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Abstract: In this paper, we present reliable algorithms for fuzzy k-means and C-means that could improve MRI segmentation. 

Since the k-means or FCM method aims to minimize the sum of squared distances from all points to their cluster centers, this 

should result in compact clusters. Therefore the distance of the points from their cluster centre is used to determine whether 

the clusters are compact. For this purpose, we use the intra-cluster distance measure, which is simply the median distance 

between a point and its cluster centre. The intra-cluster is used to give us the ideal number of clusters automatically; i.e a 

centre of the first cluster is used to estimate the second cluster, while an intra-cluster of the second cluster is obtained. Similar, 

the third cluster is estimated based on the second cluster information (centre and intra cluster), so on, and only stop when the 

intra-cluster is smaller than a prescribe value. The proposed algorithms are evaluated and compared with established fuzzy k-

means and C-means methods by applying them on simulated volumetric MRI and real MRI data to prove their efficiency. 

These evaluations, which are not easy to specify in the absence of any prior knowledge about resulted clusters, for real MRI 

dataset are judged visually by specialists since a real MRI dataset cannot give us a quantitative measure about how much they 

are successful. 
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1. Introduction 

Magnetic resonance image segmentation has been 

proposed for a number of clinical investigations of 

varying complexity [33]. Automatic segmentation of 

MR scans is very useful for research and clinical study 

of much neurological pathology. The accurate 

segmentation of MR images into different tissue 

classes, especially Gray Matter (GM), White Matter 

(WM) and CerebroSpinal Fluid (CSF), is an important 

for the diagnosis and prognosis of certain illnesses. 

The automatic segmentation of brain MR images, 

however, remains a persistent problem. The major MR 

image segmentation problem when MR image is the 

corruption with an inhomogeneity bias field [11]. 

Several approaches have been proposed to address this 

limitation of intensity-based classification under three 

broad algorithmic frameworks, namely, region-based, 

contour-based, and classification-based approaches. 

In region-based segmentation, the shape of an object 

can be described in terms of its boundary or the region 

it occupies. In its simplest form, region growing 

methods usually start by locating some seeds 

representing distinct regions in the image [33, 11]. The 

seeds are then grown until they eventually cover the 

entire image. The region growing process is therefore 

governed by a rule that describe the growth mechanism 

and a rule that check the homogeneity of the regions at 

each growth step. Region growing technique has been 

applied to MRI segmentation [11, 24, 20]. In [11], a 

semi-automatic, interactive MRI segmentation 

algorithm was developed that employ simple region 

growing technique for lesion segmentation. In [24], an 

automatic statistical region growing algorithm based 

on a robust estimation of local region mean and 

variance for every pixel on the image was proposed for 

MRI segmentation. The best region growing 

parameters are automatically found via the 

minimization of a cost functional. Furthermore, 

relaxation labeling, region splitting, and constrained 

region merging were used to improve the quality of the 

MRI segmentation. The determination of an 

appropriate region homogeneity criterion is an 

important factor in region growing segmentation 

methods. However, such homogeneity criterion may be 

difficult to obtain a priori. In [20], an adaptive region 

growing method was proposed where the homogeneity 

criterion is learned automatically from characteristics 

of the region to be segmented while searching for the 

region. Contour-based segmentation approach assumes 

that the different objects in an image can be segmented 

by detecting their boundaries. A contour-based 

segmentation is based on the deformable templates or 

active contours [12, 17, 2, 18, 8]. Active contour 

deforms to fit the object’s shape by minimizing 

(among others) a gradient dependent attraction force 

while at the same time maintaining the smoothness of 

the contour shape [12]. Active contour based 

algorithms usually require initialization of the contour 

close to the object boundary for it to converge 

successfully to the true boundary. More importantly, 

active contour methods have difficulty handling deeply 
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convoluted boundary such as CSF, GM and WM 

boundaries due to their contour smoothness 

requirement [17]. Hence, they are often not appropriate 

for the segmentation of brain tissues. Nevertheless, it 

has been applied successfully to the segmentation of 

intracranial boundary [2], brain outer surface [18], and 

neuro-anatomic structures in MR brain images [8]. In 

classification-based segmentation, pixels are classified 

and labeled as belonging to a particular tissue class 

according to a certain criterion. The simplest technique 

is based on thresholding [23, 21, 29, 19, 16, 30, 1, 31]. 

