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Abstract: Ensemble classification is an actively researched paradigm that has received much attention due to increasing real-

world applications. The crucial issue of ensemble learning is to construct a pool of base classifiers with accuracy and diversity. 

In this paper, unlike conventional data-streams oriented ensemble methods, we propose a novel Measure via both Accuracy 

and Diversity (MAD) instead of one of them to supervise ensemble learning. Based on MAD, a novel online ensemble method 

called Accuracy and Diversity weighted Ensemble (ADE) effectively handles concept drift in data streams. ADE mainly uses 

the following three steps to construct a concept-drift oriented ensemble: for the current data window, 1) a new base classifier 

is constructed based on the current concept when drift detect, 2) MAD is used to measure the performance of ensemble 

members, and 3) a newly built classifier replaces the worst base classifier. If the newly constructed classifier is the worst one, 

the replacement has not occurred. Comparing with the state-of-art algorithms, ADE exceeds the current best-related algorithm 

by 2.38% in average classification accuracy. Experimental results show that the proposed method can effectively adapt to 

different types of drifts. 
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1. Introduction 

Data stream classification has gained growing attention 

owing to its wide applications. Examples include credit 

card fraud detection, spam filtering, intrusion detection, 

and data analysis in the Internet of Things (IoT) 

networks [1, 8, 9, 12, 17]. Building a classifier 

incrementally under data stream scenarios is one of the 

most critical issues in data mining. However, data 

stream is usually nonstationary. That is, the distribution 

of data may evolve dynamically over time. This 

phenomenon leads to the issue of concept drift [7, 15]. 

The occurrence of concept drift often degrades the 

performance of the classification model, which brings 

challenges to the incremental learning process of data 

streams. 

Adaptation to concept drift is also a vital issue for 

the study of unstable data streams. Many techniques 

have been proposed to deal with the challenge [7, 10, 

13, 21, 24, 25, 26]. Among these efforts, ensemble 

approaches [10] are one of the most frequently used 

methods due to their flexibility and ability to enhance 

the performance of learning algorithms. Ensemble 

methods are updated based on newly arrived data, thus 

providing a natural mechanism to update the 

knowledge base by adding new classifiers (concepts), 

moving, or updating outdated classifiers to adapt to the 

evolving environment [10]. 

Most existing ensemble methods for data stream  

adapt to concept drift by constantly updating ensemble 

according to the performance of the base classifier. The 

critical to a successful ensemble is to create ensemble 

members with high performance and high diversity [3, 

5, 14, 22]. In addition, the issue of concept drift 

requires ensembles to consider both accuracy and 

diversity during the construction process 

simultaneously. It will make the algorithm stable and 

adaptive. That is, it can quickly recover and adapt to 

new concepts after a drift occurs. However, most 

existing ensemble-based data stream classification 

methods only employ accuracy or diversity to evaluate 

the performance of the base classifier in the ensemble 

construction process. Therefore, it is meaningful to 

construct a more effective ensemble classification by 

injecting two metrics simultaneously. 

Combining two metrics to propose a more effective 

ensemble schema is the main task of this paper. 

Therefore, a novel ensemble approach, called 

Accuracy and Diversity weighted Ensemble (ADE), is 

devised to handling various concept drifts. The 

contributions of this paper can be summarized as 

follows: 

1. We tailor the ensemble learning to handling 

different kinds of concept drifts by equipping with 

explicit change detection mechanisms and dynamic 

weighting schema. 

2. A dynamic weighting mechanism based on 

accuracy and diversity is proposed to boost the 

generalization performance of ensemble.  

3. The performance of our algorithm was 

implemented on different kinds of data stream 
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datasets. The results demonstrated that ADE 

achieves the best overall performance and drift 

adaption. 

The paper is organized as follows. Section 2 retrospects 

related work. Section 3 explains the basic idea of our 

approach and presents its details. The algorithm is 

analyzed and experimentally evaluated on real and 

synthetic datasets in section 4. A conclusion is drawn in 

section 5. 

2. Related Work 

For most data stream ensemble methods, base 

classifiers are weighted and selected according to the 

accuracy. Accuracy Weighted Ensemble (AWE) [25] is 

the most famous representative ensemble based on 

accuracy. In AWE, base classifiers are trained in 

sequence from data blocks, and base classifiers are 

dynamically weighted according to the accuracy of the 

newly arrived block. Brzezinski et al. proposed an 

ensemble based on accuracy called Accurate Updated 

Ensemble2 (AUE2) [4]. Pietruczuk et al. [18] proposed 

an ensemble method called Dynamically Expanded 

Ensemble Algorithm (DEEA), which adapts the size of 

the ensemble according to the overall accuracy of the 

ensemble. 

