
The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011 99

A New Grid Resource Discovery Framework

Mahamat Hassan and Azween Abdullah

 Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Malaysia

Abstract: Resource Discovery is an important key issue in grid systems since resource reservation and task scheduling are

based on it. This paper proposes a novel semantic-based scalable decentralized grid RD framework. The paper integrates

ontology, Peer-to-Peer network and intelligent agents to build the framework. The framework consists of an ontology model,

an agent model, and a set of algorithms for implementing the P2P architecture and searching the shared resources. The

paper shows how the framework satisfies grid RD features such as scalability, decentralization, dynamism and

interoperability.

Keywords: Grid computing, peer-to-peer networks, ontology, and intelligent agent.

Received May 7, 2009; accepted August 4, 2009

1. Introduction

Grid is a collection of shared, geographically

distributed hardware and software resources made

available to a group of remote users [5]. Resources in a

grid can be a CPU, electronic devices, network,

software application components, and so on. All these

resources are connected via the internet.

Grid RD refers to the process of locating suitable

resources based on users’ requests [11]. This process

represents an important step based on which resource

reservation and task scheduling can take place to enable

grid applications development. However, grids are

associated with some complexities such as, grid

resources (e.g., CPU, network and storage) are

heterogeneous, dynamic and they tend to have faults

that may not be predictable, and grids are often

distributed across security domains with large number

of varied resources [17]. These complexities have

raised several requirements that should be addressed by

any developed RD system. The requirements include

decentralization, scalability, dynamism, and

interoperability. Accordingly, a grid RD system should

be fully decentralized from any global control, tolerates

intermittent resource participation (either voluntary or

due to failure) [16] and supports semantic description

for resources and applications [10]. As a result, it is

challenging indeed to develop efficient RD methods to

discover the resources and fulfill the above mentioned

requirements.

Currently, there are two types of grid RD systems,

which can be classified into centralized and hierarchical

systems. In centralized RD systems, the information on

resources (metadata) is indexed under a centralized

node, and users send their resource queries to that node.
The resource providers update their resource status at

periodic intervals using resource update messages.

Condor system [2] is an example of the centralized

systems. In Condor model, the centralized node is

called Central Manager (CM), which collects

information about the state of resources from resource

providers. The resource providers are represented by

Resource-owner Agent (RA), which is located in each

resource provider. The CM then, receives users’ tasks

and matches them with the resources. In hierarchical

systems however, the information on resources is

indexed under a set of nodes in a hierarchical manner

(each chilled node indexes its metadata on its parent

node). The Monitoring and Discovery Service (MDS)

of Globus [7] implements this model. It uses two

services: a configurable information provider called

Grid Resource Information Service (GRIS) and a

configurable aggregate directory service called Grid

Index Information Service (GIIS). A GRIS answers

queries about the resources of a particular node. A

GIIS combines the information provided by a set of

GRIS services managed by a given Virtual

Organization (VO).

Both of the systems (centralized & hierarchical)

have some issues with regard to the RD requirements

[10, 25]. For example, in Condor system, the Central

Manager that matches the resources with the users’

tasks may be a point of the failure. In Globus MDS,

the updates on GRISs at the lowest levels do not

automatically propagate up to the top of the hierarchy,

which means the available resource information may

not be completely up-to-date. This has motivated

researches recently to focus on peer-to-peer based

models for Grid RD systems [1, 3, 18] to ensure

decentralization. However, they do not support

semantic description/interoperability. This paper

introduces a new grid RD framework that supports

interoperability and fulfills other grid RD

requirements/characteristics such as scalability,

decentralization, and dynamism. To achieve these

100 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

goals, we integrate three technologies into the

framework. These technologies are ontology, P2P

network, and Intelligent Agents (IA). Ontology enables

semantic communication in a domain, which is a means

for interoperability [4, 12, 25]. P2P network allows

resource sharing in a decentralized and dynamic

manner, which offers system scalability [23]. IA has

some useful characteristics to deal with complex and

dynamic environments and acts on behalf of humans

[20].

The rest of this paper is as follows; section 2

describes the contributions of our work, section 3

discusses some related technologies. The new RD

framework is introduced in section 4. Section 5

presents an application. Section 6 discusses pertinent

issues and section 7 concludes the paper.

