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Abstract: There is a big need for the parallelisation of genetic algorithms.  In this paper, a heterogeneous framework for the 
global parallelisation of genetic algorithms is presented. The framework uses a static all-worker parallel programming 
paradigm based on collective communication. It follows the single program multiple data parallel programming model. It 
utilises the power of parallel machines by allowing multiple crossover and mutation operators being used within a single 
genetic algorithm.  This mixture of operators  can  be  applied  to  the  strings  of  a  population  in  parallel  without  changes  
to the  canonical  sequential  genetic  algorithm. These features help the parallel genetic algorithm in exploiting the search 
space efficiently and thoroughly when compared to the sequential genetic algorithm. The framework is instantiated with 
specific parameters to solve an NP-hard problem, the asymmetric travelling salesman problem.  The results  for the  parallel  
genetic  algorithm  are very  good  in  terms  of  solution  quality. Also very good speedup and scalability results were achieved 
on the parallel machine.
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1. Introduction
Genetic  algorithm  (GA)  is part  of  what  is  called  
evolutionary  computing that have been used 
successfully in solving search and optimization 
problems. They were invented by John Holland and his 
students in 1975 [13].  They have studied Darwin's 
theory about evolution and developed an algorithm that 
mimics selection in biological systems.  However, 
there are few problems in GAs such as computational 
time and failure to achieve optimal or near optimal 
solutions.

In order to overcome these problems and improve 
GAs, the concept of parallel processing has been 
introduced in designing and implementing GAs.   This  
is  due  to  many  reasons  such  as:  GAs  are  
inherently  parallel, long execution time of GAs and 
the use of parallel machines for exploiting the search 
space thoroughly.  There are different parallel 
approaches to GAs such as global parallelisation where 
the fitness function of the GA is evaluated in parallel 
using a dynamic master slave paradigm, island models 
where subpopulations reside on different processing 
nodes,  fine grain where each string resides on a single 
node and in few cases hybrid of these approaches.  
This is clearly noted in the uses of parallel genetic 
algorithms for different application domains such as
optimization [21], scheduling [17], image 
reconstruction [15], design problems [2] and analysis 
problems [14].

However, approaches in parallelizing GAs such as 
cellular and Island models [9] did alter the canonical 

structure of GA [19] and introduced new parameters in 
the parallel GA such as number of subpopulations, 
migration size and frequency, replacement  strategy  
and  islands  topology.   

Also these approaches had super linear results due 
to very strong selection pressure caused by excessive 
migration [24, 1].  Nonetheless, global parallelisation 
was useful only when evaluating the fitness function 
was computationally expensive.  However, this 
approach relied on  a  dynamic  master  slave  
paradigm  for  data  parallelism  which  suffers  from 
extra communication overhead at the master node. 

The main motivation of this work is to parallelize 
GAs without altering the canonical structure of 
sequential GA. Therefore an improved heterogeneous  
framework  is  presented  for  the  global  
parallelisation  of  GAs.  It is called heterogeneous 
since different crossover and mutation operators are 
applied to different subpopulation strings 
simultaneously.   It  was engineered  by  integrating  
the  following  techniques  and  operators  into  a  truly 
novel heterogeneous framework:  global single 
population, collective communication, static all-worker 
parallel programming model, multiple crossover 
operators, multiple mutation operators and application 
specific heuristics.

The rest of the paper is organized as follows.  
Section 2 presents the novel framework for 
parallelizing GAs. The model is customized in Section 
3.  In Section 4, the results are presented and 
discussed.  Comparison with related work is outlined 
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in Section 5 and finally the work is summarized and 
future work is outlined in Section 6.

2. The Framework
The heterogeneous framework presented in this paper 
builds on previous work by the author. Initial study 
looked at the role of collective communication in a 
homogeneous framework for the global parallelisation 
of Gas [12]. 

