26 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Machine Learning Based Prediction of Complex
Bugs in Source Code

Ishrat-Un-Nisa Ugaili and Syed Nadeem Ahsan
Department of Computer Science, Igra University, Karachi

Abstract: During software development and maintenance phases, the fixing of severe bugs are mostly very challenging and
needs more efforts to fix them on a priority basis. Several research works have been performed using software metrics and
predict fault-prone software module. In this paper, we propose an approach to categorize different types of bugs according to
their severity and priority basis and then use them to label sofiware metrics’ data. Finally, we used labeled data to train the
supervised machine learning models for the prediction of fault prone software modules. Moreover, to build an effective
prediction model, we used genetic algorithm to search those sets of metrics which are highly correlated with severe bugs.

Keywords: Software bugs, software metrics, machine learning, fault prediction model.

Received March 28, 2017; accepted June 8, 2017
https://doi.org/10.34028/iajit/17/1/4

1. Introduction

Software engineering literature reveals extensive
interest of researchers to predict faults in software.
Availability of limited resources as compared to bugs’
guantity needs appropriate allocation of these
resources [4, 10]. One of the important requirements of
quality assurance is not only to perform code testing,
but also to identify fault-prone modules as early as
possible. Therefore, in recent years researchers have
put more efforts to minimize the maintenance cost by
developing fault prediction models.

Software repositories i.e., the databases of version
controlling and bug tracking systems are being used to
develop Machine Learning (ML) based fault prediction
models. Bug repository and version controlling data
are accumulated during the evolution of any software.
Researchers use these evolutionary data to extract
software metrics and apply ML techniques to predict
fault prone software modules. Different types of
metrics such as code, design and requirement are
effectively used to predict the faulty modules. Jiang et
al. [11] used code and design metrics data of 14
different software projects and applied different
modeling techniques on the data to build fault
prediction models. They discovered that code and
design metrics were useful, but code metrics were
more reliable than design metrics. Similarly, several
researches have been conducted using software metrics
to predict software bugs [8, 9, 12]. Whereas, few
research works have been performed for the
classification and prediction of severe bugs [15].

Bugs are expected in the software; some of them are
severe in nature and should be fixed immediately.
However, non-severe and low priority bugs may be
delayed for resource allocation [23]. Prediction of

fault-prone source code modules which can generate
severe or complex bugs will help software quality
assurance personnel to perform thorough testing on
such fault-prone modules. Xuan et al. [25]
concentrated the issues of prioritization and focused on
developing a model to predict high priority bugs. Hall
et al. [7] analyzed 208 studies published in eleven
years of fault prediction models on the basis of source
code; they identified that performance of the model
depends on the selection of data, independent variables
or metrics, and modeling techniques. Zimmermann et
al. [28] revealed that the cross-project fault prediction
is very important for the software having insufficient
or little evolutionary data of the project. Therefore, for
such projects, they proposed to build a model by using
the evolutionary data of other similar projects.

In this research study, we addressed the major
challenges of the software fault prediction model and
proposed an approach to build ML based fault
prediction model in order to predict those source code
modules which can generate complex or severe bugs.
Furthermore, to enhance the model’s prediction
capability we also addressed the major issues of ML
based prediction models like feature selection,
multicollinearity and class imbalance.

Our research hypothesis (Ho) is: code’s metrics data
labeled with already occurred bugs (like complex and
ordinary bugs) are correlated, and can be used to build
ML based bug prediction model. In order to validate
our research hypothesis, we used a simple approach:
first, we selected the metrics data of each version of
software modules and labeled them with the associated
bugs’ types (if any). Then, we used the labeled data to
train ML models for the prediction of fault prone
modules which can induce severe/complex bugs.

The major contribution of our research work is the

Machine Learning Based Prediction of Complex Bugs in Source Code 27

identification of those set of software metrics which
can be used to build software fault prediction model,
and also produce classification of software bugs into
different classes including ordinary, complex, severe,
and priority bugs. To validate our research objectives,
we performed an experiment by using the publicly
available software metrics and bug repository* data of
these four projects: Eclipse, Pde, Mylyn, and Equinox.
Our experimental data comprised of 37 metric values
of each version of software modules (classes) extracted
from the project’s version controlling system. The data
also contained the bugs’ information like severity and
priority, which were linked with the metrics data of
those versions of software modules that actually
induced those bugs. This bug information was
extracted from the project’s bug-tracking-system,
Bugzilla/dira. Out of 37 software metrics, 15 were
change-metrics obtained from CVS Log data, 17 were
source code metrics such as Chidamber and Kemerer
(CK) and Object Oriented (OO), and 05 were
Complexity Code Change metrics (ComCdChg). Then,
we used different bug categories to label the metric
data and proposed an approach to categorizing
software bugs into complex (Comp) and Ordinary
(Ord) bugs. In order to define bug complexity, we used
different characteristics of bugs like Non-Trivial Bugs
(NTB), Major Bugs (MJB), Critical Bugs (CRB), and
High Priority Bugs (HPB) and Low Priority Bugs
(LPB). We also pre-processed the downloaded data to
handle multicollinearity and class imbalance issues
using Principal Components Analysis (PCA), Genetic
Search, Resample and Synthetic Minority
Oversampling Technique (SMOTE). In order to design
a better model we trained our data by multiple ML
algorithms (Alg) and found that Complexity Code
metrics were more crucial for High Priority bugs,
while Chidamber and Kemerer and Object Oriented
(CKOO) and Change metrics were more important for
severe bugs.

In section 3 of the paper, we discussed Related
Work. Section 3 describes the Data Extraction and
Experimental Setup, while section 4 comprises of
Results and Discussions. Finally, section 5 is the
Conclusion and discusses future work.

2. Related Work

It is difficult to predict software defects reliably.
Researchers have developed different prediction
approaches depending on precision, complexity, and
requirement of input data [5]. Software metrics are
imperative for fault prediction and resource allocation
in quality assurance, hence, identification of proper
metrics plays important role in software projects [14].
Since, our research approach is also to identify relevant
set of metrics and addresses machine learning

http://bug.inf.usi.ch/index.php

challenges to build fault prediction model, therefore, in
the following paragraphs we highlighted those research
work which are more relevant to our work:

D’Ambros et al. [5] introduced a benchmark to
allow for common comparison which provides all the
data needed to apply multiple prediction techniques on
5 publicly available datasets and compared with
previously available defect prediction approaches.
They showed that Weighted Churn and Linearly
Decayed Entropy of source code metrics are best
performing techniques and single metric cannot work
reliably across all systems. Different approaches have
been proposed for handling the problem with the
variety of metrics such as line of code and complexity
(code metrics) [6, 17, 21], and the number of changes,
and recent activity (process metrics) [8, 16] or previous
faults [9].