2. Contribution

Our work aims at contributing to the development of

sophisticated grid RD system that takes into account the

identified requirements and at providing a scientific

progress further than the state-of-the-art in this field. In

contrast to most other works, we introduce ontology as

a description mechanism for the grid resources and

applications, P2P architecture to organize the metadata

sources and intelligent agent to deal with dynamism of

the metadata. Our framework provides an ontology

model that can satisfy interoperability; a class-based

node organization in which the nodes of resources are

semantically grouped to allow them to index their

resource information in a decentralized and scalable

manner; and an agent model that shows how the nodes

can cooperatively work during the resource discovery

process. In short, with this framework, we are solving

the shortcomings of both the current grid RD systems

and the research oriented P2P based grid RD systems.

3. Related Technology and Study

This section discusses the related technologies that are

used to build the new RD framework. These

technologies are the JXTA P2P network, ontology and

intelligent agents.

3.1. The JXTA P2P Network

JXTA is an open-source project originally created by

Sun Microsystems [24] to offer a variety of services

over the virtual overlay network (P2P network) [13].

JXTA has some basic components such as

advertisement, peers, and peer group. Advertisement is

a XML document that can describe resource

information. Peer can act as the part of resource

provider, resource consumer or hub/ super peer. When

a peer is a hub, it is supposed to store the

advertisements of the normal peers. Peer group is a set

of related peers with their hub [28]. The search for

resource in JXTA is achieved by distributing queries

across a network of peers through hubs [15].

In this paper, we use the JXTA architecture to

organize the grid nodes. In this case, nodes are

classified into classes based on some predefined

criteria, which is similar to JXTA peer group. Each

class has a head that is elected among its own class

nodes/members, which resembles the JXTA hub. The

reason behind using JXTA architecture is to provide

decentralization and scalability features in the grid

environment. These features are available in JXTA

P2P infrastructure and are yet to be implemented in

the current grid models.

3.2. Ontology

Ontology is defined as the formal specification of a

vocabulary of concepts and axioms relating to them

[4, 12]. It formally specifies how to represent objects,

concepts and other entities that are assumed to exist in

some area of interest and the relationships among

them [25]. Establishing relationships between domain

concepts allows us to understand the concept not

merely by its properties, but by its presence in relation

to other concepts within the ontology [6].

In this paper, ontology is introduced for resource

description and discovery, which may ease the

communication between resource providers and

consumers. There will be no ambiguity between

resource provider and requester regardless of the

middleware difference. It should be noted that, we are

not creating a grid ontology, rather we model some

criteria upon which an existing grid ontology such as

the work of [19, 27] can be used here. Our model

consists of several definitions as follows:

Definition 1: Ontology (O) consists of three entities:

set of Concepts (C), Properties (P), and Relationship

between those concepts (R). O = {C, P, R}, where, C

is the set of grid resource/application concepts, P is

the set concept properties, and R is the relations

between the resource concepts, which can produce the

concept hierarchy. For instance, a computer and

operating system can be concepts, and the relation

between these concepts is that computer has an

operating system, and the property of the concept

operating system is its version (windows, Linux,

apple).
Definition 2: ontology must have completeness and

expressiveness. Completeness is that all the concepts

hierarchy of the grid resources and applications is

covered. Expressiveness means that the terms used in

the ontology should be common to the participants.

Definition 3: ontologies are distributed; each grid

node
1
 has its local ontology as shown in figure 1. This

allows a grid user from any node to describe/request

1
 We urge a grid node to be an actual physical organization

due to security issues and organization policies.

 A New Grid Resource Discovery Framework 101

resources based on the ontology. The Web Ontology

Language (OWL) [14] can be used as the markup

language for the ontologies. An obvious question here

is how to manipulate the semantic information.

Manipulation means the computation of the similarity

between concepts, so that we can ensure the satisfaction

of resource requests with respect to the described

resource information. This computation can be done by

a function as defined below.

Definition 4: a similarity function is a real valued

function that computes the similarity degree between

two concepts based on their properties. Sim (x , y) : C

× C→ [0 - 1], where x and y are concepts, the value

sim (x , y) ranges between 0 and 1; sim (x , y) = 1

means that they are exactly the same in their properties

; sim (x , y) = 0 means that there are no common

properties between the concepts. We compute the

similarity here using the Dice distance fraction as

follows:

 Sim (x , y) = (2| x ∩ y |) / (| x | + | y|) (1)

where (x ∩ y) is the set of the common properties of the

concepts, and (|x|+|y|) is the sum of the properties size

of the two concepts.