In  this  paper,  we  are  proposing  a  heterogeneous  
framework  for  the  parallelization of the classical GA 
without altering its structure that uses collective 
communication  in  order  to  reduce  communication  
overhead.   Nonetheless,  we are  utilizing  the  power  
of  Multiple  Programs  Multiple  Data  (MPMD)  [20]  
approach by using different crossover and mutation 
operators in order to exploit the search space 
efficiently.  However, the framework follows Single 
Program Multiple Data (SPMD) model of parallelism 
since all processing nodes have the same copy of code.  
Once the parallel program is executed each processing 
element will enter different parts of the code in order to 
execute different crossover and mutation operators. 

The main features of the framework are as follows:

• Global  parallelisation  of  GAs  by  using  a  static  
all-worker paradigm  based  on  collective  
communication  for  parallel  processing.   In this 
model, all processing nodes apply the genetic 
operators to its local subpopulation.  By static we 
mean divide the population into equally-sized 
number of subpopulations, send all strings for a 
given subpopulation using a big send message to the 
corresponding worker.  The all worker paradigm 
differs from a standard dynamic master-slave 
paradigm in the utilization of the master node as it 
computes tasks in addition to communication.

• Collective communication rather than point to point 
communication due to the advantages of the former 
over the latter [8].  This approach fits very well with 
the static all-worker design for performing the 
computation due to the regular computation.

• Behaviour found in crossover and mutation 
operators.   Also,  this  feature  had  good  results  
on  the  scalability  of  the PGA as discussed in 
Section 4.

• Multiple crossover operators where it is possible to 
use a different crossover operator on different 
processing nodes.

• Multiple mutation operators where it is possible to 
use a different mutation operator on different 
processing nodes.

• Application-specific heuristics where it is possible 
to decode population strings then apply few 
heuristics to them then encode them back into GA 
strings.

The selection of either crossover or mutation operators 
is performed in the following manner.  Assume there is 
C different crossover operators numbered from 1 to C
and M different mutation operators numbered from 1 to 
M.  Then worker i will use the jth crossover operator 
and the kth mutation operator where j = i % C and k = i 
% M.  Figure 1 illustrates the process.

The new framework utilises the power of parallel 
computing as it uses different crossover operators on 
different parts of the population by using different 
processors in the parallel environment.  This has the 
advantage of the possibility of introducing a bigger 
number of new strings every generation when 
compared with using only one crossover operator 
especially when the different crossover operators are 
applied to the same parents.  However, it is not 
necessarily that the same parents will be copied across 
different processors as it depends on the similarity of 
strings in the population.

The  framework  consists  of  two  parts;  the  root  
worker  and  the  secondary workers.  Assume there are 
N nodes in the cluster numbered from 1 to N then node 
number 1 will be root worker and remaining nodes are 
secondary workers. The root and secondary worker are 
described in the following subsections.

Figure 1. Applying different crossover and mutation operators to 
the subpopulations.

2.1. The Root Worker
Figure 2  illustrates  the  pseudo-code  for  the  root  
worker  that  is  going  to  be executed only on the root 
node.  It is called root worker rather than master node 
as it not only controls the behaviour of the processing 
nodes but also performs work similar to the secondary 
workers.   It is possible for the root worker to process 
tasks since the common communication bottleneck in 
standard master slave paradigm has been reduced by 
the use of collective communication rather than point 
to point sends and receives. 

The role of the root worker is to generate the initial 
population where all strings in the population are 
generated randomly according to the representation 
system used.  Global parent selection is then carried 
out where parents are selected from the current 
population.  The parents are divided across all 
processors evenly.  Each processor (secondary worker) 
will get its corresponding piece of the population.  The 
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root worker will then select and a crossover operator 
and a mutation and apply it to its local subpopulation. 

After collecting the new subpopulations it will 
repeat the process until the PGA converges.   It is 
important to note that this framework preserves the
behaviour of the canonical GA as it performs global 
selection only on the root worker.
1. Generate initial population randomly.
2. Evaluate initial population.
3. Apply parent selection operator and generate candidate parents.
4. Divide the single population into    equally-sized   number
of subpopulations.