Cotroneoa et al. [3] examined the features of the
whole process of bug manifestation by studying 666
bug reports of two applications Apache web server and
open source relational database management system
(MySQL). Their study showed that the appearance of
bug and its relation with the environment is highly
important for fault removing process and its
effectiveness. Shatnawi and Li [20] compared
efficiency of various prediction models and proposed a
model for prediction of three fault quantities such as
count, fix cost and fix effort. Catel et al. [2] compared
different ML models with Statistical models and found
that ML models were better than Statistical models.

If a developer changes one of the logically coupled
program files instead of all files, it may produce severe
scenarios and unstable software with a bulk of errors
[1]. Zimmermann et al. [29] categorized bugs on the
basis of their reopening and discovered various factors
such as metrics, people involved and their relationship
which impacts the reopening of bugs. It is desirable to
expose more severe concurrent bugs before the release
of the software [27]. Therefore, it is essential for a
software engineer to identify the severity of each
problem during testing, especially when designing
critical systems. It is very important for test engineers
to properly recognize the severity of each issue they
identify during the testing process, hence there is a
need for appropriate resource allocation, scheduling of
fixing activities, and additional testing [15]. Lamkanfi
et al. [13] compared different ML algorithms and
found Naive Bayes Multinomial as most suitable for
bug classification in terms of accuracy and speed. They
also classified severe and non-severe bugs. MySQL In
real scenarios, the classification data are normally class
imbalanced; one class has more training instances as
compared to other class/classes. The skewed class
distribution can negatively impact the classifier’s
performance, since classifier may be biased towards
classifying new, unseen instances as belonging to the
majority class. Another challenge is high
dimensionality which means datasets with a huge

28 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

number of features [15]. Several data mining methods
are used to enhance the performance of classifier for
imbalanced data; one of them is data sampling, which
is used to generate a sampled dataset having a more
balanced distribution of both classes by eliminating
biased class. Then, the classifier will train the new
generated and unbiased dataset [24].

3. Data Extraction and Experimental Setup

To perform experiment, data was obtained from the
publicly available and published data in bug prediction
datasets which stored software metrics along with
defect information of several projects. We designed
our model after combining data of four projects:
Eclipse, Pde, Mylyn and Equinox. Each dataset
comprised of various classes and versions
(CVS/Subversion) as shown in Table 1. The data also
includes their bug categories according to severity and
priority from defect tracking systems, Bugzilla/Jira
repositories [5].

Table 1. Datasets used in this study.

S# DataSets Instances | Versions Description
. Eclipse JDT Core

1 Eclipse 998 o www.eclipse.org/jdt/core/
Eclipse PDE Ul

2 Pde 1498 97 www..eclipse.org/pde/pde-ui/
Eclipse MyLyn

3 Mylyn 1863 98 www.eclipse.org/mylyn/

4 Equinox 225 o1 Equinox Framewoyk

www.eclipse.org/equinox/

3.1. Bug and its Categories

A bug is an error, or fault in software which produces
an incorrect or unexpected result, or an unplanned
behavior. The importance of a bug is described as the
combination of its Priority and Severity. Severity
describes the impact of a bug, whereas priority
describes the importance and order in which a bug
should be fixed compared to other bugs and, how it
should be utilized by the programmers and engineers
to prioritize their work [19]. Thung et al. [22] states
that bug reporter can assign 5 severity levels in bug
repositories: Blocker, Critical, Major, Minor and
Trivial. In this study, we used following 5 bug
categories according to their complexity from available
bug categories in datasets as shown in Table 2.

e Bugs Found Until (BFU): These bugs include all
types of bugs which do not lie in any specific
category.

e Non-Trivial Bugs (NTB): These bugs do not impact
overall functionality; they cause some undesirable
behavior, but the system remains functional. The
severity of NTB is higher than trivial bugs [4].

e Major Bugs (MJB): These bugs affect major
functionality of software or data. The severity of
major bugs is higher than non-trivial bugs [4].

e Critical Bugs (CRB): These bugs affect further
testing. The severity of critical bugs includes critical

and blocker bugs and higher than major bugs [4].

e High Priority Bugs (HPB): These bugs affect the
application or product critically and must be
resolved as soon as possible. The priority of these
bugs is greater than default priority [4].

Table 2. List of already available bugs in datasets.

S# Bugs (Count) Abbr | Type

1 NumberOf BugsFoundUntil BFU | General
2 | NumberOfNonTrivialBugs FoundUntil | NTB | Severity
3 NumberOfMajorBugs FoundUntil MJB | Severity
4 NumberOfCriticalBugs FoundUntil CRB | Severity
5 |[NumberOfHighPriorityBugsFoundUntil| HPB | Priority

3.2. Bug Classification in Terms of Data

Available bugs were further classified as clean,
ordinary, complex, NTB, MJB, CRB, HPB and LPB
(Low Priority Bugs) bugs. For classification of all
bugs, the data was divided in two sets, described as:

1. Whole data: It comprises of all instances which
have any type of bug. Also, those which do not have
any type of bug (buggy and non-buggy/clean data).

2. Buggy data: It includes only those instances which
have any type of bug. The overall distribution of
data on the basis of bug categories is shown in
Figure 1.

]
bl
o
]
-
W
=3
=
(=]
o

Figure 1. Distribution of data in terms of buggy and clean.

3.3. Bug Classification in Terms of Categories

The whole and buggy data sets were further classified
into six groups on the basis of different class
distribution of bugs, and are shown in Table 3.

3.3.1. General Bugs (All)

The whole data was classified & labeled as clean and
buggy (with any type of bug) with 400 and 4280
instances respectively.

Table 3. Bugs Categories used and classified in this study.