3.3. Intelligent Agent

IAs are systems that are situated in some environments

and are capable of autonomous actions in this

environment in order to meet their design objectives.

Agents have some properties such as autonomy,

intelligence, social-ability, reactivity and mobility [26].

There are two types of agents: mobile and static agents.

Mobile agents can move within a network and act on

behalf of the user or another entity. Mobile agents

function independently or cooperatively to solve

problems, while the static agent can function only

locally. We define two new agents namely description

and request agents.

Definition 5: Description Agent (DA) is a static agent

that carries some information and automatically

performs some set of functions and belongs to a grid

node.

The carried information is needed for

communication between the grid nodes. The DA

functions are describing resource capabilities using the

ontology, informing its neighboring DAs about its

resources status as well as updating them when there is

a change on the resource information.

Definition 6: Request Agent (RA) is a mobile agent that

carries some information, automatically performs some

set of functions and belongs to a grid node.

RA information consists of resource request and nodes

information. RA generates resource requests for

applications, and acts on behalf of the grid user by

using ontology; RA then roams the network to find the

node that owns the requested resource.

The reason behind using DA and RA is that DA is

adaptive to the dynamic nature of the grid. In this

context, when a node changes its resource status,

neighboring nodes should be aware of that change,

which in turn optimizes the request routing. RA helps

the user to formulate his/her resource requests. This

will ensure uniformity between resource descriptions

and requests.

4. The Proposed RD Framework

The new RD framework initially consists of two

aspects: description and locating of the resources.

Description includes the ontology model that we have

discussed in section 3.2. Meanwhile, locating includes

the resource node organization and resource search

process. In this section, we elaborate the locating

aspect as well as its interaction with description.

Figure 1. The conceptual model of the new RD framework.

4.1. The Node Organization

Node organization refers to the architecture of nodes

that hold the information of resources (metadata). It

composes of four components, which are class

formulation, head appointment, node subscription and

class maintenance.

4.1.1. Class Formulation

To support scalability and dynamism in grid

environment, we model a grid system that contains

some nodes to class based organization. This

classification is based on some predefined criteria,

such as resource interest among nodes, resource

importance, and geographical location. For simplicity,

we use the resource types as criteria for classifying the

Class Head

Layer

Member Node

Ontology

Head Node

Interaction between

Member Nodes

Description Agent

Request Agent
Interaction between

Heads Nodes

Member
Node Layer

102 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

nodes (e.g., computing resources, data resources,

scientific instruments, etc.).

Definition 7: resource type is a collection of several

grid resources that are identified based on their

usability towards grid applications or services. For

example, computing resource type can cover clusters,

storage, and CPUs; data resource type may be

databases, knowledge bases, online library service and

so on.

With the aim of forming the classes, we create a

class formulation algorithm that takes the predefined

resource type features and matches them with the

resource types of the given grid nodes. The algorithm

finally returns a list of nodes for each class. The pseudo

code of the algorithm is as follows:

Class Formulation Algorithm

Input : Resource type t ∈ T = { t1, t2, ti, tt}, node n ∈ N,

Threshold;

/* where N is set of the nodes & T is list of the resource types

that is defined by a Grid community */.

Output: listOfClassNodes c;

/* a list of class nodes that related to a resource type */

Step 1:

FOR (∀ n∈ N) DO

SimBetween (n , t)=(2|n ∩ t|) / (|n|+|t|)

 IF (SimBetween (n , t) > Threshold)

 THEN DO

 ADD (n , c)

/* calculate the similarity between the node and resource

types, then, add into class list the nodes that have similarity

degree higher than the defined threshold */

END;

END;

Step 2:

Return c;

4.1.2. Head Appointment

The class formulation algorithm gets a set of classes

corresponding to the defined resources types. Each

class needs to have a head that will ease the

communication between the different classes. This

process is called head appointment, which consist of

two steps. First, we need to define the headship features

for which a node can qualify to be become a head. We

suggest performance capabilities and node availability

as the headship features. Performance capabilities are

the speed of the server, network bandwidth, reserved

memory space for resource information, and so on.

Availability is the proportion of the time when the node

is persistent in a grid system. In the second step, a head

appointment algorithm calculates the similarity

between the nodes and the defined headship features

and selects the class head based on similarity degrees.

