
184 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

The Effect of Horizontal Database Table

Partitioning on Query Performance

Salam Matalqa and Suleiman Mustafa

Department of Computer Information Systems, Yarmouk University, Jordan

Abstract: The need for achieving optimal performance for database applications is a primary objective for database designers

and a primary requirement for database end users. Partitioning is one of the techniques used by designers to improve the

performance of database access. The purpose of this study was to investigate the effect of horizontal table partitioning on

query Response Time (RT) using three partitioning strategies: Zero partitioning, list partitioning and range partitioning. Three

tables extracted from the Student Information System (SIS) at Yarmouk University in Jordan were used in this research.

Variation in table size was used to determine when partitioning can have an impact (if any) on access performance. A set of 12

queries were run over a database of three different sizes. The results indicated that partitioning provided better RT than zero

partitioning, on the other hand, range and list partitioning strategies showed little performance differences with the different

database sizes.

Keywords: Table partitioning, horizontal partitioning, range partitioning, list partitioning, database performance.

Received July 22, 2015; accepted October 18, 2015; published on line January 28, 2016

1. Introduction

Useful, accessible, and timely information has always
been a great power for those who have it and use it
efficiently. As such, gathering, managing, accessing
and analyzing information have evolved to be a critical
issue for the success of any kind of organization. With
the rapid development of information technology,
more and more large-scale application systems will
generate vast amounts of data. Big data or massive data
refers to the amount of data that cannot be captured,
managed, processed, by the current mainstream
software [22].

Based on the International Data Corporation (IDC)

results, they show that the data produced in 2008,

2009, 2010 and 2011 by everyone is equal to more

than 200GB. By the end of 2012, the amount of data

rose from the TB(1024GB=1TB) level to

PB(1024TB=1PB), EB(1024PB=1EB) and ZB

(1024EB=1ZB) level [22]. By 2020, it is expected that

the whole world generated data size will reach 44

times today. Consequently, big data tables will bring a

great deal of performance pressures to application

systems and a big risk in database management [20].

All Information Systems (ISs) such as

telecommunication systems, banking systems,

educational systems, health-care systems, and others

depend on the management of data, and how to deal

efficiently with the huge piles of data. Nowadays, we

are living in an information era with tons of music,

photos and videos. The task of data storing, sharing,

organizing, and manipulating has become a challenge

one. Hence, database management systems are

considered the backbone and the heart of any

application in our daily lives [14].

For any application that is already running in a

production or for any new project that we are starting,

performance is one of the most important aspects that

should be taken into consideration. For database

designers, achieving optimal performance is the

primary objective, while for database end users it is a

primary requirement. Developing and improving

database performance is a cycling activity that should

be included in each development stage. However, no

recipe exists for designing perfect databases, but some

techniques and tips can improve the quality of the

design, such as indexing techniques and query

optimization [10].

One of the most important aspects of physical

database design is table partitioning which has

significant impact on database performance and

manageability of data. Partitioning subdivides a

database object (table, an index or an index-organized

table) into smaller pieces. Each piece of the database

object is called a partition which has its own name, and

may optionally have its own storage characteristics.

We divide database objects using a partitioning key,

which is a set of columns that determine in which

partition a given row will be located or stored.

According to [3], the three major benefits acquired

from partitioning are the high performance (fast query

Response Time (RT)), manageability (divide and

conquer approach) and availability (independency of

partitions). Furthermore backup and recovery

operations can be done more efficiently and effectively

with partitioning.

There are three strategies for partitioning tables or

entities: Horizontal, vertical or mixed (hybrid).

Horizontal partitioning allows access methods such as

The Effect of Horizontal Database Table Partitioning on Query Performance 185

tables, indexes and materialized views to be partitioned

into disjoint sets of rows that are physically stored and

accessed separately. It affects performance as well as

manageability. On the other hand, vertical partitioning

allows a table to be partitioned into disjoint sets of

columns, and since many queries access only a small

subset of columns in a table, vertical partitioning can

reduce the amount of data that needs to be scanned to

answer the query [1].

Mixed or hybrid partitioning is a combination of

both types of partitioning, in which the table is divided

into arbitrary blocks based on the needed requirements.