Thresholding algorithm attempts to determine a 

threshold value which separates the desired classes. In 

[23], Suzuki and Toriwaki used iterative thresholding 

to distinguish brain tissues from others in axial MR 

slices. Starting at set values, thresholds for the head 

and the brain are then iteratively adjusted based on the 

geometry of resulting masks. In [21], Rajapakse et al. 

also used the Gaussian mixture to model the three 

brain tissue classes. The biological variations of a 

particular tissue class are accounted for in their 

statistical model by assuming that the mean intensities 

of the tissue classes are slowly varying spatial 

functions. Common others classification techniques 

include clustering algorithms [29, 9, 16], decision 

fusion [30], and artificial neural network and support 

vector machines [1, 31].  

Clustering, from a machine learning perspective, is 

a popular unsupervised classification method and has 

found many applications in pattern classification and 

image segmentation [4, 14, 13, 22, 25, 10, 15]. 

Clustering algorithm attempts to classify a voxel to a 

tissue class by using the notion of similarity to the 

class. Clustering techniques require the definition of a 

similarity measure between pixels, which is not easy to 

specify in the absence of any prior knowledge about 

cluster shapes. The Fuzzy C-Means (FCM) clustering 

algorithms have recently been applied to MRI 

segmentation [10, 15]. Unlike the crisp k-means 

clustering algorithm [4, 14, 13, 22, 25], the FCM 

algorithm allows partial membership in different tissue 

class. Thus, FCM can be used to model the partial 

volume averaging artifact, where a pixel may contain 

multiple tissue classes [10]. A method of 

simultaneously estimating the intensity non-uniformity 

artifact and performing voxel classification based on 

fuzzy clustering has been reported in [15], where 

intermediate segmentation results are utilized for the 

intensity non-uniformity estimation. The method uses a 

modified FCM cost functional to model the variation 

in intensity values and the computation of the bias field 

is formulated as a variation problems. However, in 

conventional FCM clustering algorithm, there is no 

consideration of spatial context between voxels since 

the clustering is done solely in the feature space. 

Although k-means and C-means methods have several 

advantages such as: (1) it yields regions more 

homogeneous than those of other methods, (2) it 

reduces the spurious blobs, (3) it removes noisy spots, 

and (4) it is less sensitive to noise than other 

techniques. The final number of clusters is still always 

sensitive to one or two user-selected parameters that 

define the threshold criterion for merging. Though 

some compatibility or similarity measure can be 

applied to choose the clusters to be merged, no validity 

measure is used to guarantee that the clustering result 

after a merge is better than the one before the merge. 

Partial results were stated in [9] to answer the 

questions: "Can the appropriate number of clusters be 

determined automatically? And if the answer is yes, 

how?" The number of clusters is determined by 

operating index procedures to whole data to determine 

the number of clusters before starting fuzzy methods. 

This will consume much time for finding the suitable 

number of cluster.  Therefore, two major problems are 

known with the k-means and FCM methods: (1) How 

to determine the number of clusters. (2) The 

computational cost is quit high for large data sets.  

This paper addresses these problems for overcoming 

the shortcomings of existing fuzzy methods. We 

present alternative k-means and FCM algorithms that 

could improve MRI segmentation. The algorithms 

incorporate spatial information into the membership 

function and the validity procedure for clustering. We 

use the intra-cluster distance measure, which is simply 

the median distance between a point and its cluster 

centre. The number of the cluster increases 

automatically according the value of intra-cluster, for 

example when a cluster is obtained, it uses this cluster 

to evaluate intra-cluster of the next cluster as input to 

the FCM or k-means and so on, stop only when intra-

cluster is smaller than a prescribe value. The most 

important aspect of the proposed algorithms is actually 

to work automatically. Alterative is to improve 

automatic image segmentation. The performance of the 

proposed method is illustrated using simulated 

volumetric MRI and real MRI. Due to the reference of 

real MRI dataset being unknown to measure how much 

our algorithms are successful, the opinion of specialists 

are considered. The rest of this paper is organized as 

follows. Section 2 describes the MRI segmentation 

problem. The proposed k-means clustering algorithm 

and fuzzy c-means are presented in sections 3, 4, 

respectively. Experimental comparisons are given in 

section 5. Finally, section 6 gives our conclusions. 

