2.45 2.28 2.42 2.09 2.40 2.35
Worst 10.4 7.14 8.99 8.05 10.38 8.86 10.33 7.6 9.85 9.14

kro124
#P 1 2 3 4 6 8 12 16 24 32

Avg Gen 1776.73 1710.54 1849.66 1786.82 1884.88 1746.6 1806.22 1773.68 1842.91 1920.37

Speedup 1 1.99 2.99 3.99 5.86 7.76 11.36 14.82 21.08 26.48
Best 2.06 0.03 1.92 0 0 0 0 0.03 0 0.37
Avg 5.84 3.81 4.62 3.64 4.07 3.73 4.027 4.26 4.09 3.84
Worst 13.22 7.34 9.31 7.7 8.15 7.79 9.63 8.74 7.83 9.42

Table 2. Results for case 2.
p43

#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 280.96 241.66 250.72 274.8 258.5 224 255.82 249.44 247.56 266.78
Speedup 1 1.96 2.84 3.44 4.89 6.49 7.84 9.5 ١٢L٤٣ ١١L٥٦
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.024 0.026 0.023 0.02 ٠L٠٢٤ ٠L٠٢٦ ٠L٠٢٧ ٠L٠٢٦ ٠L٠٣٣ ٠L٠٣١
Worst 0.053 0.053 ٠L٠٥٣ ٠L٠٥٣ ٠L٠٥٣ ٠L١٠٧ ٠L٠٨٩ ٠L٠٧١ ٠L٢٣ ٠L٠٨٩

ftv44
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 252.04 229.52 242.74 223.12 240.28 227.2 285.42 241.14 241.84 265.12
Speedup 1 1.96 2.81 3.71 4.98 6.34 7.39 9.9 11.99 13.39
Best 0 0 0 0 0 1.3 0 0 0 0
Avg 3.07 3.28 2.83 ٣L٣٢ ٢L٨٧ ٢L٥٩ ٣L١٢ ٢L٨٤ ٢L٦١ ٢L٦١
Worst 8.49 ٦L٧٦ ٧L٣٢ ٩L١١ ٦L٧٦ ٦L٨٨ ٧L٩٤ ٧L٨١ ٦L٨٨ ٧L٣٢

RY48P
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 324.96 364.48 ٣٩٣L٢٦ ٣٢٣L٣٦ ٣٦٦L١٢ ٣٤٣L٥٢ ٣٨٦L٨٨ ٣٩٠L٩٢ ٣٧١L٥٢ ٣٧٩L٨٨
Speedup 1 1.79 2.52 3.31 ٤L٥٧ ٥L٧٤ ٢L٢٧ ٩L٤٧ ١٢L٧ ١٣L١٧
Best 0 0 0 0 0 0 0 0 0 0
Avg 1.45 ٠L٩٧ ١L٠٧ ١L٠٦ ١L٠٩ ٠L٨٤ ٠L٩٠ ٠L٧٧ ١L١٣ ٠L٩١
Worst 4.17 ٢L٢٩ ٣L٢٥ ٣L٧٤ ٢L٨٢ ٢L٤٦ ٣L٦١ ٢L٣٣ ٣L١٣ ٣L٨٢

ft53
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 341.26 364.12 370.54 369.96 398.28 394.34 397 352.74 406.44 383.74
Speedup 1 1.85 2.65 3.44 4.7 6.05 8.08 10.4 12.6 15.32
Best 0 0.06 0.15 0 0 0 0 0 0 0.06
Avg 5.75 4.71 4.12 3.99 3.8 4.33 4.3 3.78 3.71 3.75
Worst 14.35 13.4 10.72 11.57 13.51 11.34 12.14 11.39 10.38 10.82

kro124
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 785.52 ٩٨٧L٤٦ ٩٢٤L٣ ٩٥١L٧٨ ٨٨١L٥٧ ٩٥١L١ ٩٤٢L٣ ٩٢٥L٥٤ ١٠٠٨L٠٥ ١٠٠٦L٠٦
Speedup 1 ١L٦٦ ٢L٦٤ ٣L٤١ ٥L١٩ ٦L٦٤ ٩L٨٠ ١٣L١ ١٧L٤٣ ٢١L٧
Best 1.32 ٠L٠٣ ١L٥٥ ٠L٥١ ٠ ١L١٩ ١L٦٤ ١L٥٦ ٠L١٨ ٠L٠٣
Avg 7.05 ٥L٠٦ ٦L٢١ ٤L٨٥ ٥L٤٣ ٥L٥٣ ٥L١٠ ٤L٧٤ ٤L٩٢ ٥L٠٥
Worst 11.62 ١٠L٩ ١٢L٢١ ٨L٠٢ ١٠L٠٣٩ ١١L٨٥ ٩L٦٥ ٩L٣٤ ٨L٣٣ ١٠L٤٧

A Heterogeneous Framework for the Global Parallelisation of Genetic Algorithms 197

The Hy3 [6] is a new model for optimization in
continuous domains. The model is based on a fixed
number of eight subpopulations residing in a cube
topology. Therefore, the model follows a migration
based island model of GAs. The authors claim that
it is possible to use different crossover operators on
different island but it is not clear from the paper what
crossover operators were used and their role in
exploiting the search space. Results are discussed for
optimizing functions in continuous domains and no
examples for combinatorial problems such as TSP.