It consists of horizontal partitioning followed by a

vertical or a vertical partitioning followed by

horizontal, when the schema is not sufficient to satisfy

the requirements by only one of them [6]. It is the most

complex strategy and needs more management.

Horizontal partitioning is the most commonly used

approach. Oracle offers three fundamental data

distribution methods: Range, list and hash. Range

partitioning is the most common type of horizontal

partitioning, which maps data into partitions based on

ranges of values of the partitioning key that we select

for each table. In comparison, list partitioning is based

on specifying a list of discrete values for the

partitioning key that enables us to explicitly control

how rows map to partitions. It has an advantage in that

we can group and organize unordered and unrelated

sets of data in a natural way. Finally, hash partitioning

maps data to partitions based on a hashing algorithm

that Oracle applies to the partitioning key that we

identify. Each partitioning strategy has different

advantages and design consideration, such that each

strategy is more appropriate for a particular situation.

These three techniques are usually described as one-

level partitioning approach. On the other hand, the

three techniques can be combined in different ways in

what known as composite (multi-level) partitioning.

Combinations include: Range-range, range-hash,

range-list, list-range, and others. According to [12],

round-robin partitioning, hash partitioning, and range

partitioning are the most popular horizontal approaches

used. In general, hash based partitions are good for

clustering only when the queries contain equality

predicates on the partitioning attributes. On the other

hand, big table presented by [8] and PNUTS presented

by [11] use key-based range partitioning.

There are some suggestions or situations in which it

is more suitable to partition a table. A general advice is

to partition when table size is greater than 2 GB. A

candidate situation for partitioning is when a table

contains historical data so that the new data is added

into the newest partitions [4]. The powerful

functionality of Oracle partitioning solves the problems

and negative impacts of big data tables. It is driven by

and depends on business requirements. However,

Oracle somehow does not provide clear differentiation

between query RT measures, since it needs very huge

data set to see the differentiation. As such, Microsoft

SQL Server platform has been used in this study.

This paper presents the results of investigating the

effect of horizontal partitioning or fragmentation on

query performance. Two strategies of partitioning

(namely, range and list partitioning) have been used

and their performance has been compared with no

partitioning. It is organized as follows: Section 2

presents some related works, section 3 presents the

methodology used in the study, section 4 discusses and

evaluates the results, and finally section 5 is devoted

for the conclusions.

2. Related Works

The nature of distributed databases which allocated

over a network in many sites has a huge amount of

data and a large number of users over these sites. So,

there is always a high need to enhance performance

and throughput of them [17]. Many approaches were

proposed to achieve that, such as that proposed in [17].

Improving performance is an important aspect to take

into consideration during the design phase of

distributed databases. Horizontal partitioning has an

important impact on achieving this performance need.

Distributed databases are becoming very popular

nowadays. Horizontal partitioning using min-term

predicates was first introduced by [7] for distributed

databases. A methodology was proposed for

determining the access parameters that are performed

over different portions of data, and the concepts

required for the determination of the relevant one were

identified. The general partitioning problem was

formulated in three specific application environments,

showing that the solution models require exactly the

concepts and parameters introduced.

In [9], a fragmentation approach was presented

based on a Genetic Algorithm (GA) to achieve high

database retrieval performance by treating horizontal

fragmentation as a Travelling Salesman Problem

(TSP). They also proposed three new operators for

GAs. The experimental results indicated that these

operators outperformed other operators in solving the

TSP. The data partitioning problem was solved by

applying this proposed GA, and the computational

study showed that their GA outperforms well for this

application.

In [16], a heuristic approach was presented for using

derived horizontal fragmentation, which depends on a

cost model for analyzing the cost of queries. Some

experiments were conducted to verify their algorithm.

The results showed that this heuristic approach

outperformed the traditional approaches in terms of

system performance. But, they observed that the

processing time spent in testing their approach was

similar to that spent in using the traditional approach.

The improvement of performance was not significant.