In addition to the measure of accuracy, diversity is 

another meaningful measure for data stream 

classification. Diversity is a critical factor in improving 

ensemble performance [3, 22]. A set of bagging 

ensembles based on diversity, named Diversity for 

Dealing with Drifts (DDD), is presented by Minku and 

Yao [16]. They argue that taking advantage of diversity 

is beneficial to deal with concept drift. Santos et al.[20] 

proposed an online boosting method based on diversity. 

Adaptive Random Forest (ARF) [11] is an improved 

random forest algorithm based on diversity. Recently, 

Sun et al. [23] presented the Diversity and Transfer-

based Ensemble Learning (DTEL) algorithm, which 

utilized Q statistic to measure diversity to determine 

whether the previous base classifier is retained. Rijn et 

al. [19] proposed a heterogeneous ensemble model for 

data stream classification and weighting the voting of 

different base classifiers in the ensemble classifier. 

Kappa Update Ensemble (KUE) utilized Kappa 

statistics to dynamically update base classifiers’ 

weights [6]. 

The generalization of ensembles largely depends on 

both accuracy and diversity. Unfortunately, most of the 

above ensembles are based only on one factor. Our 

approach is different from the above methods in the 

following aspects: First, we adopt a dynamic ensemble 

structure, using the selective ensemble strategy to react 

both abrupt and gradual drifts simultaneously. Second, 

we devise an efficient ensemble that considers accuracy 

and diversity. 

3. Our Approach 

3.1. Notations and Basic Idea 

Let S denotes a stream, W={Bi|i=1, 2, … M} denotes 

data stream with each data block Bi={(xj, yj)|j=1, 2, … 

N}, where yj{1, 2, … K} is the class of instance xj 

and |Bi|=|Bk| for ik.  

The proposed method aims to construct a dynamic 

ensemble or a set of classifiers E={Ci|i=1, 2, … n} 

from sequential blocks of data stream S. More 

specifically, whenever a new block arrives, or change 

detects, we build a new classifier from it. Then the 

classifiers are dynamic weighted based on their 

classification accuracy and diversity in a changing 

environment. Top-k classifiers are used to construct 

the ensemble. The final decision of class label is based 

on weighted majority votes of base classifiers.  

3.2. Weighting based on Accuracy and 

Diversity  

The performance of ensembles relies on member 

classifiers’ accuracy and diversity. However, few 

approaches inject accuracy and diversity into an 

ensemble. To consider both the accuracy and diversity 

of a classifier, we adopt a novel weighting strategy 

that calculates the weights of classifiers according to 

both accuracy and diversity. 

When a new data block arrives, a new classifier C' 

is built based on it. The weight of C' (wC') is calculated 

according to Equation (1). 

C' ' '* Acc (1 ) *divC Cw    
 

Where  ∈ [0, 1] representing the weight of accuracy. 

The weight of the base classifier also needs to 

adjust according to the new data block and using 

Equation (2) to calculate the new weight value of the 

base classifier. 

*Acc (1 )*divij ij ijw    
     

Where wij represents the weight of base classifier Ci on 

data block Bj. 

1) The measure of accuracy 

The measure of accuracy is calculated by the Mean 

Squared Error (MSE). The mean square error MSEij of 

a classifier Ci in a block Bj, can be calculated 

according to Equation (3). 
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Let MSEr represents the mean squared error of random 

predictions to reflect the distribution of current data. 

MSEr is calculated according to Equation (4). 
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The accuracy can be expressed in MSEij and MSEr. This 

paper uses Equation (5) to represent the base 

classifiers’ accuracy in the ensemble. 
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The existence of  is to prevent the denominator of 

Equation (5) from being zero. In addition, the accuracy 

of the new classifier 'CAcc  is calculated according to 

Equation (6). 
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The existing theoretical and experimental studies show 

that ensemble classifiers are more generalized than 

single classifiers. Moreover, the ensemble of 

independent, complementary, and relatively accurate 

classifiers is superior to the best base classifier in the 

generalization performance [16]. When concept drift 

occurs, base classifiers may not be able to adapt to new 

concepts. If the base classifiers in the ensemble 

classifier are diverse, one can always find the best way 

to handle the new problem. So, the ensemble classifier 

has a good generalization. 