5. Use a  scatter  operation in order  to send to every worker
 its  corresponding  subpopulation. Keep  one  subpopulation 
for  local processing.

6. Select and apply  crossover operator to the  local subpopulation.
7. Select and apply  mutation operator to the local subpopulation.
8. Decode strings  apply problem-specific heuristics  to  the
 local subpopulation and encode strings.

9. Evaluate local subpopulation.
10. Use  a  gather  operation  in  order to collect the new 
subpopulations from  the  slave workers.

11. Apply an elitism operation on  the gathered single population.
12. Repeat steps 3 through  12  until  convergence criteria are met.
13. Broadcast Termination  message  to secondary Workers.

Figure 2. Pseudo-code for the root worker.

2.2. Secondary Workers
Figure 3 illustrates the pseudo-code for the secondary 
workers.  This code will be executed on all processing 
nodes except the root node.   The role of the secondary 
workers is to receive its corresponding piece of the big 
population then perform the required operators on the 
population.  The selected crossover and mutation 
operators will be applied to all strings of the worker’s 
subpopulation. Different workers will use different 
crossover and mutation operators.  Once the 
termination  message  is  received  from  root  worker  
all  secondary  workers  will stop.

3. Using and Applying the Framework 
The heterogeneous framework can be simply used by 
specifying the following:

• Number of strings, probabilities for crossover and 
mutation.

• Representation technique that best suits the 
application which could be binary, arithmetic, float 
or permutation.

• Encoding and decoding which simply explains how 
to encode a possible solution of the problem using 
the representation scheme and how to decode a 
population string into a possible problem solution.

• Evaluation of strings by providing the fitness 
function that can be used to evaluate the strings of 
the population.

• Crossover operators: the  user  needs  to  provide  
the  framework  with  as many  as  possible  
different  crossover  operators  that  work  on  the  

given representation scheme in order to exploit the 
search space thoroughly.
1. Receive subpopulation from root worker using a global  scatter 

operation.
     2. Select and apply  crossover  operator to  local subpopulation.
     3. Select and apply  mutation operator  to  local subpopulation.
     4. Decode Strings,  apply  problem-specific heuristic  to

local subpopulation and encode strings.
     5. Evaluate subpopulation.
     6. Send subpopulation  to root  worker using  a global gather 

operation.
     7. Repeat steps 2  through  9 until a  termination message  is 

received from root worker.

Figure 3. Pseudo-code for the secondary workers.

• Mutation operators: the  user  needs  to  provide  the  
framework  with  as many  as  possible  different  
mutation  operators  that  work  on  the  given 
representation scheme in order to prevent premature 
convergence.

• Heuristics: these are problem-specific heuristics that 
can be used in order to help the GA. They may work 
on the coded or decoded strings.  It is up to the user 
to use this feature or not.

• Number of workers: this includes root and 
secondary workers.

• In order to test the framework, we have instantiated 
the framework with the needed operators in order to 
solve a combinatorial problem:  the asymmetric 
travelling salesman problem.  Path encoding was 
used and the fitness function is simply 1/(tour 
length).

The rest of the operators are described below:

• The following crossover operators were placed on 
different nodes [16]: order, modified order, cycle, 
heuristic, alternating position, edge recombination 
and partial matched.

• The following mutation operators were placed on 
different nodes [16]: reciprocal exchange, inversion, 
insertion, displacement, boundary and uniform 
mutation.

• TSP-heuristics:  modified 2-opt step where N 
attempts are performed to shorten the tour and 
modified or-opt step where all possible subtours of 
length 3, 2 or 1 city are relocated into all possible 
pairs of cities.  The new tour is taken if it results in a 
shorter tour.