2. The MRI Segmentation Problem  

The basic idea of image segmentation can be described 

as follows. Given a set of data 










= NxxxX K,2,1  and a 

uniformity predicate P , we wish to obtain a partition of 

the data into disjoint nonempty groups












kvvv ,,2,1 K  

subject to the following conditions: 

 



Improving Fuzzy Algorithms for Automatic Magnetic Resonance Image Segmentation                                                        273 

a.   Xivk
i

=
=1

U  

b. jφ,    ijviv ≠=I  

c. ,k,True,   iivP K21==






  

d. jFalse,   ivjviP ≠=∪












  

 

The first condition ensures that every data value must 

be assigned to a group, while the second condition 

ensures that a data value can be assigned to only one 

group. The third and fourth conditions imply that every 

data value in one group must satisfy the uniformity 

predicate while data values from two different groups 

must fail the uniformity criterion. To obtain a 3D MR 

image, the positional information about the tissues 

must be recorded. This involves isolating the source of 

each component of the MR signal to a particular voxel 

using the technique of spatial encoding [10, 3]. In MR 

imaging, spatial encoding is achieved by performing 

slice selection in one direction (e.g. the z-axis), 

frequency encoding in another direction (e.g. the x-

axis), and phase encoding in the third direction (e.g. 

the y-axis). In slice selection, a narrow bandwidth is 

applied in the presence of a z-axis linear gradient field. 

Since the resonance frequency of a proton is 

proportional to the applied magnetic field, the presence 

of a gradient field means that only a narrow slice in the 

body will have a resonant frequency within the 

bandwidth of the resonant frequency [7, 6]. The MR 

image segmentation involves the separation of image 

pixels into regions comprising different tissue type. All 

MR images are affected by random noise. The noise 

comes from the stray current in the detector coil due to 

the fluctuating magnetic fields arising from random 

ionic currents in the body, or the thermal fluctuations 

in the detector coil itself, more discussion can be seen 

[26]. When the level of noise is significant in an MR 

image, tissues that are similar in contrast could not be 

delineated effectively, causing error in tissue 

segmentation. Then more sophisticated techniques 

would be needed to reconstruct the image from 

incomplete information [27, 28, 5]. A 3D image can be 

obtained from many consecutive 2D slices. 

3. The Proposed k-Means Clustering    

    Algorithm 

K-means clustering is one of the simplest unsupervised 

classification algorithms [4, 13, 14]. The procedure 

follows a simple way to classify the dataset through a 

certain number of clusters. The algorithm partitions a 

set of N  vector { }NjxX j ,,1, K==  into C  classes 

Cii ,,1  , K=ν , and finds a cluster centre for each class 

ic denotes the centroid of cluster iν  such that an 

objective function of dissimilarity, for example a 

distance measure, is minimized. The objective function 

that should be minimized, when the Euclidean distance 

is selected as a dissimilarity measure, can be described 

as: 
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2  is the objective function within 

group ,i  and ik cx −  is a chosen distance measure 

between a data point kx  and the cluster centre ic .The 

partitioned groups are typically defined by a ( )NC ×  
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where iR  is number of data point in class iν .Since the 

k-means method aims to minimize the sum of squared 

distances from all points to their cluster centers, this 

should result in compact clusters. We use the intra-

cluster distance measure, which is simply the median 

distance between a point and its cluster centre. The 

equation is given as: 
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Therefore, the clustering which gives a minimum 

value for the validity measure will tell us what the 

ideal value of k is in the k-means. Then the number of 

cluster is known before estimating the membership 

matrix. The proposed k-means clustering algorithm is 

described as follows: 
 

1. Select a subset from the dataset instead of using all 

of them. 