Head Appointment Algorithm

Input: ListOf class c, HeadshipFeatures HFea;

Output: ClassHead Head, SortedClassMembers mSort;

Step 1:

For (∀ m ∈ c) DO

GET Sim(m , HFea)

/* compute the similarity degree between the class node

member m and the predefined headship features*/

END;

Step 2:

SortedList = Sort (c, Sim(m,HFea))

/* sort class nodes according to their similarity degree*/

HeadOfClass = m → max Sim(m,HFea)∈ SortedList

/* select the highest similarity degree node to be as head of

the class*/

Step 3:

Return HeadOfClass, SortedList;

The selected head maintains two kinds of

information: a summary of the resource information of

its class and resource type information of the other

classes. The first type of information allows it to

forward the resource requests to relevant node within

the class. The second information helps in the

forwarding of the resource request to the relevant class

when the request is not related to the requester class.

4.1.3. Node Subscription

The first two processes of the node organization will

create some classes with their heads. This section

describes how a new node can subscribe to the grid

system. Subscription is the procedure of assigning a

new node to an existing class or set of classes that

corresponds to its resource type. We design a node

subscription algorithm for the subscription. The

algorithm assumes that the new node is given the

information about the grid resource type during the

settings. The new node sends a message that contains

its resource type to any existing nodes (members/

heads). The algorithm takes the resource type of the

new node and calculates the similarity degree between

the type and the related class heads; if the similarity

degree attains the predefined threshold, the new node

is added to the class of that head. Finally, the

algorithm returns the list of the heads to which the

node is assigned.

Node Subscription Algorithm

Input: NewNode nNew, ResourceType T → nNew,

ExistingNode n∈ c, Threshold;

Output: ListOfHeads List;

/* list of heads that the new node is assigned to */

1: Send message from nNew to n ∈N

2: IF (n → HeadOfClass) THEN DO

3: For (∀ HeadOfClass → ∃tnNew) DO

4: GET Sim (tnNew, HeadOfClass)

/* calculate the similarity degree between the new node

type with all Heads that associated with these

types */

 IF (Sim (tnNew, HeadOfClass)> Threshold)

THEN DO

 ADD (nNew , HeadOfClassList)

END;

END;

5: ELSE forward the message to the

HeadOfClass

 A New Grid Resource Discovery Framework 103

Go to Step 3 & 4

Return List;

4.1.4.Class Maintenance

Grid node dynamism has an effect on the node

organization. A class maintenance scenario to cope

with this situation is essential. Class maintenance will

take place in two cases: a failure of a class head and a

failure of a class member. Both of these cases can take

place in the grid system voluntarily or due to other

connection problems. We propose two mechanisms to

handle head replacement and member replacement.

4.1.4.1 Head Replacement

Existing heads are supposed to replicate their resource

information to their predecessors in the headship

ranking. Remember, a head is selected based on the

similarity degree with the predefined headship features.

Since the existing head has the highest similarity

degree, a predecessor can be the second highest and so

on. When the head wants to leave or fails the

predecessor can replace it. The predecessor then (new

head) informs its class nodes about itself and performs

all the functions of the previous head.

Head Replacement Algorithm
Input: MessageTime t, ClassHead Head, PredecessorHead

PHead;

while (time = t) DO

Head send nodeInfo→PHead;

If ((time>t ∧ !nodeInfo) ∨ leaveMessage) THEN DO

For (∀ Heads ∧ calassNode)

Inform about the new head;

send nodeInfo→PHead;

END;

4.1.4.2 Member Replacement

Member replacement can be achieved by connecting

the direct neighbors of the withdrawn member. As each

class is a connected graph, each member has

connection to two neighbors and its leader. Member is

supposed to inform its back neighbor about the front

one, and likewise the front about the back. When the

member in between the back and front members is

dropped, the two remaining members will fill the gap

through their connections.