4. Results
To  verify  the  instantiated  framework,  the  following  
five  anti-symmetric  TSP instances:  p43, ftv44, ry48p, 
ft53 and kro124 were taken from TSPLIB[22] and used 
as input data to the PGA. Two types of experiments 
were conducted where each used a different type of 
GA termination: 1) run the PGA for a fixed number of 
generations i.e., 5000 iterations and 2) stop the GA 
when the best solution found so far has not improved 
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for a given number of generations. The machine used 
for the experiments had the following technical details: 
IBM xSeries 335 with Intel Xeon 2.4 GHz processors, 
1 GB RAM 512 KB L2 cache and a 1 GB Myrinet for 
communication. Myrinet is known for its low latency 
communication.

The first set of experiments was needed in order to 
study the scalability behaviour of the framework.  Two 
major points were addressed in the experiments:
increasing  the  number  of  processors  and  the  use  
of  TSP  instances  that  have bigger number of cities.  
The second set of experiments were needed in order to 
find out if the parallel GA will converge after evolving 
less or more populations when compared to the 
sequential GA. This is needed in order to prove that the 
speedup reported is not due to generating less number 
of generation caused by excessive migration or other 
issues as found in [1].

For both cases, the global population size is 384 
individuals, used fitness proportionate selection over 
the global population, applied the selected crossover 
operator to 80% of the population, applied the selected 
mutation operator to 0.05% of the population and 
applied the modified 2-opt and or-opt to 25% of the 
population.  

The following crossover operators were used on 
different processors: order, modified order, cycle, 
heuristic, alternating position, edge recombination and 
partial matched.  Also the following different mutation 
operators were used on different processors:  reciprocal
exchange, inversion, insertion, displacement, boundary 
and uniform mutation.  We report results for average 
number of generations needed for the GA to converge 
and percentage quality difference for the best, average
and the worst solutions found from the optimal known 
solution to each TSP instance.  Also speedup of the 
parallel GA over the sequential GA is presented.  The 
heuristic crossover operator and insertion mutation 
operator were used for the SGA. All results were 
averaged over 50 runs.

Table 1 shows the results for the first case.   In the 
Table, #P stands for number of processors.  The 
sequential GA is when #P = 1. It is clear from the 
results for all TSP instances that the average quality 
solution of the parallel GA is better than the sequential 
GA. This shows that the PGA has explored the search 
space in a better way and managed to find better 
solutions to the problem than the sequential GA. This 
clearly noted for the last two TSP instances ft53 and 
kro124 as the complexity of the problem increases due 
to the bigger number of cities.  For ft53, the average 
quality difference solution is 3.39 for the SGA and  
improves  to  2.35  using  32  nodes  for  the  PGA.  
Also for kro124 the SGA failed to find the optimal 
solution.  The best quality difference solution was 2.06 
while few instances of the PGA manage to find the 
optimal solution.

The possible reason for the PGA outperforming the 
SGA regarding quality of solution can be due to the 
following: by having multiple processors, each 
processor will be responsible for generating the initial 
seed for its random number generator. It is expected 
that each processor will have different sequences of 
random numbers and as we know GA operators depend 
heavily on a good random number generator. By
having different processors and thus different random 
numbers the possibility of exploring the search should 
be better in PGA.

In Figure 4, we show the speedup results for various 
TSP instances and the scalability of the framework.  It 
is clear from the results that speedup improves as the 
PGA uses more processors.  This supports the claim 
that the framework is scalable and it is interesting to 
note that speedup also improves as the TSP instance 
has a bigger number of cities.  This is clearly noted as 
we got a speedup of 12. 13 using 32 processors for the 
p43 instance that has only 43 cities while we had a 
speedup of 26.48 using 32 processors for the kro124
instance that has about 100 cities to be visited.  This is 
due to the increase in computation over 
communication.

                       Figure 4. Framework scalability.