SH# Bug Categories Data used Model Classification

General Bugs Whole

Clean, Buggy
Complex and Ordinary| Whole Clean, Complex, Ordinary
Complex Categories Whole |Clean, Ordinary, NTB, MJB, CRB
LPB, HPB
Complex, Ordinary
Ordinary, NTB, MJB, CRB

High Priority Bugs Buggy

Complex and Ordinary| Buggy

oA W N

Complex Categories Buggy

3.3.2. Complex and Ordinary Bugs (All)

The whole data was classified as clean, complex and
ordinary. If any type of severe bug such as CRB, MJB,

Machine Learning Based Prediction of Complex Bugs in Source Code 29

NTB was found, then it was labeled as Complex. If
only BFU existed then it was labeled as ordinary,
otherwise it was labeled as Clean. These values are
defined as:

IF (NTB >0) OR (MJB >0) OR (CRB >0) then Value=
“Complex”

Else IF (BFU >0) then Value="Ordinary”
Else value = “Clean”

3.3.3. Complex Categories (All)

The whole data was classified as Clean, Ordinary,
NTB, MJB and CRB. If any type of severe bug such as
CRB, MJB and NTB was found, then we labeled it as
CRB, MJB, and NTB respectively. If only BFU found,
then it was labeled as Ordinary, otherwise it was
labeled as Clean. These class values are defined as:

IF (CRB >0) then Value= “CRB”
Else IF (MJB >0) then Value= “MJB”
Else IF (NTB >0) then Value= “NTB”
Else IF (BFU > 0) then Value= “Ordinary”
Else value = “Clean”

3.3.4. High Priority Bugs (Buggy)

The buggy data was classified as HPB and LPB. If
High Priority Bugs existed, then it was labeled as HPB,
otherwise it was labeled as LPB and defined as:

IF (HPB >0) then Value= “HPB”
Else Value= “LPB”

3.3.5. Complex and Ordinary Bugs (Buggy)

The buggy data was labeled as Complex when any
type of severe bug existed such as CRB, MJB, NTB,
otherwise it was labeled as Ordinary and defined as:

IF (NTB >0) OR (MJB >0) OR (CRB =0) then
Value= “Complex”
Else Value="Ordinary”

3.3.6. Complex Categories (Buggy)

The buggy data was classified as Ordinary, NTB,
MJB, and CRB. If any type of severe bug such as
CRB, MJB and NTB existed then it was labeled as
CRB, MJB and NTB respectively. If only BFU existed
then it was labeled as Ordinary. These class values are
defined as:

IF (CRB >0) then Value= “CRB”
Else IF (MJB >0) then Value= “MJB”
Else IF (NTB >0) then Value= “NTB”
Else Value= “Ordinary”

3.4. Metrics

The metrics used in this research with abbreviated
names are given in the second and third columns of
Table 4 respectively. The first 15 values, i.e., row 1 to
15 are change-metrics obtained from CVS log data

labeled with ChgMet, the next 17 i.e., row 16 to 32 are
source-code metrics CK and Object Oriented labeled
with CkOO, and the last 5 i.e., row 33 to 37 are
complexity-code-change labeled with ComCdChg.

Table 4. List of metrics and its correlation with bugs counts.

S# Metrics Name ABBR |Pearson Corr.|Significance (2-tailed)
1| NumberOfVersionsUntil NVU 0.8696 0.0000000
2 NumberOfFixesUntil NFU 0.5998 0.0000000
3 | NumberOfRefactoringsUntil | NRU 0.3049 0.0000000
4| NumberOfAuthorsUntil NAU 0.3622 0.0000000
5 LinesAddedUntil LAU 0.6525 0.0000000
6 MaxLinesAddedUntil MLAU 0.553 0.0000000
7 AvgLinesAddedUntil ALAU 0.1548 0.0000000
8 LinesRemovedUntil LRU 0.6087 0.0000000
9| MaxLinesRemovedUntil |MLRU 0.5418 0.0000000
10| AvgLinesRemovedUntil |ALRU 0.1638 0.0000000
11 CodeChurnuUntil CCcuU 0.6358 0.0000000
12 MaxCodeChurnUntil MCCU 0.4743 0.0000000
13 AvgCodeChurnuntil ACCU 0.0616 0.0000245
14 AgeWithRespectTo AWR 0.1896 0.0000000
15| WeightdAgeWithRespectTo WAWR| 0.2012 0.0000000
16| CouplingBetwObjectClasses | CBO 0.4827 0.0000000
17| DepthOflnheritanceTree DIT -0.0172 0.2385547
18 Fanin FIN 0.2895 0.0000000
19 FanOut FOUT 0.5614 0.0000000
20| LackOfCohesionInMethods [LCOM 0.3201 0.0000000
21 NumberOfChildren NOC 0.0407 0.0053559
22 NumberOfAttributes NOA 0.3581 0.0000000
23NumberOfAttributelnherited| NOAI 0.1099 0.0000000
24| NumberOfLinesOfCode |NLOC 0.5907 0.0000000
25 NumberOfMethods NOM 0.5077 0.0000000
26| NumberOfMethodsInherited | NOMI 0.0161 0.2706124
27| NumberOfPrivateAttributes | NPRA 0.2601 0.0000000
28| NumberOfPrivateMethods |NPRM 0.3802 0.0000000
29| NumberOfPublicAttributes | NPBA 0.2665 0.0000000
30| NumberOfPublicMethods |NPBM 0.3784 0.0000000
31 ResponseForaClass RFC 0.6051 0.0000000
32| WeightedMethodPerClass | WMC 0.615 0.0000000
33 CvsEntropy CE 0.7244 0.0000000
34 CvsWEntropy CWE 0.5962 0.0000000
35 CvsLinEntropy CLINE 0.5164 0.0000000
36 CvsLogEntropy CLOE 0.3335 0.0000000
37, CvsExpEntropy CEXE 0.5582 0.0000000

3.5. Hypothesis Testing

To test the null hypothesis (Ho), metrics are correlated
with the number of bugs and therefore can be used to
build fault prediction models. We labeled the metrics
data of each source file (total number of source files =
4680) with the number of bugs found. The labeled data
was then used for correlation analysis. The metrics’
correlation (Pearson) with bugs’ count is shown in the
fourth column of Table 4, which shows metrics are
highly correlated with bugs’ count. Moreover, the
hypothesis testing (two tailed) with a significance
value less than 0.01 i.e., a < 0.01 is shown in the fifth
column of Table 4. Since most of the metrics, i.e., 35
out of 37 have o < 0.01, therefore, Ho was accepted
with 99.09% confidence. Finally, to build fault
prediction model we considered only those metrics
whose correlation values with bug’s count were high.