2) The measure of diversity 

In our algorithm, we adopt the Q statistic as the 

diversity measure. Q statistic value between two 

classifiers is calculated according to Equation (7): 

11 00 01 10

11 00 01 10
Qij

N N N N

N N N N




  

Where Nab represents the number of instances where Ci 

has a classification result a and Cj has a classification 

result b, 1 means the classification is correct, and 0 

means the classification is wrong. For example, N11 

indicates that the classifier i and j simultaneously 

classify the correct number of instances. 

Then, we convert diversity into larger 

representational diversity, as shown in Equation (8). 

*Q 0.5*(1 Q )ij ij 
 

Where Qij represents the Q statistics of Ci and Cj, and 

uses the value to express the difference between the 

two classifiers. Since the range of Qij is [-1, 1], the 

range of 1-Qij is [0, 2]. Then perform normalization, 

which has little effect on the final result. 

The diversity value of one classifier C and ensemble 

E is an average value of Q*
ij calculated by Equation (8) 

for C and each base classifier in E. Therefore, divC' 

denotes diversity between a newly established classifier 

C' and ensemble E. divC' can be calculated according to 

Equation (9). 
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The diversity value of the set formed by one of the 

base classifiers Ci, and other base classifiers in the 

ensemble can be calculated according to Equation (10). 
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3.3. Ensemble Algorithm Based on Accuracy 

and Diversity  

In order to deal with different kinds of concept drift, 

the ADE was introduced to achieve better 

generalization performance under concept drift 

environments. The main benefit of this approach is 

that the diversity of the final solution can be 

accurately measured and can take the trade-off 

between accuracy and diversity of the whole ensemble 

into account during ensemble generation. 

For each new incoming data block Bi, a new 

classifier C' is first constructed based on Bi when 

change detect. Then the weight of C' is calculated 

according to Equation (1). Use Equation (2) to 

calculate the weight of each base classifier. The 

weights of the classifiers are obtained by linearly 

weighting their accuracy on the Bi of the latest data 

block and their diversity values in the ensemble. When 

ensemble is full, the base classifier with the smallest 

weight is replaced by a newly built classifier. ADE is 

listed as follows. 

Algorithm 1: Accuracy and Diversity weighted Ensemble 

Input: Stream S, the maxsize of ensemble k 
Output: a pool of k weighted classifiers 
01: initialize E; 
02: for every data block Bi∈S do 
03:   if |Bi| = d or change detected then 
04:      train a new classifier C' on data block Bi ; 
05:      compute the diversity and accuracy of C';  
06:      compute the weight of C' by the Equation (1);  
07:        for all classifiers Cj∈E do 
08:         compute the diversity and accuracy of Cj;  
09:         compute the weight of Cj by the Equation (2); 
10:         if |E|<k 
11:          add C' to the ensemble; 
12:         else 
13:          substitute the worst base classifier with C'; 
14:         end if  
15:       end if  
16:   end for 
17:   for Cj∈E\{C'} do 
18:     incrementally train Cj on Bi; 
19:   end for 
20: end for 
21: end. 

4. Experimental Evaluation 

The experiments were implemented with Massive 

Online Analysis (MOA) [2] on a PC with 3.0 GHz 

CPU, 32 GB memory, and Windows 10. MOA 

provides the state-of-the-art data stream algorithms 

and tools for evaluation. 
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4.1. Datasets 

In our experiments, we adopted eight benchmark 

datasets, including four synthetic and four real-world 

datasets. The streams were all generated by stream 

generators in the MOA framework to simulate different 

concept drift scenarios. The datasets are described in 

Table 1. 

Table 1. Characteristics of the datasets. 