The results for the second case are shown in Table
2. As mentioned earlier the aim of this experiment to 
show that the PGA does not necessarily need less
number of iterations to converge when compared with 
the SGA. For the first two  TSP  instances  the  PGA  
needed  nearly  the  same  or  slightly  less  number of  
iterations  to  converge.

For the remaining TSP instances the PGA needed 
more iteration to converge.  Therefore, the PGA 
generated more populations and this requires more 
computation than the SGA. Due to the efficiency of the 
framework it took less time to compute even though 
there were more generations to be evolved. This 
insures that premature convergence is avoided and the 
search space is exploited properly by evolving as many 
generations as possible.

5. Comparison with Related Work
The reader may refer to [5, 18, 23, 3] for detailed 
surveys about the parallelization of GAs. In the 
following paragraphs, more recent and related 
techniques for parallel GAs are compared to the 
framework presented in this paper.
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Table 1. Results for case 1.

p43
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 655.26 570.58 726.8 518.88 527.56 480.8 626.64 731.7 553.9 497.46
Speedup 1 1.87 2.67 3.41 4.73 5.75 7.51 8.95 10.99 12.13
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.017 0.019 0.019 0.018 0.019 0.017 0.017 0.014 0.014 0.02
Worst 0.053 0.053 0.053 0.053 0.053 0.034 0.017 0.036 0.036 0.053

ftv44
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 814.26 734.92 848.4 908.22 770.4 893.82 837.88 818.02 682.08 951.16
Speedup 1 1.84 2.71 3.38 4.77 5.97 8.04 9.25 11.72 13.17
Best 0 0 0 0 0 0 0 0 0 0
Avg 2.23 2.18 2.17 ١L٩٤ ١L٩٩ ١L٩٤ ٢L٢٢ ٢L٠٦ ٢L٢٧ ١L٨
Worst 7.01 ٥L٨٩ ٦L٧٦ ٦L٧٦ ٦L٨٨ ٦L٨٨ ٤L٩ ٦L٨٨ ٦L٨٨ ٤L٩٠

RY48P
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 897.7 ٧٧٥L٧٨ ٧٧٤L٦ ٧١١L٠٤ ٨٧٨L٨ ٧٦٩L٩٤ ٨٦٥L٦٤ ٧٨١L٨٢ ٦٠٠L٩٦ ٧٤٣L٠٤
Speedup 1 1.92 2.79 3.57 5.06 6.39 8.28 10.04 12.72 14.52
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.79 0.65 0.78 0.62 0.64 0.5 0.66 0.69 0.54 0.66
Worst 2.69 2.67 2.69 1.84 2.63 1.91 2.63 2.22 1.84 2.69

ft53
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 1065.16 985.74 1130.66 1169.7 1258.2 1155.24 1089.34 972.78 1232.92 1083.68
Speedup 1 1.94 2.71 3.66 5.2 6.54 8.73 10.88 13.97 16.54
Best 0 0 0 0 0 0 0 0 0 0
Avg 3.39 2.4 2.76 2.33 2.45 2.28 2.42 2.09 2.40 2.35
Worst 10.4 7.14 8.99 8.05 10.38 8.86 10.33 7.6 9.85 9.14

kro124
#P 1 2 3 4 6 8 12 16 24 32

Avg Gen 1776.73 1710.54 1849.66 1786.82 1884.88 1746.6 1806.22 1773.68 1842.91 1920.37

Speedup 1 1.99 2.99 3.99 5.86 7.76 11.36 14.82 21.08 26.48
Best 2.06 0.03 1.92 0 0 0 0 0.03 0 0.37
Avg 5.84 3.81 4.62 3.64 4.07 3.73 4.027 4.26 4.09 3.84
Worst 13.22 7.34 9.31 7.7 8.15 7.79 9.63 8.74 7.83 9.42