2. Set 2=C  the initial number of cluster, and 

maxC =the maximum number of cluster (it is 

selected arbitrary). 

3. Determine the membership matrix U according to 

equation 2 using C is set maxC . 

4. Compute the objective function according to 

equation 1. Go to step 6, if either it is below a 

certain tolerance value or its improvement over 

previous iteration is below a certain threshold. 

5. Update the cluster centers ,C,, ici K1=  using 

equation 3, then go to step 3. 

6. Obtain the center 1ν . 
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7. Apply step 3 and use 1ν  centers as input c  number 

of cluster to obtain center 2ν . 

8. Use 2ν  to calculate the intra distance according to 

the equation 4. Stop if intra is smaller than a 

prescribe value else set 1+= CC , return to step 3, 

until maxCC = .  

4. The Proposed Fuzzy C-Means  

    Algorithm 

Fuzzy C-means (FCM) clustering, also known as fuzzy 

ISODATA, is a data clustering algorithm in which 

each data point belongs to a cluster to determine a 

degree specified by its membership grade. Bezdek [4, 

13, 14] has proposed this algorithm as an alternative to 

earlier k-means clustering. FCM partitions a collection 

of N  vector Nixi ,,1  , K= into C fuzzy groups, and 

finds a cluster centre in each group such that an 

objective function of a dissimilarity measure is 

minimized. The major difference between FCM and k-

means is that FCM employs fuzzy partitioning such 

that a given data point can belong to several groups 

with the degree of belongingness specified by 

membership grades between 0 and 1. In FCM, the 

membership matrix U is allowed to have not only 0 

and 1 but also the elements with any values between 0 

and 1. This matrix satisfies the constraints: 
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The objective function of FCM can be formulated as 

follows: 
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where jui is between 0 and 1, ic  is the cluster centre of 

fuzzy group i , and the parameter m  is a weighting 

exponent on each fuzzy membership (in our 

implementation, we set it to 2). Fuzzy partitioning is 

carried out through an iterative optimization of the 

objective function shown above, updating of 

membership iju and the cluster centers 
jc  by: 
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Simlar to k-means method, we use the intra-cluster 

distance measure, which is simply the median distance 

between a point and its cluster centre as shown in 

equation 4. The proposed algorithm is described as 

follows: 
 

1. Select a subset from the dataset. 

2. Set 2=C  the initial number of cluster, and 

maxC =the maximum number of cluster (it 

is selected arbitrary). 

3. Initialize the membership matrix U with 

random values between 0 and 1 such that 

the constraints in Equation 5 are satisfied. 

4. Calculate fuzzy cluster 

centers C,, ici ,1K= using Equation 7.  

5. Compute the objective function according 

to Equation 6. Go to step 7, if either it is 

below a certain tolerance value or its 

improvement over previous iteration is 

below a certain threshold. 

6. Compute a new membership matrix U 

using Equation 8, then go to step 2. 

7. Obtain the center 1ν . 

8. Apply step 3 on the subset with c  number 

of cluster to obtain center 2ν . 

9. Use 2ν to calculate the intra distance 

according to the Equation 4. Stop if intra is 

smaller than a prescribe value else set 

1+= CC , return to step 3, until maxCC =  

5. Experimental and Comparative  

    Results 

The experiments were performed with several data sets 

on a PC with a P4 2.4GHZ CPU, 256 MB of RAM and 

performed in MATLAB. Our expremint includes one 

on simulated MR and another on real MR brain data 

consisting of several classes. The advantages of using 

digital phantoms rather than real image data for 

validating segmentation methods include prior 

knowledge of the true tissue types and control over 

image parameters such as modality, slice thickness, 

noise and intensity inhomogeneities. We used a high-

resolution T1-weighted MR phantom with slice 

thickness of 1mm, 3% noise and no intensity 

inhomogeneities, obtained from the classical simulated 

brain database of McGill University [5]. Two 

transverse slices drawn from the simulated MR data 

are shown in Figure 1. MRI has several advantages 

over other imaging techniques enabling it to provide 3-

dimensional data with high contrast between soft 

tissues (see Figures 1(a)). However, the amount of data 

is far too much for manual analysis/interpretation, and 

this has been one of the biggest obstacles in the 

effective use of MRI. Segmentation of MR images into 

different tissue classes, especially Gray Matter (GM), 
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White Matter (WM) and CerebroSpinal Fluid (CSF), is 

an important task. Brain MR-images have a number of 

features, especially the following: Firstly, they are 

statistically simple: MR Images are theoretically 

piecewise constant with a small number of classes. 