Member Replacement Algorithm

Input: MessageTime t, ClassNode Node, RightNeighbor

RNode, LeftNeighbor LNode

while (time = t) DO

Node sends nodeInfo → RNode ∧LNode;

If ((time>t ∧ !nodeInfo) ∨ leaveMessage) THEN DO

Node sends RNodeInfo to LNode;

Node sends LNodeInfo to RNode;

END;

4.2. The Resource Discovery Process

Figure 1 shows our overall conceptual model of the

framework, which discussed the previous sections. In

this section we discuss the resource discovery process,

and on how a resource request can be formulated and

processed. The nodes are organized in graph form that

is formalized as: G = (V , E), V = { v1 , v2 , vi , ... vn

}, E = { e1 , e2 , ei ,... ex }, where, V represents the set

of the nodes and E the set of connections between

nodes. Since a grid has a set of resources and

applications, we form two vectors. The first one is for

the resources, and the second is for the applications R

= [r1 , r2 , ri ,… rn] and A = [a1 , a2 , ai ,… an], where,

ri is a shared resource, and R is the overall resources

on a grid; ai is a grid application that requires a

resource ri. Note that, resources and applications are

described semantically using ontologies that we have

mentioned in section 3.2. Based on the two vectors

(resource and application), we can construct an

adjacency matrix called job matrix J(A×R).

















=×∴

knn

ji

k

rara

ra

rara

RAJ

...

......

...

)(

1

111

where the J element airj∈[0,1] , airj = 1 when an

application ai requires rj resource and 0 otherwise.

Another adjacency matrix formed is called the

resource node matrix M, which is based on the

resource and grid node vectors M(N×R).
















=×=∴

knn

ji

k

rnrn

rn

rnrn

RNMM

...

......

...

)(

1

111

where the M element nirj∈[0,1] , nirj = 1 when node

ni has the resource rj and 0 otherwise. It should be

noted that, an adjacency matrix from nodes of a class

and a set of resources is a sub matrix of the resource

node matrix M. Each node may have a Job matrix and

sub resource node matrix (m). The job matrix helps

the user to create his/her resource request, while the

resource node matrix maintains information about the

node of the resources.

To allocate resources for user’s tasks we develop an

algorithm that searches resources on the network

based on local information and dynamic matching.

Local information is the presence of particular

resources in a node, which is described in the sub

resource node matrix. Dynamic matching is the

similarity calculation between agents that represent

resource provider and requester using the similarity

function of section 3.2.

Resource Search Algorithm

Input: NodeInformation , ResourceRequest, Threshold.

Output: ListOfNodes List;

Step 1:

Get NodesInformation Form DA

Step 2:

IF (NodeInformation → neighboringNode) THEN DO

For (∀neighboringNode → requstedResources)

Get Sim(RA, DA)

 104 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

IF Sim(RA, DA)≥ Thrashold Then Do

ADD(neighboringNode, lisT)

ELSE Send ResourceRequest to ClassHeads

FOR(∀ ClassHeads ∈ Class → requstedResourcesType)

 IF (∃ ClassNode → requstedResources) Then DO

 FOR (∀ClassNode → requstedResources)

Get Sim(RA, DA)

IF Sim(RA, DA)≥ Thrashold Then Do

ADD(ClassNode, lisT);

END;

END;

Step3:

Return List;

5. Application

In order to clarify the interactions among our system
components in describing and discovering a resource
using the resource search algorithm, we introduce an
example that shows how a grid user can describe or
request a resource.

Assuming that we build a grid with 1024 nodes

distributed in different locations. Using the ontologies

model of section 3.2, we can define the resource types,

say 4 types, each type may contain 32 resources, thus,

the total number of the resources is 32*4= 128.

Initialize the two agents (DA and RA) in each node.

Implementing the class formulation and head

appointment algorithms respectively on the nodes or

DAs (nodes are represented by their DAs), we obtain a

set of classes with their heads. For simplicity, we may

have 4 classes since the resource types are 4, and each

class has 256 nodes. Each DA sends its resource

information to its two neighboring DAs as well as the

head. Accordingly, the head will have the entire

information summary of class, which will be a sub

resource node Matrix (m). If new nodes want to

subscribe to the system, the node subscription

algorithm in section 4.1.3 is activated. Moreover, if an

existing class member or head node quits the system,

the mechanism of class maintenance in section 4.1.4

will manage the exit. Assuming a user wants to run

some applications. The steps to request and discover

the resources according to our new framework are as

follows:

a. Based on the local ontology, the user selects an

application ai from the set of applications A = [a1 , a2

, ai ,… an]; the job matrix enables RA to form a

resource request vector using J, say 16 resources.

b. From the local information given by the DAs (sub

resource node matrix), RA sends a request to any

neighboring node ni that is associated with all or part

of the 16 resources requested and the threshold of

the similarity degree.

c. Based on the semantic description of resources in

RA and DA, the similarity degree of the two agents

sim(RA,DA) is calculated with regards to the

resource properties of the requested resource and

provided resource.

d. If the similarity degree of sim(RA,DA) reaches a

user defined threshold value, then select the node ni

and check whether there are still remaining

requested resources to be searched.

e. Repeat steps c and d until there are no nodes in the

class associated with the requested resources.

f. If so, then send the remaining requested resources

to a class head ci.

g. From the resource node matrix M the head ci sends

the request to another class head/heads cj that may

have the remaining requested resources.

h. For each head, repeat steps b, c, d and e until all the

16 requested resources are found.