30 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

3.6. Machine Learning Issues Related to
Dataset

High dimensionality and class imbalance are the two
main issues related to the data used to train the ML
models and can degrade the performance of the
prediction models. Some ML techniques can resolve
these issues, i.e., high dimensionality reduced by
feature selection; class imbalance issue can be
addressed by data sampling and ensemble learners
(Data Transformation Techniques). Both problems can
be addressed by combining these techniques [18].

3.7. Data Transformation Techniques

Principal Component Analysis (PCA) and Genetic
Search (GenSch) are modeling techniques used to
minimize correlation problem, while SMOTE
(Synthetic Minority Oversampling Technique) and
Resample Filter (Res) are modeling techniques used to
minimize class imbalance issue.

We pre-processed our datasets and applied different
transformation techniques in combination to address
both ML issues. In this way, we got 4 groups of
transformed data:

a) Genetic Search-SMOTE.
b) Genetic Search-Resample.
c) PCA-SMOTE.

d) PCA-Resample.

These 4 groups of data were further tested with 6 Bug
categories classified in section 3.3.

3.8. Machine Learning (ML) Algorithms

We built fault prediction models using ML
Algorithms. The following 03 classifiers were used:
Random Forest (RF), MultiLayer Perceptron (MLP)
and Naive Bayes (NB), with 4 groups of transformed
dataset as discussed in section 3.7. and 6 bug
categories as discussed in section 3.3. and shown in
Table 3.

3.9. Building Fault Prediction Models
For building a better fault prediction model:

1. Initially all 37 metrics were used along with 6
derived bug categories.

2. Set of highly correlated metrics with each bug
category was chosen for prediction of severe bugs

3. Prediction models were improved by handling
feature selection and class imbalance issues.

4. Three ML classifiers were applied to all groups of
datasets after applying transformation techniques
with 6 bug categories.

These four techniques were applied after combining
data of all projects to adopt general model building and
validation approach in fault prediction modeling with
PCA, GenSch, SMOTE and Resample data

transformation techniques according to their bug
category, as shown in Figure 2 and summarized in the
following steps.

Software ; Preprocessing Apply Fault
Classi
Matrices |=> BugsTy =>| (Feature Selection ML =>|Prediction
Data & Class imbalance) Classifiers Model

Figure 2. Fault prediction model.

3.10. Evaluation of Prediction Models

Models along with the modeling techniques were
compared according to their highest values of
Precision (Prec) and Recall (Rec) for all classes
according to their 6 bug categories defined in section
3.3.

1. Precision (Prec) and Recall (Rec): Precision and
Recall rate are used for the assessment of binary
prediction models. Precision is used for the
assessment of positive signal predictions; and Recall
rate is used for the assessment of prediction power
for positive signals. In software engineering field,
identifying fault is considered most crucial,
therefore, Recall rate has been considered to be the
most important metric [26].

2. Bug Category: Bug data is categorized in terms of
their severity and priority as shown in Table 3.

4. Results and Discussions
4.1. Discussion based on Metrics Selection

Metrics were analyzed for different type of bugs, using
Statistical Correlation and GenSch methods.

1. Statistical Correlation Method: It was observed that
overall 21 metrics were important according to their
bug types, most of them were crucial for severe
bugs (10 for CRB, 14 for MJB, and 17 for NTB), 4
for priority and 18 for BFU (Gen) bugs. It was also
seen that ComCdChg metrics were more crucial for
HPB, while metrics CKOO, ChgMet and
ComCdChg were found more important for severe
bugs. On the other hand, some metrics were found
only important for one category of bug as shown in
Table 5.

Table 5 shows that three ComCdChg metrics (CLNE,
CLGE and CEXE) and one ChgMet (NRU) were more
crucial for HPB. All types of metrics (CKOO, ChgMet
and ComCdChg) were more important for severe bugs.
The following 14 metrics found crucial for MJB:
NVU, NFU, LAU, MLAU, LRU, MLRU, CCU,
FOUT, NLOC, NOM, RFC, WMC, CE, and CWE; 10
metrics such as NVU, LAU, MLAU, LRU, MLRU,
NLOC, RFC, WMC, CE, and CWE were crucial for
CRB; 17 metrics such as NVU, NFU, NAU, LAU,
MLAU, LRU, MLRU, CCU, MCCU, CBO, FOUT,
NLOC, NOM, RFC, WMC, CE, and CWE were
crucial for NTB. Whereas all three types of 18 metrics

Machine Learning Based Prediction of Complex Bugs in Source Code 31

were important for general bugs such as NVU, NFU,
LAU, MLAU, LRU, MLRU, CCU, MCCU, CBO,
FOUT, NLOC, NOM, RFC, WMC, CE, CWE, CLNE,
and CEXE Only 3 ComCdChg metrics such as CLNE,
CLGE and CEXE were crucial for all types of severe
and high priority bugs.

Table 5. Metrics correlation by Bug Category.

) Severity Priority| Severity/Priority |Gen
S# | Metrics| Type {6 Imug crelavaicomp| HPB Somi| Comp-s gy
1 | NVU | ChgMet |.908 |.765 |.649|.774|.193 | .253 | .166 .180 |.870
2 | NFU | ChgMet |.689 |.525|.443|.552|.111 | -.008 | .091 .059 |.600
3 | NRU | ChgMet |.183|.115|.096|.131|.056 | .456 | .036 .138 |.305
4 | NAU | ChgMet |.450|.369 |.315|.378|.193 | -.098 | .137 -.065 |.362
5 | LAU | ChgMet |.723 |.612 |.542|.626|.090 | .078 | .078 .095 |.652
6 |MLAU | ChgMet |.623 |.530 [.501|.551|.127 | .056 | .108 .078 |.553
7 | ALAU | ChgMet |.181 |.155[.158|.165|.086 | -.008 | .067 -.014 |.155
8 | LRU | ChgMet | .676 |.581 .533|.597|.082| .079 | .072 .099 |.609
9 |MLRU| ChgMet | .604 |.515[.501|.540|.121| .073 | .104 102 |.542
10 | ALRU | ChgMet |.184 |.162 |.177|.175|.080 | .022 | .064 .033 |.164
11| CCU | ChgMet |.700 |.554 |.413|.556 | .094 | .047 | .081 .051 |.636
12 IMCCU| ChgMet | .518 |.416 |.344|.426 | .132 | .066 | .109 .028 |.474
13 | ACCU | ChgMet |.085 |.066 |.044|.065|.056 | -.061 | .040 | -.096 |[.062

i
~

AWR | ChgMet | .274|.230 |.217|.240{.082 | -.134 | .008 | -.153 |.190
WAWR| ChgMet |.243 |.202 |.176|.207 | .086 | -.028 | .035 | -.049 |.201
CBO | CkOO |.488 |.426|.365|.426|.166 | .236 | .146 | .146 |.483