186 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

According to [15], type and frequency of queries

were important in previous research studies, for

applying partitioning solutions. However, for a

distributed system, these solutions are not suitable at

the initial stage of a database design. They presented a

fragmentation technique for partitioning tables that can

be applied at the initial stage as well as in later stages

of a distributed database system. This technique

depends on the use of Attribute Locality Precedence

(ALP) which means fragmenting a relation

horizontally based on locality of precedence of its

attributes. ALP represents the value of importance of

an attribute with respect to sites of distributed

database. The database designer is responsible for

constructing an ALP table for each relation during the

database design stage. CRUD (Create, Read, Update,

and Delete) matrix and cost functions are used in

combination with the ALP table. Results showed that

the proposed technique can solve initial fragmentation

problems properly.

In the view of [6], making proper fragmentation for

relations in distributed databases and allocating

fragments are not easy tasks. Many techniques have

been proposed by the researchers, such as using

empirical knowledge of data access and query

frequencies, but doing proper fragmentation and

allocation at the initial stage of a distributed database

has not yet been addressed. In [6], they have proposed

a fragmentation technique to partition relations

properly at the initial stage for distributed databases

when no data access statistics and query execution

frequencies are available. Their results were similar to

those of [15]. They demonstrated that the proposed

technique can solve the initial fragmentation problem

of relational databases for distributed systems properly.

In [13] the taxonomy of class models for the

fragmentation problem was reviewed in the distributed

object database, and it presented a comprehensive set

of algorithms for horizontally fragmenting this

taxonomy of class models. Their approach starts with

generating primary horizontal fragments for a class,

based on only applications that access this class. Next

it generates derived horizontal fragments that arise

from primary fragments of its subclasses, such as its

complex attributes (contained classes), and/or its

complex methods classes. Based on the queries

accessing the class, primary horizontal partitioning was

performed using predicates of these queries. Derived

horizontal partitioning for a class was based on the

horizontal partitioning of another class.

In [5] some algorithms were presented for both

primary and derived horizontal partitioning. They

discussed the problems of localization of fragments for

queries, and the migration of objects for updates. For a

given query, the horizontal fragments that result from

this query can be identified easily with fragment

localization, and if we need to migrate an object form

one fragment to another due to updates, we deal with

object migration issues. Finally they showed the

benefits of horizontal partitioning for query processing.

For Object Oriented Distributed Database systems

(OODD), a new algorithm is proposed in [2] for

applying horizontal partitioning over these systems.

They applied both horizontal and vertical ideas for

relational systems. They used a cost model to minimize

the global fragmentation and allocation costs, and used

simulation to validate the proposed approach.

Compared to most recent affinity-based horizontal

partitioning, the study proved that the proposed

approach was simpler and had less cost.

In [19], guidelines were proposed to be used in

XML databases when applying a fragmentation design

algorithm, with the aim of increasing query processing

performance. They used broader aspects that could be

further considered during the fragmentation design.

Experiments were performed over different sizes of

XML databases to assess how data growth impacts the

performance of query processing. Their experiments

showed that there are performance gains obtained from

the fragmentation process for frequent queries,

compared to the results obtained in the centralized

environment.

Similarly, [18] worked on XML warehouse

fragmentation. They proposed the use of derived

horizontal fragmentation over XML contexts. They

also compared the two primary horizontal

fragmentation methods: predicate construction and

affinity-based fragmentation. Their experiments

confirmed that derived horizontal fragmentation

improved query RT significantly, and in all their

experiments, the affinity-based fragmentation clearly

outperformed predicate construction.

3. Methodology

 In this study, a database consisting of three tables was

used to perform and evaluate partitioning strategies.

The three tables represent part of data about courses

and course sections offered at Yarmouk University in

Jordan. A set of twelve SELECT queries was used to

determine which of the three partitioning strategies

(No partitioning, Range partitioning, and List

partitioning.) would achieve better performance.

Queries were run over these tables, once without table

partitioning and once with table partitioning. For each

partitioning strategy, queries were run three times over

different sizes of tables. By doing so, we aimed to

explore the effect of table partitioning strategies and

table size on query RT.