Secondly, they can have relatively high contrast 

between different tissues. Unlike many other medical 

imaging modalities, the contrast in an MR image 

depends strongly upon the way the image is acquired. 

 

  

a. 3D simulated data. b. Original slices from the 3D simulated data. 

 

 
c. Original slices from the 3D simulated data. 

Figure 1. Test images. 

The quality of the segmentation algorithm is of vital 

importance to the segmentation process. The 

comparison score S  for each algorithm is proposed in 

[32], which defined as: 
 

ref

ref

AA

AA
S

∪

∩
=  (13) 

 

where A  represents the set of pixels belonging to a 

class as found by a particular method and refA  

represents the set of pixels belonging to the very same 

class in the reference segmented image (ground truth). 

 

5.1. MRI Segmentation Results 

Here we compare the evaluation of our proposed 

methods to the standard Fuzzy k-means and C-Means 

(FCM) methods when they are applied to simulated 

MR and real MR data.  

5.1.1.  Experiment on the Simulated MR Data 

Table 1 shows the corresponding average percentage 

of accuracy scores of the individual segmentation 

methods, after applying them to the simulated MR data 

(two slices of the segmented 3D MR volume). The 

volume was reduced in size to 181 ×108 × 90 to reduce 

the high computational cost. A qualitative 

representation of the segmentation results is shown in 

Figures 2 and 3 The Figures show two slices of the 

segmented 3D MR volume.  

5.1.2.  Experiment on the Real MR Data 

Table 2 shows the corresponding accuracy scores of 

the four methods for the nine classes of real images 

(real brain image with nine classes, for example see 

class 0 in Figure 1(a)). Obviously, the proposed k-

means and FCM methods are more stable and achieve 

much better performance than the others for most 

classes. Another advantage our methods work 

automatically while in the standard k-means and FCM, 

the number of cluster is manually determined. 

Table 1. Segmentation accuracy (%) of eight methods on brain 
classes. 

 

Methods  Accuracy of MRI Volume 

K-means 0.55394 

The proposed k-means 0.58341 

FCM 0.52531 

The proposed FCM 0.604318 

 

  

a. K-means. b. FCM. 

  

c. The proposed K-means. d. The proposed FCM. 

Figure 2. Segmentation results for the slice (z=100) on a simulated 

data using methods.  

5.2. Specialists Judgment 

In this section, two real T2-weigthed MRI images 

(data1 and data2) are obtained as test sets from the x-

ray Department, Faculty of Medicine as shown in 

Figure 5. The anatomical model used to generate real 

brain MRI data consist of tissue volumes, one for each 

tissue class WM within the brain parenchyma, GM 

within the brain parenchyma, CSF surrounding the 

brain and within the ventricles, FAtty Tissue (FAT), 

Skull bone (does not include sinuses), SKN (mostly 

skin). The voxel value in these volumes reflects the 

proportion of tissue presented in the voxel, in the range 

[0, 255] as shown in Figure 4. 

The opinions of five medical doctors in PhD degree 

have taken have knowledge about number of clusters 
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in the images. Which each slice with six classes and 

consisting of 384×512 pixels. Qualitative 

representation of the segmentation results for two real 

MRI image are shown in Figures 6 and 7, using the 

segmentation methods. The application of these 

algorithms to a real MRI dataset cannot give us a 

quantitative measure about how they are successful. As 

such, qualitative assessment of the segmentation 

results is judged visually. 