[
(3

=
o

.017
18 | FIN | CkOO |.291.269 |.246|.269|.086 | .169 | .076 104 |.289
19 | FOUT | CkOO |.575|.484|.389|.482|.206 | .217 | .179 137 |.561
20 |LCOM| CkOO |.347|.278|.256|.294|.030 | .032 | .026 .049 |.320
21| NOC | CkOO |.049|.050|.053|.051|.047 | -.003 | .040 027 |.041
22 | NOA | CkOO |.310.156|.079|.182|.043 | .037 | .039 .029 |.358
23 | NOAI | CkOO |.167|.135|.181|.161|.054 | -.090 | .032 | -.058 |.110
24 INLOC| CkOO |.638|.543|.465|.549.122 | .121 | .111 128 |.591
25| NOM | CkOO |.543|.456|.390|.463|.139 | .123 | .125 .098 |.508
26 |NOMI| CkOO |.060 |.055|.062|.059.015| -.100 | -.015| -.080 |.016
27 |NPRA | CkOO |.214|.176|.138|.176|.113 | .256 | .116 118 |.260
28 INPRM| CkOO |.392|.323|.214|.310|.096 | .087 | .086 .047 |.380
29 | NPBA | CkOO |.221.086|.018|.109.016 | -.012 | .013 .002 |.266
30 INPBM| CkOO |.397 |.345|.328|.357|.093 | .132 | .083 115 |.378
31| RFC | CkOO |.648 |.555|.468|.557|.140 | .145 | .125 122 |.605
32 | WMC | CkOO |.684 |.603|512|.600.126 | .079 | .112 116 |.615
33| CE |ComCdChg|.719 |.598|504|.607|.299 | .323 | .252 200 |.724
34 | CWE |ComCdChg| .608 |.527 |.450|.528 | .150 | .228 | .132 .081 |.596
35 | CLNE |ComCdChg| .400 |.305 |.264|.323|.302 | .612 | .354 .652 |.516
36 | CLGE |ComCdChg| .226 |.165 |.149|.180 | .241 | .512 | .320 .652 |.333
37 | CEXE |ComCdChg| .426 |.324 |.276|.342|.299 | .673 | .330 .629 |.558

17| DIT | CkOO |.023]|.011|.028|.020(-.018| -.136 |-.057 | -.155

2. Genetic Search method: It was observed that overall
29 metrics were important, whereas most of them
were crucial for severe bugs (21 for CRB, 19 for
MJB, and 12 for NTB), 5 for priority and 9 for
general bugs (Gen), as shown in Table 6.

Table 6 shows that 21 metrics were important for CRB
such as NVU, NFU, NRU, LRU, MLRU, MCCU,
WAWR, CBO, FOUT, LCOM, NOC, NOAI, NLOC,
NPRM, NPBA, WMC, CE, CWE, CLNE, CLGE, and
CEXE; 19 metrics were important for MJB such as
NVU, NFU, LAU, MLRU, CCU, CBO, FOUT, NOA,
NOAI, NLOC, NPRM, NPBA, NPBM, WMC, CE,
CWE, CLNE, CLGE, and CEXE; 12 metrics were
important for NTB such as NVU, NRU, LAU, AWR,

WAWR, CBO, NOM, CE, CWE, CLNE, CLGE, and
CEXE; 9 metrics were important for general bugs such
as AWR, WAWR, FIN, NOM, CE, CWE, CLNE,
CLGE, and CEXE. 5 metrics such as MCCU, CBO,
CLNE, CLGE, and CEXE were important for HPB. 5
metrics were important for both Complex and HPB
such as WAWR, NOMI, CLNE, CLGE, and CEXE. 12
metrics were important for any Complex bug such as
NVU, NRU, LAU, AWR, WAWR, CBO, NOM, CE,
CWE, CLNE, CLGE, and CEXE. 5 metrics were
important for any Complex or HPB such as CBO, CE,
CLNE, CLGE, and CEXE.

Table 6. Metrics selection by genetic search.

Severity Priority |Severity/Priority| Gen
S# | Metrics Type Comp-v-| Comp-
NTBMJIBCRB|Comp HPB |~ Co™| “/\ o0 | BFU
1| NVU | ChgMet | N | v | v |
2 | NFU | ChgMet NV
3 | NRU | ChgMet | v Y
4 | NAU | ChgMet
5| LAU | ChgMet | | J
6 | MLAU | ChgMet
7 | ALAU | ChgMet
8 | LRU | ChgMet J
9 |MLRU| ChgMet NV
10 | ALRU | ChgMet
11| CCU | ChgMet V
12 [Mccu| chgMet N v
13 | ACCU | ChgMet
14| AWR | ChgMet | ¥ N N
15 WAWR| ChgMet | ¥ N VoY
16| CBO | CkoO |V |~ |+ | J v
17| DIT CkOO
18 | FIN CkOO N
19 | FOUT | CkoO N Y
20 |[LCOM | CkOO y
21| NOC | CkOO y
22| NOA | CkOO y
23 | NOAI | CkOO N Y
24 |NLOC | CkOO N Y
25| NOM | Ckoo | ¥ N N
26 | NOMI | CkoO N
27 | NPRA | CkOO
28 | NPRM | CkOO VA
29 | NPBA | CkOO y
30 |NPBM | CkOO y
31| RFC | CkOO
32| WMC | CkOO R
33| CE |comcdchg| v [N[V |V J v
34| cwe |comcdchg| v [N[V [V v
35 | CLNE |comcdchg| v [N [V [¥ N d v oY
36 | CLGE |comcdchg| v | N [v | ¥ N d v oY
37 | CEXE |comcdchg| v [N[V [Y N d v oY