Table 2. Results for case 2.
p43

#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 280.96 241.66 250.72 274.8 258.5 224 255.82 249.44 247.56 266.78
Speedup 1 1.96 2.84 3.44 4.89 6.49 7.84 9.5 ١٢L٤٣ ١١L٥٦
Best 0 0 0 0 0 0 0 0 0 0
Avg 0.024 0.026 0.023 0.02 ٠L٠٢٤ ٠L٠٢٦ ٠L٠٢٧ ٠L٠٢٦ ٠L٠٣٣ ٠L٠٣١
Worst 0.053 0.053 ٠L٠٥٣ ٠L٠٥٣ ٠L٠٥٣ ٠L١٠٧ ٠L٠٨٩ ٠L٠٧١ ٠L٢٣ ٠L٠٨٩

ftv44
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 252.04 229.52 242.74 223.12 240.28 227.2 285.42 241.14 241.84 265.12
Speedup 1 1.96 2.81 3.71 4.98 6.34 7.39 9.9 11.99 13.39
Best 0 0 0 0 0 1.3 0 0 0 0
Avg 3.07 3.28 2.83 ٣L٣٢ ٢L٨٧ ٢L٥٩ ٣L١٢ ٢L٨٤ ٢L٦١ ٢L٦١
Worst 8.49 ٦L٧٦ ٧L٣٢ ٩L١١ ٦L٧٦ ٦L٨٨ ٧L٩٤ ٧L٨١ ٦L٨٨ ٧L٣٢

RY48P
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 324.96 364.48 ٣٩٣L٢٦ ٣٢٣L٣٦ ٣٦٦L١٢ ٣٤٣L٥٢ ٣٨٦L٨٨ ٣٩٠L٩٢ ٣٧١L٥٢ ٣٧٩L٨٨
Speedup 1 1.79 2.52 3.31 ٤L٥٧ ٥L٧٤ ٢L٢٧ ٩L٤٧ ١٢L٧ ١٣L١٧
Best 0 0 0 0 0 0 0 0 0 0
Avg 1.45 ٠L٩٧ ١L٠٧ ١L٠٦ ١L٠٩ ٠L٨٤ ٠L٩٠ ٠L٧٧ ١L١٣ ٠L٩١
Worst 4.17 ٢L٢٩ ٣L٢٥ ٣L٧٤ ٢L٨٢ ٢L٤٦ ٣L٦١ ٢L٣٣ ٣L١٣ ٣L٨٢

ft53
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 341.26 364.12 370.54 369.96 398.28 394.34 397 352.74 406.44 383.74
Speedup 1 1.85 2.65 3.44 4.7 6.05 8.08 10.4 12.6 15.32
Best 0 0.06 0.15 0 0 0 0 0 0 0.06
Avg 5.75 4.71 4.12 3.99 3.8 4.33 4.3 3.78 3.71 3.75
Worst 14.35 13.4 10.72 11.57 13.51 11.34 12.14 11.39 10.38 10.82

kro124
#P 1 2 3 4 6 8 12 16 24 32
Avg Gen 785.52 ٩٨٧L٤٦ ٩٢٤L٣ ٩٥١L٧٨ ٨٨١L٥٧ ٩٥١L١ ٩٤٢L٣ ٩٢٥L٥٤ ١٠٠٨L٠٥ ١٠٠٦L٠٦
Speedup 1 ١L٦٦ ٢L٦٤ ٣L٤١ ٥L١٩ ٦L٦٤ ٩L٨٠ ١٣L١ ١٧L٤٣ ٢١L٧
Best 1.32 ٠L٠٣ ١L٥٥ ٠L٥١ ٠ ١L١٩ ١L٦٤ ١L٥٦ ٠L١٨ ٠L٠٣
Avg 7.05 ٥L٠٦ ٦L٢١ ٤L٨٥ ٥L٤٣ ٥L٥٣ ٥L١٠ ٤L٧٤ ٤L٩٢ ٥L٠٥
Worst 11.62 ١٠L٩ ١٢L٢١ ٨L٠٢ ١٠L٠٣٩ ١١L٨٥ ٩L٦٥ ٩L٣٤ ٨L٣٣ ١٠L٤٧
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The Hy3 [6] is a new model for optimization in 
continuous domains.  The model  is  based  on  a  fixed  
number  of  eight  subpopulations  residing  in  a  cube 
topology. Therefore, the model follows a migration
based island model of GAs.   The  authors  claim  that  
it  is  possible  to  use  different  crossover operators on 
different island but it is not clear from the paper what 
crossover operators were used and their role in 
exploiting the search space.  Results are discussed for 
optimizing functions in continuous domains and no 
examples for combinatorial problems such as TSP.