The dataset used in this study was extracted from

the Student Information System (SIS) at Yarmouk

University [21]. Only three tables were selected for

this purpose: Table 1 contained information about

courses registered by the students at the College of

Information Technology, Table 2 stored information

about their degree plans and Table 3 was used for

The Effect of Horizontal Database Table Partitioning on Query Performance 187

course sections. The data was exported to an Excel

sheet then imported to three databases in MS SQL

server platform. The tables representing this schema

are as follows:

1. T1: STUDENT (S_ID, F_Name, L_Name, B_Date)

2. T2: CORSE (C_ID, C_Name, Credits)

3. T3: TAKES (S_ID, C_ID, Taken, Prerequisite)

4. T4: COURSE_SECTION (Sec_ID, Sec_No, Room, Room_Size,

Instructor, Sec_Days, Sec_Time, C_ID)

Initially, each table had about one thousand records.

Then, to show the effect of various partitioning

strategies, the size was increased twice for the two

tables to be partitioned: TAKES and

COURSE_SECTION. As such, three database versions

were implemented: The first version included about

one thousand records for each of these two tables, the

second version included about four thousand records

for each, and the third contained about nineteen

thousand records.

The courses table was not partitioned, since it

contained no suitable candidate partitioning keys for

Range partitioning. For TAKES, the student ID

attribute (S_ID) was used as a range partitioning key,

and the attribute Taken was used as a list partitioning

key. Finally for COURSE_SECTION, the section time

attribute (Sec_Time) was used as a range partitioning

key, and the section days attribute (Sec_Days) as a list

partitioning key. Tables 1 and 2, show the distribution

of records for each partitioning strategy using three

different table size versions.

Queries were designed to retrieve records based on

conditions that combine the partitioning attribute keys.

The purpose was to show which partitioning strategy

would provide better performance for each query in

terms of RT. Some queries retrieve records based on

conditions that combine partitioning attribute keys

form multiple tables (Inner JOIN conditions). This was

intended to show if range partitioning strategy or list

partitioning strategy would be better for each of the

two relations: TAKES and COURSE_SECTION.

The queries were executed over the three database

versions with different sizes, using the same table

structures and attribute partitioning keys. Each

execution covered the three partitioning strategies. As

shown in Tables 1 and 2, the difference between these

three experiments was only in the database size. In the

first experiment, the database contained about three

thousand records, while in the second and third

executions the size was increased for tables: TAKES

and COURSE_SECTION.

Table 1. No of records contained in each partition for the table
(TAKES).

Table Size
#Records (no

Partitioning)

#Records (Range

Partitioning(S-ID)

#Records (List

Partitioning(Taken)

Partition 1 Partition 2 Partition 1 Partition 2

Size 1 1192 609 583 328 864

Size 2 4768 2436 2332 1312 3456

Size 3 19072 9744 9328 5248 13824

Table 2. No of records contained in each partition for the table
(COURSE_SECTION).

Table Size
#Records (no

Partitioning)

#Records (Range

Partitioning(S-Time)

#Records (List

Partitioning (S-Days)

Partition 1 Partition 2 Partition 1 Partition 2

Size 1 1130 609 475 647 475

Size 2 4520 2436 1900 2588 1900

Size 3 19072 18080 7600 10352 7600

Average RT (ART), as defined bellow, was used as

measure of performance for comparing the three

partitioning strategies. RT has been defined as the

elapsed time in milliseconds from the moment that a

query is entered at the interface to the time that the

application indicates the query has completed and

results shown.

 1

() /
n

i

ART RT n
=

∑=

Where ART: Average RT, RT: Response time for each

query, i: Query number, and n: Number of queries.

4. Results and Evaluation

Figure 1 presents the results of executing the queries
using a database of about three thousand records. The
results indicate that partitioning exhibits better
performance in terms of RT than no partitioning, with
about 18-22% improvement. However, range
partitioning and list partitioning provided almost
similar results. This might be attributed to the
relatively small size of database tables used in this
query execution round.

A
v
er

ag
e

R
es

p
o
n
se

 T
im

e

 No. Partitioning Range Partitioning List Partitioning

Figure 1. Average RT for the first database size (Size-1).

In comparison, when the size of tables being
partitioned was scaled up to more than four thousand
records, we could notice some difference in
performance between range partitioning and list
partitioning. As shown in Figure 2 show, range
partitioning outperformed list partitioning in the
average RT with about 18% difference. As in the
previous case, both partitioning strategies provided
better RT performance than no partitioning.
Improvement realized was about 15-30%.