4.2. Discussion according to ML Techniques
and Classifiers

Results of all datasets were improved when using class
imbalance techniques, i.e., Resample and SMOTE in
combination with feature selection techniques, i.e.
GenSch and PCA. Best results were achieved with
Complex bugs. The results were also improved with
NTB, MJB and HPB and with those bugs which were

32 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

both Complex as well as HPB. Detail of results for all
categories of bugs is discussed as under:

4.2.1. Experimental Results Obtained Using Dataset
for General Bugs

There were two classes: clean and buggy. The results
of the buggy class were best classified for all ML
classifiers except NB, whereas the results of dataset for
both classes were improved by using feature selection
techniques, i.e., GenSch and PCA with class imbalance
techniques, i.e., SMOTE and Resample as displayed in
Table 7 and Figure 3.

Table 7. Precision/Recall values (in %) of all datasets according
to the general bugs.

Results of dataset for all classes were improved by
using feature selection technique, i.e. GenSch in
combination with class imbalance technique, Resample
as displayed in Table 8 and Figure 4.

Approximately 80% precision/recall values were
obtained when RF was applied on dataset after using
GenSch with Resample. 70% precision/recall values
were produced when RF was applied on dataset after
using PCA with Resample. 60% precision/recall values
were produced when RF was applied on dataset after
using GenSch with SMOTE.

Table 8. Precision/recall values (in %) of all datasets according to
complex and ordinary bugs.

%’ Class GenSch-SMOTE | GenSch-Res | PCA-SMOTE| PCA-Res
s Prec Rec Prec | Rec | Prec | Rec | Prec | Rec

CLEAN 87.5 84.5 90.9 | 86.3 | 79.3 | 69.1 | 87.2 | 71.2
& COMPLEX| 91.2 95.3 954 | 97.6 | 855 | 94.6 | 934 | 97.9

ORDINARY| 75.3 55.2 873 | 765 | 674 | 299 | 895 | 71
CLEAN 70.1 68.4 62.4 | 56.5 0 0 0 0
COMPLEX]| 85.1 89.4 86.3 | 925 | 73.8 | 100 | 80.3 | 100

ORDINARY| 45.9 315 | 456 | 256 0 0 0 0
CLEAN 42 925 265|913 | 176 | 26.3 | 55 9.7

COMPLEX| 97.5 46.5 98.3 | 46.6 98 159 | 978 | 18

ORDINARY| 21.2 60.8 225|657 | 149 | 919 | 15 | 936

MLP

NB

._.
=]
S

22 Class GenSch-SMOTEGenSch-ResPCA-SMOTEPCA-Res
=< Prec Rec | Prec | Rec | Prec | Rec |PrecRec
u |CLEAN| 859 81 95.1 {85.6| 79 | 65.8 |91.7[73.5
X [BUGGY| 96.5 97.5 |98.7 199.6| 93.8 | 96.7 (97.699.4
5 CLEAN| 74.3 63.6 | 654 (399|294 | 06 | 0 |O
= |[BUGGY| 934 959 | 945 | 98 | 84.3 | 99.7 |91.6/100
o |CLEAN] 321 96.9 | 17.4953| 179 | 99.1 | 9.9 97.5
Z |BUGGY| 99.1 61.7 |99.2 |57.2| 989 | 15.1 |98.8(18.6
00 * M0y A e Rec CLRE
75 ¢ 7 WPre-Rec-Bg-RF
= Pre-Rec-CL-MLP
550] 50 Pre-Rec-Bg- MLP
% R » Pre-Rec.Bg NB
E B) Pre-Rec-C1-NB
0 . . . , 0 T T
0 25 50 75 100 0 2% 50 75 100
Recall (%) Recall (%)
a) Genetic search-SMOTE. b) Genetic search-resample.
- x “m 100 4 b |
—_ #Pre-Rec-CI-RF
-2 75 -~ -
< & 75 * mPre-Rec-Bg-RF
g s Pre-Rec-CI-MLFP
E so %Pre-Rec-Bg-MLP
E 25 2 *Pre-Rec-CI-NB

Pre-Rec-Bg-NB

e
e

75 100 0 25 50 75 100
Recall (%)

d) PCA-resampl.

25 50
Recall (%)
¢) PCA-SMOTE.

Figure 3. Precision/recall according to the general bugs.

Approximately 90% precision/recall values were
produced when RF was applied after using GenSch
with Resample. 80% precision/recall values were
produced when RF was applied on dataset after using
GenSch with SMOTE. 70% results were produced
when RF was applied on dataset after using PCA with
Resample and PCA with SMOTE. 60%
precision/recall values were produced when MLP was
applied on dataset after using GenSch with SMOTE.

4.2.2. Experimental Results Obtained Using Dataset
for Complex and Ordinary Bugs (All)

There were three classes: Clean, Ordinary and
Complex. The Complex class was best classified with
all ML classifiers after using modeling techniques,
whereas clean class was better classified than ordinary.

4 >{ 100 B +PreRecCLRF
§75 * >‘ WPre-Rec-Com-RF
e 75 A aPre-Rec-Ord-RF
e 4 Pre-Rec-CI-MLP
E 50 Pre-Rec-Com-MLP
B * +Pre-Rec Ord-MLP
A~ 2 . Pre Rec CINB

0 0 Pre-Rec-Com-NB
25 0 25 1"]0 6 1'5 "0 7'5 160 Pre-Rec-Ord-NB |
Recall (%) Recall (%)
a) Genetic search-SMOTE. b) Genetic search-resample.
100 X B 100 B |+PreRecCIRF
- mPreRec-Com-RF
£75 * 75 ™ aPreRec Ord-RF
= Pre-Rec-CLMLP
g‘ﬂ 50 Pre-Rec-Com-MLP!
) 4 Pre-Rec-Ord-MLP
Ezs A A 25 Pre-Rec-CINB
Pre-Rec-Com-NB
0 & r T 1 0# Pre-Rec-Ord-NB
0 25 50 75 100 0 25 50 5 w0
Recall (%) Recall (%)

c) PCA-SMOTE. d) PCA-resample.
Figure 4. Precision/recall according to complex and ordinary bugs.

e Clean Class: Clean class was best classified with all
ML classifiers except NB classifier after using all
modeling techniques.