6. Discussion

As we have mentioned in the introduction that any

new grid RD mechanism is expected to have some

features such as: scalability, decentralization,

dynamism and interoperability. This section discusses

how the new framework meets these characteristics.

Scalability in grid is the increase of the number of

resources or users that use the resources. Our

framework is scalable by using the class based node

organization, which gives an opportunity to any class

to grow upwards rather than treating all the nodes as

one group, as is the case of the current centralized RD

systems. To further proof the scalability, we elaborate

the above application by using different number of

resource types and calculate the number of the query

hops that are needed to discover a resource in the

system. Table 1 describes the quantity of the nodes,

resource types, class sizes and the requested resources.

We focus on the number of nodes and requested

resources, and vary the resource type from 4 to 64. In

each resource type, we calculate the average and

maximum number of the query hops. Query hops are

the number of message forwarded from the requester

(the node from which a resource request is sent) to

other nodes until the request is satisfied.

Table 1. The quantity of the application components.

Nodes

Number of

Resource

Types

Number of Nodes

for each Class

Number of the

Requested

Resources

1024 4 256 16

1024 8 128 16

1024 16 64 16

1024 32 32 16

1024 64 16 16

Class size is the number of the nodes within a given

class. To get the size of each class, we divide the total

number of nodes by resource types. For example, in

the second row of Table 1, the resource types are 4 so

we get 256 for each class.

 A New Grid Resource Discovery Framework 105

 Table 2. The notations of the application components.

Symbol Description

N number of nodes

T number of resource types/ class

R set requested resources has one or more r elements

t Number of the requested resources in each resource type

δ number of nodes for each class/ class size

λ number of the requested resources

β number of the requested resources in each class

ρ maximum query hops to find a resource r

µ overall maximum query hops for T

θ overall average query hops for T

To simplify the presentation, we denote the

components of Table 1 and other variables that are

needed to be calculated in Table 2. Based on the above

notation, we form the query hops equations as follows:

 δρ ∗= r (2)

 ∑
=

=
R

r 1

ρµ (3)

 ∑
=

=
R

r 0 2

ρ
θ (4)

Referring to definition 7, a resource type may include a

set of resources. This means, the requested resources

may belong to one or many different resource types.

Therefore, we can have this fact. ∵ R = { r1 , r2 , ri ,…

rn } and T = {{t1}, {t2} , {ti} , … {tn}} ∴ R ⊆ T, Using

the above fact, the 16 requested resources could be

equally assigned to the different resource types. The

resource type of the requested resource is calculated as

follows:










<

≥
=

TRR,

TR,
T

R

τ

 (5)

We implement the above equations on the given data of

Table 1. For each number of the resource types

(number of the classes), we get the maximum and the

average number of the query hops. Figure 2 verifies the

relation between the number of classes and query hops.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 16 32 64

Number of Cluster

Q
u

e
r
y

 H
o

p

Figure 2. The query hops of the requested resources.

The x axis represents the number of classes while the

y axis represents the query number of query hops. It is

observed on the curves that µ (blue) and θ (red) start

with high values when T is small and decrease

gradually until they reach to their minimum value

when the number of classes is 64. Based on this graph,

two conclusions can be made. First, the number of the

classes is crucial in limiting the scope of the query

hops. For example, when the number of the classes is

8, µ is 2048 hops. Meanwhile, when the number of the

classes is 64, µ is 256 only. This shows that whenever

the class number increases, the scope of resource look

up gets smaller. Secondly, the new framework can be

more scalable if there is a mechanism for identifying

the number of the classes so that the proportion of the

query scope can be smaller.
Decentralization in grid RD is keeping resources

information not under a common server control as in

Condor [4] system. In our case, each node maintains

its own resource information and each head node

maintains a summary of other classes’ information

(resource types). This means that no node replies a

query on behalf of the other. In addition to that, we

show how a head node can be succeeded when it

wants to leave or fails. In this way, the system may not

be completely down as in centralized systems. In the

current RD systems, a node can answer on behalf of

the others.
Dynamism is about tracking the status of the

resources as they are dynamic and can come in and

move out from the grid system. We use intelligent

agents, DAs to track the status of each node resources,

which in turn allows the nodes to update their sub

resource nodes matrices m.