A
v
er

ag
e

R
es

p
o
n
se

 T
im

e

0

5

10

15

20

25

30

35

40

 No. Partitioning Range Partitioning List Partitioning

Figure 2. Average RT for the second database size (Size-2).

(1)

188 The International Arab Journal of Information Technology, Vol. 13, No. 1A, 2016

When the database was scaled up to about eighteen

thousand records for each table partitioned, the results,

as exhibited in Figure 3, showed no real difference

between range partitioning and list partitioning. What

is also more notable is that the difference in

performance between no partitioning and partitioning

is relatively small. As shown in Figure 3 shows, the

average RT of partitioning provides only about 15-

18% improvement over no partitioning.

A
v
er

ag
e

R
es

p
o
n
se

 T
im

e

0

50

100

150

200

250

300

 No. Partitioning Range Partitioning List Partitioning

Figure 3. Average RT for the third database size (Size-3).

There are no other results from previous research to

compare with. One might assume that range

partitioning and list partitioning behave similarly in

performance in view of the kind of database tables

used and number of queries used regardless of the

database size.

5. Conclusions

Many factors can affect partitioning decisions that

would be taken over database tables, such as size of the

database, type of data, type of queries, frequency of

queries, partitioning attribute keys, etc., The results

reported in this study should be viewed within the kind

of data and tables used, the kind and number of queries

used, and the type of partitioning strategy investigated.

The tables used in this study have been extracted from

a database, which means that that we are not dealing

with a full database environment in a real setting.

Generally the results confirm that partitioning

improves query RT over non-partitioning.

Nevertheless, one still should ask how much

improvement is acceptable in view of the overhead

cost which results from partitioning. Given the size of

the tables used, the results do not show significant

improvement with partitioning. The general

implication of this is that partitioning should be applied

for only when we have reasonably large data tables.

Moreover, this study considers only select queries. If

we consider update operations, would an improvement

of some level in performance still be realized? Such

question is important in deciding to go for partitioning.
In comparing Range partitioning strategy with List

partitioning strategy, no real difference was shown in

the results of the study. There is no absolute ultimate

choice or decision for table partitioning for any

database, in terms of type of partitioning and the

selection of partitioning keys for each table. Each

strategy can be useful in specific situations. Range and

List are not comparable for the same partitioning keys

in a certain table, because each is useful and suitable

for specific type of attributes. It might be useful for

further research on this issue to consider a larger

number of tables and queries.

References

[1] Agrawal S., Narasayya, V., and Yang B.,
“Integrating Vertical and Horizontal Partitioning
into Automated Physical Database Design,” in
Proceedings of the 2004 ACM SIGMOD
International Conference on Management of
Data, Paris, France, pp. 359-370, 2004.

[2] Areed M., El-Dosouki, A. and Ali, H., “A

heuristic approach for horizontal fragmentation

and alllocation in DOODB,” in Proceedings of

INFOS2008, Cairo, Egypt, pp. 9-16, 2008.

[3] Baer H., Partitioning in Oracle Database 11g,

Oracle, USA, 2007.

[4] Baer H., Belden E., Dijcks J., Fogel S., Hobbs L.,

Lane P., Lee S., Lorentz D., Moori V., Morales

T., and Wiel M., VLDB and Partitioning Guide,

11g Release 2 (11.2), Oracle, USA, 2010.

[5] Bellatreche L., Karlapalem K., and Simonet A.,

“Algorithms and Support for Horizontal class

Partitioning in Object-Oriented Databases,”

Distributed and Parallel Databases, vol. 8, no. 2,

pp.155-179, 2000.

[6] Bhuyar P., Gawande A., and Deshmukh, A.,

“Horizontal Fragmentation Technique in

Distributed Database,” International Journal of

Scientific and Research Publications, vol. 2, no.

5, pp. 1-7, 2012.

[7] Ceri S., Negri, M., and Pelagatti G., “Horizontal

data partitioning in database design,” in

Proceedings of ACM SIGMOD, Milano, Italy, pp.

128-136, 1982.