Approximately 90% precision/recall values were
produced when RF was applied on dataset after using
GenSch with Resample. 80% precision/recall values
were produced when RF was applied on dataset after
using GenSch with SMOTE. 70% precision/recall
values were produced when RF was applied after using
PCA with SMOTE and Resample, and MLP was
applied on dataset after using GenSch with Resample.

e Complex Class: Complex class was best classified
with all ML classifiers except NB after using all
modeling techniques.

Machine Learning Based Prediction of Complex Bugs in Source Code 33

Approximately 90% precision/recall values were
produced when RF was applied on dataset after using
all modeling techniques, and MLP was applied on
dataset after using GenSch with SMOTE and GenSch
with Resample. 80% precision/recall values were
produced when MLP was applied after using PCA with
Resample.

e Ordinary Class: Approx. 80% precision/recall
values were produced when RF was applied on
dataset after wusing GenSch with Resample
technique. 70% precision/recall values were
produced when RF was applied on dataset after
using PCA with Resample.

4.2.3. Experimental Results Obtained Using Dataset
for Complex Categories (All)

There were five classes clean, ordinary, NTB, MJB
and CRB. Results of dataset were improved by using
feature selection techniques, i.e., GenSch and PCA, in
combination with class imbalance technique, i.e.,
Resample as displayed in Table 9 and Figure 5.

Approximately 70% precision/recall values were
produced when RF was applied on dataset after using
GenSch and PCA with Resample.

e Clean Class: Approximately 90% precision/recall
values were produced when RF was applied on
dataset after using GenSch with SMOTE. 70%
precision/recall values were produced when RF was
applied on dataset after using PCA with SMOTE
and Resample.

e Ordinary Class: Approximately 80%
precision/recall values were produced when RF was
applied on dataset after using GenSch with
Resample. 70% precision/recall values were
produced when RF was applied on dataset after
using PCA with Resample. 60% precision/recall
values were produced when RF was applied on
dataset after using GenSch with SMOTE.

e NTB Class: Approximately 90% precision/recall
values were produced when RF was applied on
dataset after using GenSch with Resample. 80%
precision/recall values were produced when RF was
applied on dataset after using PCA with Resample.
70% precision/recall values were produced when
RF was applied on dataset after using GenSch and
PCA with SMOTE, and MLP was applied after
applying GenSch with Resample. 60%
precision/recall values were produced when MLP
was applied after using GenSch and PCA with
SMOTE, and PCA with Resample.

e MJB Class: Approximately 70% precision/recall
values were produced when RF was applied on
dataset after using GenSch and PCA with Resample.

e CRB Class: Approximately 80% precision/recall
values were produced when RF was applied on
dataset after using GenSch and PCA with Resample.

Table 9. Precision/recall values (in %) of all datasets according to
complex categories and ordinary bugs.

GenSch-SMOTE| GenSch-Res |PCA-SMOTE| PCA-Res

Prec Rec Prec Rec Prec Rec Prec | Rec

CLEAN 86.5 86.6 90.1 86 752 | 734 | 839 | 72.8
ORDINARY| 73.8 57.8 90.9 81 618 | 34.1 | 89.8 | 73.2

Class

ML Alg

IE.:L NTB 745 90 87.5 96 66.8 | 86.3 | 84.1 | 94.7
MJB 51.1 22.1 88.3 | 694 | 32.1 9.5 86.1 | 65.9
CRB 69.3 48.9 89.9 | 78.8 59 40.5 86 77.3
CLEAN 4.7 71.7 60.1 54.7 | 40.7 3 0 0
o |ORDINARY| 3.8 39 35 29 0 0 0 0
5‘ NTB 55.8 64 66.1 85 55.4 | 97.7 | 59.9 | 97.9
MJB 1.6 38.3 438 | 14.8 50 0.6 29.1 | 2.8
CRB 2.7 59.9 63.2 31 65.7 | 30.3 | 62.3 | 31.8
CLEAN 43.6 93 282 | 924 | 42.6 | 10.1 21 67.7
ORDINARY| 23.6 59.9 226 | 58.2 | 153 | 91.7 | 22.1 | 88.5
”23 NTB 67.5 34 65.8 345 | 56.7 | 27.9 | 58.2 | 194
MJB 26.1 22.5 283 | 21.7 | 221 | 104 | 30.6 | 12.3
CRB 64.7 25.8 62.9 263 | 71.2 | 164 | 65.3 | 225
100 m [*DreRecCIRF
100 % - X X +Pre-Rec-Ord-RF
A 1 EPreRec NIB-RF
-~ ¢ 75 #Pre-Rec-MJB-RF
54 * Pre-Rec-CRB-RF
~ b4 APre-Rec-CI-MLP
g + 50 A ~Pre-Rec-Ord-MLP
250 Pre Rec NTB-MLP
= HPre-Rec-MJB-MLP
H [] - ¢ BPre Rec CRB MLP
fzs | o ¢ 25 ° _ Pre-Rec CLNB
<] Pre-Rec-Ord-NB
0 0 o Pre-Rec-NTB-NB
T T T T " | @ Pre-Rec-MJB-NB
0 B 50 35 50 75 100|mPreRec CRENE
Recall (%) Recall (%)
a) Genetic search-SMOTE. b) Genetic search-resample.
#Pre-Rec-CIRF
100 % 100 X =m Pre Rec Ord RF
[WPre-Rec NTB-RF
5 ol ¢ mmame
< X APre-Rec-CI-MLP
g 50 ~Pre-Rec-Ord-MLP
=50 Pre-Rec NTB-MLP
o
o . m Pre.-Rec-MJB-MLP
Eas ot 25 m Pre-Rec-CRB-MLP
A Pre-Rec-CI-NB
L X .4 Pre-Rec-Ord-NB
0 F 0 o Pre-Rec NTBNB
0 25 50 75 100 0 25 50 75 100|*PreRecMIB-NB
Recall (%) Recall (%) |WPre-Rec-CRB-NB_ |

¢) PCA-SMOTE

d) PCA-resample

Figure 5. Precision/Recall according to complex categories and
ordinary bug.