Dataset Instances Attributes Classes Drift Type 

HyperPlane 1, 000, 000 10 2 gradual 

SEA 1, 000, 000 3 4 sudden 

LED 1, 000, 000 24 10 mixed 

Random Tree 1, 000, 000 10 4 
sudden 

recurring 

Electricity 45, 312 10 10 - 

Poker 1, 000, 000 10 10 - 

Covertype 581, 012 53 7 - 

Airlines 539, 383 7 2 - 

1) Synthetic data streams 

The Hyperplane is used to simulate gradual concept 

drift. Change the decision boundary of the stream 

slowly by MOA generator to simulate gradual drift. In 

the Streaming Ensemble Algorithm (SEA) stream, data 

is divided into four blocks to represent different 

concepts. A sudden change from a class concept to 

another is utilized to simulate sudden concept drift. The 

Light Emitting Diode display (LED) is a stream with 

mixed drifts. The Random Tree stream contains sudden 

recurring drifts. 

2) Real-world data streams 

The Electricity dataset aims to predict the trend of price 

in the Australian New South Wales Electricity Market. 

The Poker dataset represents the problem of identifying 

the hand in a poker game. Each instance represents a 

hand comprising of five cards drawn from a standard 

deck of 52. The Covertype dataset is to predict the 

forest cover types from cartographic variables. Airlines 

dataset contains information of predicting whether the 

flight will be delayed for given scheduled departure 

information. We employed the generators to transfer 

the static datasets into streams. 

4.2. Results and Discussion 

4.2.1. Parameter Sensitiveness 

1) Sensitivity analysis of the block size  

Figure 1 illustrates the accuracy change of the proposed 

algorithm using different sizes of data blocks on 

Covertype, SEA, and Random tree. The size of a block 

is an important factor in the performance of the block-

based ensemble. Selecting a larger data block means 

using enough instances to train a base classifier, 

resulting in better classification performance. The 

disadvantage is that it is insensitive to the concept drift 

response. For example, the sudden change of the 

classifier can be greatly reduced by the sudden change 

of the classifier. On the contrary, choosing a smaller 

block is more sensitive to drifts so that can better 

adjust the classification according to the current data 

distribution. However, the disadvantage is that there 

are fewer instances for learning a classifier each time, 

resulting in lower classification accuracy for each 

classifier. Therefore, defining an appropriate size of 

the block can boost the overall performance of 

ensemble. 
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Figure 1. The effect of different data block sizes. 

As shown in Figure 1, 1000 is the most appropriate 

block size for Covertype, that is, to train a classifier 

using a data block for each 1000 instances arrival. The 

data block size of 500 is the most appropriate for SEA. 

We can see that different block sizes should be 

selected for different datasets to achieve the best 

performance. 

2) Sensitivity analysis for α 

The ADE calculates the weights of the classifiers by 

linearly weighting the diversity and precision. It can 

be seen from Equations (1) and (2) that controlling the 

proportion of diversity and accuracy in calculating the 

weights by α, therefore, its value will have an impact 

on the final classification performance. Figure 2 

shows different values of α on the average 

classification accuracy on Poker and the LED datasets. 

We can see that different thresholds need to be 

selected to achieve the best classification performance 

for different datasets. 
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Figure 2. The effect of different α on average accuracy. 

4.2.2. Comparison Study 

This section uses comparative experiments to verify 

the algorithm’s effectiveness in terms of efficiency 
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and adaptability. ADE was evaluated against ARF, 

AUE2, and KUE. The average accuracy of the 

algorithms on different datasets is compared, as shown 

in Table 2.  

Table 2. The accuracy of four algorithms (%). 

 AUE2 ARF KUE ADE 

HyperPlane 85.06 (4) 91.5 (1) 89.38 (2) 89.09 (3) 

Random Tree 67.59 (3) 56.13 (4) 69.39 (2) 69.95 (1) 

SEA 84.24 (3) 83.48 (4) 89.56 (1) 85.55 (2) 

LED 76.74 (3) 76.22 (4) 78.47 (2) 79.61 (1) 

Covertype 70.21 (4) 86.50 (1) 80.27 (3) 86.29 (2) 

Poker 68.28 (3) 67.53 (4) 69.67 (2) 75.83 (1) 

Airlines 65.69 (4) 67.18 (2) 65.88 (3) 72.25 (1) 

Average 73.97 (3.43) 75.51 (2.86) 77.52 (2.14) 79.80 (1.57) 

1) Synthetic data streams 

It can be seen from Table 2, ADE outperforms all the 

other algorithms in terms of accuracy, especially on the 

RandomTree, LED, Poker, and Airlines dataset. The 

ADE is the most accurate followed by KUE, and AUE2 

achieves the worst performance. It is principally 

because ADE offers significant improvements over 

compare methods by dynamic accuracy and diversity 

weighting mechanism.  