Nonetheless, in the framework for studying PGAs 
[4], it was pointed out that PGAs almost always 
outperform SGAs.   Also in the future work of the
authors they mentioned that it would be interesting to 
study the importance of using different operators in 
every island which we have managed to implement in 
this paper.  In [26], a description of a parallel 
distributed implementation of genetic programming 
that can exploit the inherent parallelism in semi-
isolated subpopulations is given.   The work differs 
from our framework as it looks at migration-based 
systems that rely on genetic programming techniques 
and not GAs.

Other  interesting  studies  looked  at  PGAs  for  the  
scheduling  problem  [17] where the GA was divided 
into multiple “demes”.  Also the PGA for TSP 
discussed in [25] was based on an island model that 
uses distinct sub-population. The parallelisation was 
done through a standard master-slave paradigm.  
Results are shown for symmetric TSPs and not Anti-
symmetric TSPs as shown in this paper.  Also no major 
speedup results were reported due to the 
communication overhead caused by the dynamic 
master-slave paradigm.  However, our framework did 
not suffer from this communication overhead as it uses 
collective communication.  Nonetheless, the authors 
pointed out that it would be interesting to implement 
the PGA using an MPMD paradigm which was 
achieved in the framework presented in this paper.

There are parallel implementations of genetic 
programming based on the cellular model as presented 
in [11].  This approach completely differs from our 
framework as it makes major changes to the canonical 
genetic algorithm.  Also there are hardware 
implementations for GAs such as the diffusion model 
presented in [10].  It is architecture for distributed GAs
based on a massively parallel GA (cellular GA) and 
implemented in hardware as an alternative to island-
based GAs.

Regarding sequential GAs, multiple mutation 
operators are selected and applied in an adaptive 
approach to the strings of the population [27].  The 
work differs from our framework as it cannot apply 
different mutation operators to the population 
simultaneously but uses one mutation operator then 
changes to another one according to the average fitness 
of the strings.

We think that the framework presented in this paper 
differs from previous ones as it is novel in the 
integration of collective communication,  an all-slave 
paradigm for parallel programming, selection over 
global population, multiple crossover operators and 
multiple mutation operators in a heterogeneous frame-
work for the parallelization of GAs without changes to 
its canonical design.  No new parameters are needed to 
control the parallelization such as migration rate, size, 
and frequency.

6. Conclusions and Future Work
The presented heterogeneous framework truly utilized 
the power of parallel machines.  It was engineered 
using multiple crossover and mutation operators and an 
all-slave paradigm based on collective communication.  
It managed in reducing  the  execution  time  of  
sequential  GAs  without  changes  to  its basic 
structure.  Also, it managed in exploring the search 
space efficiently and thoroughly.  The framework was 
instantiated to solve a non trivial combinatorial 
problem: ATSP. The results obtained showed that the 
framework is capable of reducing the execution time 
and managed in finding optimal and near optimal 
solutions to ATSP. 

In the future work, the framework will be 
instantiated with problem parameters in order to solve 
other applications such as scheduling and optimization. 
Nonetheless,  it  is  interesting  to  generate  a  
performance  model  that  can  predict  the behaviour 
of the framework in a similar way to the cost model in 
[7].  Also, it might be interesting to modify the SGA 
where multiple crossover and mutation operators can 
be applied to different strings of the subpopulation for 
further comparison.
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