[8] Chang F., Dean J., Ghemawat S., Hsieh W.,

Wallach D., Burrows M., Chandra T., Fikes A.,

and Gruber R., “Bigtable: A Distributed Storage

System for Structured Data,” ACM Transactions

on Computer Systems, vol. 26, no. 2, pp. 1-26,

2008.

[9] Cheng C., Lee W. and Wong K., “A Genetic

Algorithm-based Clustering approach for

Database Partitioning,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 32, no. 3,

pp. 215-230, 2002.

[10] Cioloca C. and Georgescu M., “Increasing

Database Performance using Indexes,” Database

Systems Journal, vol. 2, no. 2, pp. 13-22, 2011.

[11] Cooper B., Ramakrishnan R., Srivastava U.,

Silberstein A., Bohannon P., Jacobsen H., Puz

N., Weaver D., and Yerneni R., “PNUTS:

Yahoo!’s Hosted Data Serving Platform,” in

Proceedings of the VLDB Endowment, New

Zealand, pp. 1277-1288, 2008.

The Effect of Horizontal Database Table Partitioning on Query Performance 189

[12] DeWitt D. and Gray J., “Parallel Database

Systems: The Future of High Performance

Database Systems,” Communications of the

ACM, vol. 35, no. 6, pp. 85-98, 1992.

[13] Ezeife C. and Barker K., “A Comprehensive

Approach to Horizontal Class Fragmentation in a

Distributed Object based System,” Distributed

and Parallel Databases, vol. 3, no. 3, pp. 247-

272, 1995.

[14] Idreos S., “Database Cracking: Towards Auto

Tunning Database Kernels,” PhD Thesis, Aan de

Universiteit van Amsterdam, geboren te Lesvos,

Griekenland, 2010.

[15] Khan S. and Hoque A., “A New Technique for

Database Fragmentation in Distributed Systems,”

International Journal of Computer Applications,

vol. 5, no. 9, pp. 20- 24, 2010.

[16] Ma H., Schewe K., and Wang, Q., “A Heuristic

Approach to Cost-Efficient Derived Horizontal

Fragmentation of Complex Value Databases,” in

Proceedings of the 18
th
 Australasian Database

Conference, Ballarat, Australia, pp. 103-111,

2007.

[17] Maabreh K. and Al-Hamami A., “Implementing

New Approach for Enhancing Performance and

Throughput in a Distributed Database,” the

International Arab Journal of Information

Technology, vol. 10, no. 3, pp. 290-296, 2013.

[18] Mahboubi H. and Darmont J., “Enhancing XML

Data Warehouse Query Performance by

Fragmentation,” in Proceedings of the 9
th
 ACM

Symposium on Applied Computing, New York,

USA, pp. 1555-1562, 2009.

[19] Silva T., Baiao F., Sampaio J., Mattoso M., and

Braganholo V., “Towards Recommendations for

Horizontal XML Fragmentation,” Journal of

Information and Data Management, vol. 4, no. 1,

pp. 27-36, 2013.

[20] Singh S. and Singh N., “Big Data Analytics[C],”

in Proceedings of International Conference on

Communication, Information and Computing

Technology (ICCICT), Mumbai, India, pp. 1-4,

2012.

[21] Yarmouk University., “Course Schedule of the

Faculty of IT and Comp. Sciences,” available at:

http://admreg.yu.edu.jo/index.php?option=com_c

ontent&view=article&id=253&Itemid=438, last

2014.

[22] Zhu M. and Zhang X., “The Management of Big

Data Tables Based on Oracle Partition

Technology,” in Proceedings of the 9
th

International Conference on Computer Science

and Education, Vancouver, Canada, pp. 570-572,

2014.

Salam Matalqa obtained her MS

Degree in Computer Information

Systems in 2015, from Yarmouk

University, Jordan, and her BS

Degree in Computer Information

Systems in 2009, from the same

university. Her research interests

tend to focus on areas of database systems, information

retrieval and data mining.

Suleiman Mustafa is a professor of

Information Systems and is currently

the Dean of the Faculty of Inf.

Technology at Yarmouk University

since 2012. He got his PhD from the

University of Pittsburgh (USA) in

1986. He worked in several

universities and was assigned several academic and

management positions. He has published more than

thirty papers in a number of research areas, including

natural language processing, database systems,

information retrieval, and software engineering.