Nonetheless, in the framework for studying PGAs
[4], it was pointed out that PGAs almost always
outperform SGAs. Also in the future work of the
authors they mentioned that it would be interesting to
study the importance of using different operators in
every island which we have managed to implement in
this paper. In [26], a description of a parallel
distributed implementation of genetic programming
that can exploit the inherent parallelism in semi-
isolated subpopulations is given. The work differs
from our framework as it looks at migration-based
systems that rely on genetic programming techniques
and not GAs.

Other interesting studies looked at PGAs for the
scheduling problem [17] where the GA was divided
into multiple “demes”. Also the PGA for TSP
discussed in [25] was based on an island model that
uses distinct sub-population. The parallelisation was
done through a standard master-slave paradigm.
Results are shown for symmetric TSPs and not Anti-
symmetric TSPs as shown in this paper. Also no major
speedup results were reported due to the
communication overhead caused by the dynamic
master-slave paradigm. However, our framework did
not suffer from this communication overhead as it uses
collective communication. Nonetheless, the authors
pointed out that it would be interesting to implement
the PGA using an MPMD paradigm which was
achieved in the framework presented in this paper.

There are parallel implementations of genetic
programming based on the cellular model as presented
in [11]. This approach completely differs from our
framework as it makes major changes to the canonical
genetic algorithm. Also there are hardware
implementations for GAs such as the diffusion model
presented in [10]. It is architecture for distributed GAs
based on a massively parallel GA (cellular GA) and
implemented in hardware as an alternative to island-
based GAs.

Regarding sequential GAs, multiple mutation
operators are selected and applied in an adaptive
approach to the strings of the population [27]. The
work differs from our framework as it cannot apply
different mutation operators to the population
simultaneously but uses one mutation operator then
changes to another one according to the average fitness
of the strings.

We think that the framework presented in this paper
differs from previous ones as it is novel in the
integration of collective communication, an all-slave
paradigm for parallel programming, selection over
global population, multiple crossover operators and
multiple mutation operators in a heterogeneous frame-
work for the parallelization of GAs without changes to
its canonical design. No new parameters are needed to
control the parallelization such as migration rate, size,
and frequency.

6. Conclusions and Future Work
The presented heterogeneous framework truly utilized
the power of parallel machines. It was engineered
using multiple crossover and mutation operators and an
all-slave paradigm based on collective communication.
It managed in reducing the execution time of
sequential GAs without changes to its basic
structure. Also, it managed in exploring the search
space efficiently and thoroughly. The framework was
instantiated to solve a non trivial combinatorial
problem: ATSP. The results obtained showed that the
framework is capable of reducing the execution time
and managed in finding optimal and near optimal
solutions to ATSP.

In the future work, the framework will be
instantiated with problem parameters in order to solve
other applications such as scheduling and optimization.
Nonetheless, it is interesting to generate a
performance model that can predict the behaviour
of the framework in a similar way to the cost model in
[7]. Also, it might be interesting to modify the SGA
where multiple crossover and mutation operators can
be applied to different strings of the subpopulation for
further comparison.

7. Acknowledgments
The author would like to thank the DAAD organization
for the research visit grant to Munster University in
Germany. Also, thanks to professor Sergie Gorlatch
and his group for hosting the visit and giving
access to their parallel computing cluster during the
visit and after return to home country.

References
[1] Affenzeller M. and Wagner S., “Sasegasa: A

New Generic Parallel Evolutionary Algorithm for
Achieving Highest Quality Results,” Journal of
Heuristics, vol. 10, no. 3, pp. 243-267, 2004.

[2] Alba E. and Chicano F., “On the Behaviour of
Parallel Genetic Algorithms for Optimal
Placement of Antennae in Telecommunications,”
International Journal of Foundations of
Computer Science, vol. 16, no. 2, pp. 343-359,
2005.

198 The International Arab Journal of Information Technology, Vol. 5, No. 2, April 2008

[3] Alba E. and Tomassini M., “Parallelism and
Evolutionary Algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 6, pp. 443-
462, 2002.

[4] Alba E. and Troya J., “Analyzing Synchronous
and Asynchronous Parallel Distributed Genetic
Algorithms,” Future Generation Computer
Systems, vol. 17, pp. 451-465, 2001.

[5] Alba E. and Troya J., “A Survey of Parallel
Distributed Genetic Algorithms,” Complexity,
vol. 4, no. 4, pp. 31-52, 1999.

[6] Alba A., Luna F., Nebro A., and Troya J.,
“Parallel Heterogeneous Genetic Algorithms for
Continuous Optimization,” Parallel Computing,
vol. 30, pp. 699-719, 2004.