Interoperability is the ability of a RD system to

span multiple administrative domains in discovering

the resources. The use of ontology in this framework

allows a well-defined meaning to resource information

and provides a uniform description and discovery

semantic among the participants. There will be no

syntactic matching as in the case of the current

systems.

 In addition to the above features, the framework

provides fault tolerance. In this case, the system can

tolerate the failure of member nodes and class heads

which has been described in section 4.1.4.

7. Conclusions

In this paper, a novel framework for grid resource

discovery is presented. The framework consists of two

aspects: description of the resource information and

the look up of the resource information. The paper

proposes an ontology model to describe resources,

applications and their relationships. P2P network

architecture and intelligent agents are integrated for

the resource look up process. In this context, the

JXTA architecture is mapped to organize the nodes.

Nodes are organized in some classes. Each class has a

head that eases the communication with other heads.

Several algorithms are presented for creating classes,

106 The International Arab Journal of Information Technology, Vol. 8, No. 1, January 2011

appointing heads and maintaining the grid system.

Intelligent agents are used for advertising resource

capabilities and creating resource requests. We present

an application that shows how the framework handles

the resources discovery process. Through the

discussion and calculations, we have shown that the

framework satisfies the RD characteristics, which are

scalability, decentralizations, dynamism, and

interoperability.

References

[1] Andrzejak A. and Xu Z., “Scalable, Efficient

Range Queries for Grid Information Services,” in

Proceedings of the Second International

Conference on Peer-to-Peer Computing, pp. 33-

40, 2002.

[2] Condor Project: http://www.cs.wisc.edu/condor/,

Last Visited 2009.

[3] Cai M., Frank M., Chen J., and Szekely P.,

“MAAN: A Multi-Attribute Addressable Network

for Grid Information Services,” in Proceedings of

4
th
 International Workshop on Grid Computing,

pp. 184-191, 2003.

[4] Chandrasekaran B., Josephson J., and Benjamins

R., “What are Ontologies, and Why Do We Need

Them?,” Computer Journal of IEEE Intelligent

Systems, vol. 14, no. 5, pp. 20-26, 1999.

[5] Foster I. and Kesselman C., The Grid 2: Blueprint

for a New Computing Infrastructure, Morgan

Kaufmann, 2003.

[6] Flahive A., Taniar D., Rahayu W., and Bernady

O., “Ontology Tailoring in the Semantic Grid,”

Computer Journal of Standards and Interfaces,

vol. 6, no. 3, pp. 282-284, 2008.
[7] Globus Toolkit, http://www.globus.org.

[8] Hassan M. and Abdulah A., “Scalable Self-

Organizing Model for Grid Resource Discovery,”

in Proceedings of International Conference on

Network Applications, Protocols and Services,

Malaysia, pp. 426-429, 2008.

[9] Han L. and Berry D., “Semantic-Supported and

Agent Based Decentralized Grid Resource

Discovery,” Computer Journal of Future

Generation Computer Systems, vol. 24, no. 8, pp.

806-812, 2008.

[10] Hassan M. and Abdulah A., “Semantic Based

Scalable Decentralized Grid Resource

Discovery,” in Procedeings of International

Conference on e-Technology Singapore, pp.

3316-3324, 2009.

[11] Iamnitchi A. and Foster I., “On Fully

Decentralized Resource Discovery in Grid

Environments,” in Proceedings of the Second

International Workshop on Grid Computing,

Colorado, pp. 51-62, 2001.

[12] Lacasta J., Nogueras-Iso J., Be´jar R., Muro-

Medrano P., Zarazaga-Soria F., “A Web Ontology

Service to Facilitate Interoperability Within a

Spatial Data Infrastructure: Applicability to

Discovery,” Computer Journal of Data and

Knowledge Engineering, vol. 63, no. 5, pp. 947-

971, 2007.