Figures 3-7 shows the curves of the classifications’ 

accuracy with the increase of instances. Many kinds of 

literature adopt the graphical way to depict 

classification accuracy with changes in data distribution 

visually. 

Figure 3 reveals the accuracy of each phase of the 

four algorithms incrementally trained on the SEA 

dataset. Since SEA is a dataset with abrupt drift, the 

data block size is set to 500 for responding concept drift 

quickly. The curve of the proposed method coincides 

with the curve of KUE, which shows that the two 

methods achieve similar performance in this scenario. 

Our method is only 0.31% higher than the KUE. This is 

partly because we tailored ensemble learning to handle 

concept drift by continuously updating the weights of 

base classifiers considering accuracy and diversity. 
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Figure 3. The accuracy on the SEA dataset. 
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Figure 4. The accuracy on the RandomTree dataset. 

Figure 4 illustrates the accuracy of the algorithms 

on the Random Tree stream. We generate the dataset 

with sudden drift by the RandomTreeGenerator in the 

MOA framework. As shown in Figure 4, ADE 

outperforms all the other algorithms, although it is 

slightly more accurate than AUE2. This is because the 

ADE dynamic weighting strategy uses the current and 

past classifiers combined with dynamically updated 

voting weights based on accuracy and diversity. 

2) Real-world data streams 
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Figure 5. The accuracy on the cover type dataset. 

Figure 5 shows the accuracy of the algorithms 

changes with the processed instances on the Covertype 

scenario. ADE and AUE2 perform better in the early 

training stage, and ARF is better in the late training 

period. From the average accuracy, the difference 

between ADE was only 0.21% higher than the ARF. 

An analysis quickly reveals the cause: ADE benefits 

from accuracy and diversity to perform better in a 

real-world dynamic environment. 

100K 200K 300K 400K 500K 600K 700K 800K

60

62

64

66

68

70

72

74

76

78

80

A
cc

ur
ac

y 
(%

)

Processed instances

 ADE

 AUE2

 ARF

 KUE

 

Figure 6. The accuracy on the poker dataset. 
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Figure 6 shows the accuracy of each phase of the 

four algorithms incremental training on the Poker 

dataset. It indicates that ADE is much better than the 

other three algorithms. This might be attributed to the 

weighting scheme based on accuracy and diversity can 

significantly boost the ensemble’s performance. Hence, 

our algorithm achieves better performance in evolving 

real-world scenarios. It also verifies that the proposed 

ADE has a stronger ability to adapt to the real-world 

environment than other algorithms. 
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Figure 7. The accuracy on the airlines dataset. 

Figure 7 indicates the accuracy of each of the four 

algorithms when incrementally training on the Airlines. 

Although the average precision of ARF from Table 2 is 

higher, it can be seen from Figure 7 that ARF has high 

average accuracy because it starts with high precision. 

As the instances continue to increase, the accuracy 

continues to decline. After 300, 000 instances, ADE 

consistently achieves the best performance. This is 

partly because the weight of the classifier is updated 

based on the classification accuracy and classification 

error of the latest data, which can enhance the 

performance of the ensemble. 

In conclusion, the experimental results show that 

ADE can achieve better average ranks than state-of-art 

in different drift scenarios, including abrupt, gradual, 

and recurring. It is mainly because ADE fully considers 

the two factors of accuracy and diversity when 

weighting and selecting the base classifiers. Hence, 

ADE achieves high performance and strong 

adaptability. 

5. Conclusions 

This paper focuses on the topic of constructing efficient 

ensemble under evolving data streams scenarios. 

Specifically, we design an effective metric based on 

accuracy and diversity to guide the construction of 

ensemble by evaluating the performance of base 

classifiers. Linearly weighting is employed to calculate 

the weights of classifiers. The higher weight indicates 

that the classifier is more important, and when the new 

classifier is established, it needs to replace the base 

classifier with the lowest weight. Experiments prove 

that the proposed algorithm can effectively adapt to 

scenes containing different kinds of concept drifts and 

quickly recover its performance. 

Some limitations of this study are as follows: First, 

our algorithm’s performance depends on the two 

parameters: the number of base classifiers k and the 

weight of accuracy . We will focus on automatically 

determine the parameters in the future. Second, 

recurring concept drifts are common in real-world 

applications, and we are devoted to considering this 

situation in our future work. 
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