[7] Bazterra V., Cuma M., Ferraro M., and Facelli J.,
“A General Framework to Understand Parallel
Performance in Heterogeneous Cluster: Analysis
of a New Adaptive Parallel Genetic Algorithm,”
Journal of Parallel and Distributed Computing,
vol. 65, no. 1, pp. 48-57, 2005.

[8] Calvin C. and Colombet L., “Performance
Evaluation and Modelling of Collective
Communications on Cray t3d,” Parallel
Computing, vol. 22, pp. 1413-1427, 1996

[9] Cantu-Paz E., Efficient and Accurate Parallel
Genetic Algorithms, Kluwer Academic, 2000.

[10] Eklund S., “A Massively Parallel Architecture for
Distributed Genetic Algorithms,” Parallel
Computing, vol. 30, pp. 647-676, 2004.

[11] Folino C. and Spezzano G., “A Scalable
Cellular Implementation of Parallel Genetic
Programming,” IEEE Transactions on
Evolutionary Computation, vol. 7, pp. 37-53,
2003.

[12] Hamdan M., “Collective Communication,
Multiple Mutation Operators and the Global
Parallelisation of Genetic Algorithms,” in
Proceedings of the 5th International Conference
of Recent Advances in Soft Computing
(RASC2004), Nottingham, UK, pp. 300-305,
2004.

[13] Holland J., Adaptation in Natural and Artificial
Systems, the University of Michigan Press, 1975.

[14] Kai Xu S. and Mancini R., “A Scalable Parallel
Genetic Algorithm for X-Ray Spectroscopic
Analysis,” in Proceedings of the 2005
Conference on Genetic and Evolutionary
Computation, pp. 811-816, 2005.

[15] Knoll P. and Mirazaei S., “Validation of a
Parallel Genetic Algorithm for Image
Reconstruction from Projections,” Journal of
Parallel and Distributed Computing, vol. 63, pp.
356-359, 2003.

[16] Michalewicz Z., Genetic Algorithms+Data
Structures= Evolution Programs, Springer-
Verlag, Berlin, 1996.

[17] Moore M., “An Accurate Parallel Genetic
Algorithm to Schedule Tasks on a Cluster,”
Parallel Computing, vol. 30, no. 5-6, 2004.

[18] Nowostawski M. and Poli R., “Review and
Taxonomy of Parallel Genetic Algorithms,”
Technical Report CSRP-99-11, the University of
Birmingham, UK, 1999.

[19] Pereira C. and Lapa C., “Parallel Island Genetic
Algorithm Applied to a Nuclear Power Plant
Auxiliary Feed Water System Surveillance Tests
Policy Optimization,” Annals of Nuclear Energy,
vol. 30, pp. 1665-1675, 2003.

[20] Quinn M., Parallel Programming in C with
MPI and OpenMP, McGraw Hill, New York,
USA, 2003.

[21] Rahul D. and Dutta A., “Optimization of frp
Composites Against Impact Induced Failure
Using Island Parallel Genetic Algorithm,”
Composites Science and Technology, vol. 65, no.
13, pp. 2003-2013, 2005.

[22] Reinelt G., “Tsplib-a Travelling Salesman
Problem Library,” ORSA Journal on Computing,
vol. 3, no. 4, pp. 376-384, 1991.

[23] Rivera W., “Scalable Parallel Genetic
Algorithms,” Artificial Intelligence Review, vol.
16, pp. 153-168, 2001.

[24] Sang-Keon Oh C. and Lee J., “Balancing the
Selection Pressures and Migration Schemes in
Parallel Genetic Algorithms for Planning
Multiple Paths,” in IEEE International
Conference on Robotics and Automation, vol. 4,
pp. 3314-3319, 2001.

[25] Sena G., Megherbi D., and Isern G.,
“Implementation of a Parallel Genetic Algorithm
on A Cluster of Workstations: Travelling
Salesman Problem, A Case Study,” Future
Generation Computer Systems, vol. 17, no. 4, pp.
477-488, 2001.

[26] Tanev T. and Ono K., “Scalable Architecture for
Parallel Distributed Implementation of Genetic
Programming on Network of Workstation,”
Journal of Systems Architecture, vol. 47, no. 7,
pp. 557-572, 2001.

[27] Tzung-Pei H. and Chen W., “Simultaneously
Applying Multiple Mutation Operators in
Genetic Algorithms,” Journal of Heuristics, vol.
6, no. 4, pp. 439-455, 2000.

A Heterogeneous Framework for the Global Parallelisation of Genetic Algorithms 199

Mohammad Hamdan received his
PhD from Heriot-Watt University in
2000. His PhD thesis title was “A
Framework for Parallel Programming
Using Algorithmic Skeletons”. Since
February 2000, he has been working as
an assistant professor in the

Department of Computer Science. In September 2002
he became the assistant dean in the Faculty of
Information Technology. In September 2005, he
became the chairman of Computer Science
Department. He is a senior member in IEEE. Since
January 2002, he became the activity secretary for
Jordan IEEE executive committee and in May 2006 he
became the chair for IEEE Computer Chapter in
Jordan. His research interests are parallel processing,
genetic algorithms, and the parallelisation of genetic
algorithms.