The qualitative comparison results of the segmented 

image methods are represented in Table 3, where the 

opinion of doctors from x-ray department has been 

considered. In case data2, all of doctors show that the 

proposed methods give better results, as shown in 

Table 3, which a value/reference of the proposed FCM 

is the best and the established k-means is the worst 

method. After that, the standard FCM, and k-means 

methods respectively misclassified some parts of gray 

matter into white matter. In contrast, the proposed 

methods can yield satisfactory result, which is more 

compatible with human visual perception. On the other 

hand, data1 more complicated than data2, so the judge 

on this data become more difficult. In this case, all 

doctors show that the proposed FCM segmentation 

method gives better results. Although, the proposed k-

means, standard FCM, and k-means methods, 

respectively misclassified some parts of gray matter 

into white matter. The proposed method is still 

obtained better results than standard FCM, and k-

means methods. We rearrange the reference according 

to majority of doctors after seeing the different results 

as shown in Figure 6, which the rank total is computed 

through, computed the average percentage between the 

two data when using one method. The percentage is 

assumed, which reference 1, 2,...,6 take percentage 60, 

50,...,10, respectively. 

 

 
Table 2. Segmentation accuracy (%) of eight methods on brain classes. 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Overall 

K-means 62.96 57.53 77.84 91.61 66.47 77.18 85.96 43.6 99.15 77.36 

FCM 53.52 64.38 75.19 89.3 62.76 29.09 83.09 6.76 98.95 73.73 

The proposed k-means 67.55 61.14 78.83 100.0 67.96 61.87 89.21 51.27 97.27 66.55 

The proposed FCM 64.92 87.64 77.84 86.18 66.17 89.18 99.95 20.3 99.03 80.46 

 

  

a. K-means. b. FCM. 

  

c. The proposed K-means. d. The proposed FCM. 

Figure 4. Segmentation results for the slice (z=91) on a simulated 

data using methods. 

 
Table 3. The rank of data1 and data2. 

Method  
Rank 

Data1 

Rank 

Data2 

Rank 

Total 

k-means 1 2 2 

FCM 2 3 3 

The proposed K-means 2 1 1 

The proposed FCM 1 1 1 

 

Figure 4. The anatomical model for real MRI image. 

 

  

a. Original image of data1   
     image. 

 b. manual segmentation of the  
      image shown in 5(a). 

  
c. Original image of data2  
     image. 

d. manual segmentation of the  
     image shown in 5(c). 

Figure 5. MRI image. 
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a. k-means. b. FCM. 

  

c. The proposed k-means. d. The proposed FCM. 

Figure 6. Segmentation of real MRI image (data2). 

 

  
a. k-means. b. FCM. 

  

c. The proposed k-means. d. The proposed FCM. 

Figure 7. Segmentation of real MRI image (data1). 

6. Conclusions 

A method for improving image segmentation has been 

presented. Rather than tuning a method for the best 

possible performance. It works automatically and can 

indeed improve the segmentation accuracy over the 

existing methods. The algorithms incorporate spatial 

information into the membership function and the 

validity procedure for clustering. They have estimated 

accurate clusters automatically even without knowing 

prior knowledge of the true tissue types and the 

number of cluster of given images.  

Extensive experiments using MR images generated 

by the Brain Web simulator [5] and real MR data have 

been used to evaluate the proposed methods. Due to 

the use of soft segmentation, the proposed FCM 

algorithm is able to give a good estimation of tissue 

volume in the presence of inaccurate tissues.  

In the case of real MR images, although the 

proposed K-means method misclassified some parts of 

gray matter into white matter, it is still achieve better 

results than the standard K-means and C-means. By 

comparing the proposed methods with established 

one, it is clear that our algorithms can estimate the 

correct tissues much more accurately than the 

established algorithms. Furthermore, the proposed 

methods to clustering turn out to be particularly 

interesting because, due to partial volume effects 

during acquisition, pixel values at the borders between 

volumes of interest correspond to mixtures of 

different anatomical tissues.  

Future research in MRI segmentation should strive 

toward improving the accuracy, precision, and 

computation speed of the segmentation algorithms, 

while reducing the amount of manual interactions 

needed. This is particularly important as MR imaging 

is becoming a routine diagnostic procedure in clinical 

practice. It is also important that any practical 

segmentation algorithm should deal with 3D volume 

segmentation instead of 2D slice by slice 

segmentation, since MRI data is 3D in nature. 
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