[13] Meshkova E., Riihijärvi J., Petrova M., and

Mähönen P., “A Survey on Resource Discovery

Mechanisms, Peer-to-Peer and Service

Discovery Frameworks,” Computer Journal of

Networks, vol. 52, no. 2, pp. 2097-2128, 2008.

[14] OWL, http://www.w3.org/2004/OWL, Last

Visited 2009.

[15] Oaks S., Traversat B., and Gong L., JXTA in a

Nutshell, O'Reilly, 2003.

[16] Padmanabhan A., “SOG: A Self-Organized

Grouping Infrastructure for Grid Resource

Discovery,” PhD Thesis, University of Iowa,

Iowa, 2006.

[17] Padmanabhan A., Wang S., Ghosh S., and

Briggs R., “A Self-Organized Grouping Method

for Efficient Grid Resource Discovery,” in

Proceedings of the 6
th
 IEEE/ACM International

Workshop on Grid Computing, pp. 312-317,

Washington, USA, 2005.

[18] Puppin D., Moncelli S., Baraglia R., Tonelotto

N., and Silvestri F., “A Grid Information Service

Based on Peer-to-Peer,” in Proceedings of the

11
th
 International Euro Par Conference,

Portugal, pp. 454-464, 2005.

[19] Parkin M., Burghe S., Corcho O., Snelling D.,

and Brooke J., “The Knowledge of the Grid: A

Grid Ontology,” in Proceedings of the 6
th

Cracow Grid Workshop, Poland, pp. 658-662,

2006.

[20] Perez A., Sanchez A., and Abawajy J., “An

Agent Architecture for Managing Data

Resources in a Grid Environment,” Computer

Journal of Future Generation Computer

Systems, vol. 1, no. 1, pp. 747-755, 2008.

[21] Ranjan R., Harwood A., and Buyya R., “Peer-to-

Peer Based Resource Discovery in Global Grids

a Tutorial,” Computer Journal of IEEE

Communications Surveys and Tutorials, vol. 10,

no. 6, pp. 6-33, 2008.

[22] Shen H., “A P2P-Based Intelligent Resource

Discovery Mechanism in Internet-Based

Distributed Systems,” Computer Journal of

Parallel and Distributed Computing, vol. 69, no.

2, pp. 197-209, 2009.

[23] Schoder D., Fischbach K., and Schmitt C., Peer-

to-Peer Computing: The Evolution of a

Disruptive Technology, Hershey Idea Group

Publishing, 2005.

[24] Sun Microsystems, http://www.sun.com/, Last

Visited 2009.

[25] Trunfioa P., Taliaa D., Papadakisb H.,

Fragopouloub P., Mordacchinic M., Pennanend

M., Popove K., Vlassovf V., and Haridi S.,

 A New Grid Resource Discovery Framework 107

“Peer-to-Peer Resource Discovery in Grids:

Models and Systems,” Computer Journal of

Future Generation Computer Systems, vol. 23,

no. 6, pp. 864-878, 2007.

[26] Wooldridge M., An Introduction to MultiAgent

Systems, John Wiley and Sons, 2006.

[27] Xing W., Dikaiakos D., and Sakellariou R., “A

Core Grid Ontology for the Semantic Grid,” in

Proceedings of the 6
th
 IEEE International

Symposium on Cluster Computing and the Grid,

Singapore, pp. 178-184, 2006.

[28] Zhang Y., Qu Y., Huang H., Yang D., and Zhang

H., “An Ontology and Peer-to-Peer Based Data

and Service Unified Discovery System,”

Computer Journal of Expert Systems with

Applications, vol. 36, no. 3, pp. 5436-5444, 2009.

Mahamat Hassan is a PhD candidate

in computer science and graduate

assistant at the Department of

Computer and Information Sciences,

Universiti Teknologi PETRONAS,

Malaysia. He received his BEng in

computer engineering in 2003; and

MSc degree in computer science in 2005. His research

interests include sharing resource over internet systems

such as grid, peer-to-peer, web services and so on, and

the use of ICT in developing countries.

Azween Abdullah is an associate

professor in the Department of

Computer and Information

Sciences at Universiti Teknologi

PETRONAS, Malaysia. He

obtained his BSc in computer

science in 1985, MSc in software

engineering in 1999, and PhD in computer science in

2003. His work experience includes twenty-one years

in institutions of higher learning and commercial

companies.