4.2.4. Experimental Results obtained using Dataset
for High Priority Bugs (Buggy)

Only buggy data was selected and classified as LPB
and HPB. Results of dataset were improved by using
feature selection techniques, i.e., GenSch and PCA in
combination with class imbalance techniques, i.e.
SMOTE and Resample as displayed in Table 10 and
Figure 6.

Table 10. Precision/Recall values (in %) of All Datasets according
to HPB Bugs in Buggy Data.

GenSch-SMOTE | GenSch-Res |PCA-SMOTE| PCA-Res

Class
Prec Rec Prec/| Rec | Prec| Rec| Prec| Rec

LPB 89.5 92.4 95.1 97 84 | 795| 91.7| 945
HPB 94.1 91.8 953 | 925| 852| 88.6| 91.3| 873
LPB 78.4 87.1 843 953| 51 | 274| 604 977
HPB 89.4 81.9 913 736| 595| 80.2| 561 43
LPB 73.3 88.9 84.1| 89.2| 43.7| 96.2| 60.6 | 96.6
HPB 90.1 75.6 823 748| 703| 68| 549 6.2

NB |MLP| RF | ML Alg

34 The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

100 100 —_—
¥, 2 | e
-~ b .
$ 75 75 4 mPreRec HPBRF
=
£ Pre-Rec-LPB-MLP
£50 50 1
5 #Pre-Rec HPB-MLP
Ezs 25 Pre-Rec-LPB-NB
Pre-Rec-HPB-NB
0 " T T ' 0l +——
0 25 50 K] 100 0 25 50 75 100
Recall (%) Recall (%)

a) Genetic search-SMOTE. b) Genetic search-resample.

—
=]
=

X m 100 - A —
< & ¢ ‘ #Pre Rec LPBRF
X5
< 75 4 BPre Rec HPB RF
s 50 Pre Rec LPBMLP
2 504
5 #Pre-Rec HPB-MLP
E 5 25 {PreRecPB-NB

Pre-Rec-HPB-NB

=]

T T T 1 0 '—|—vL|—|
0 25 50 s 100 0 23 5% 1B 10
Recall (%) Recall (%)
¢) PCA-SMOTE. d) PCA-resample.

Figure 6. Precision/Recall according to HPB in buggy data.

Approximately 90% precision/recall values were
produced when RF was applied on dataset after using
GenSch with SMOTE and Res, and PCA with
Resample. 80% precision/recall values were produced
when RF was applied on dataset after using PCA with
Resample, and MLP was applied after using GenSch
with SMOTE. 70% precision/recall values were
produced when MLP was applied after using GenSch
with Resample and NB was applied after using
GenSch with SMOTE and Resample.

4.2.5. Experimental Results Obtained using
Complex and Ordinary Bugs Dataset (Buggy)

Only buggy data was selected and classified as
Complex and Ordinary classes. Results of all datasets
were improved by using feature selection technique,
i.e., GenSch with class imbalance technique, i.e.,
Resample as displayed in Table 11 and Figure 7.

Approximately 80% precision/recall values were
produced when RF was applied on dataset after using
GenSch with Resample and SMOTE. 70%
precision/recall values were produced when RF was
applied on dataset after using PCA with Resample.
60% precision/recall values were produced when RF
was applied on dataset after using PCA with SMOTE,
and MLP was applied after using GenSch with
SMOTE.

Table 11. Precision/recall values (in %) according to complex and
ordinary bugs in buggy data.

GenSch-SMOTE|GenSch-ResPCA-SMOTEPCA-Res
Prec Rec | Prec | Rec | Prec | Rec [Prec|Rec
ORDINARY| 87.4 76.3 1 93.1| 80 | 80.3 64 |92.4|71.9
COMPLEX| 935 96.9 | 97.3 /99.2| 90.4 | 95.5 |96.2|99.2
ORDINARY| 58.4 674 328 36|143 |01 |0 |0
COMPLEX| 90.4 86.4 88 99 | 77.9 | 99.8 |10087.7
ORDINARY| 37 93.6 | 223 (924 28 95 [16.4(94.3
COMPLEX| 96.8 549 |98.1 | 55 | 95.6 | 30.9 [97.6(32.8

3’ ? Class

RF

NB | MLP

100 AR

100

B3 O [X] # Pre-Rec-Ord-RF
"y .A 75 ¢ W Pre-Rec-Com-RF
=3 b re-] - H
é, 75
= Pre-Rec-Ord-MLP
£ 50 s
= A Pre-Rec-Com-MLP
o
E 25 25 HPre-Rec-Ord-NB

Pre-Rec-Com-NB
0 T T T] 1 —
0 25 50 75 100 25 50 75 100
Recall (%) Recall (%)
a) Genetic search-SMOTE. b) Genetic search-resample.

100 A 100 |)
_ L u L A |#Pre-Rec-Ord-RF
é 75 * kel & |mPre-Rec-Com-RF
= y
Ex 50 Pre-Rec-Ord-MLP
3 APreRec-Com-MLP
E 25 25 mPre-Rec-Ord-NB

o Pre-Rec-Com-NB
T !
0
5 s 5
e s s s 1 I s 75 100
Recall (%) Recall (%)

¢) PCA-SMOTE. d) PCA-resampl.

Figure 7. Precision/Recall according to complex and ordinary bugs
in buggy data.

e Ordinary Class: Approx. 80% precision/recall
values were produced when RF was applied on
dataset after using GenSch with Resample and
SMOTE. 70% precision/recall values were
produced when RF was applied on dataset after
using PCA with Resample. 60% precision/recall
values were produced when RF was applied on
dataset after using PCA with SMOTE, and MLP
applied on dataset after using GenSch with SMOTE.

e Complex Class: Approximately 90%
precision/recall values were produced when RF was
applied on dataset after using all modeling
techniques. MLP was applied after using GenSch
with SMOTE and Resample and, PCA with
Resample. 80% precision/recall values were
produced when MLP was applied after using PCA
with SMOTE. 60% precision/recall values were
produced when NB was applied on dataset after
using GenSch with Resample.

4.2.6. Experimental Results Obtained using Dataset
for Complex Categories (Buggy)

Only buggy data was selected and classified in four
classes Ordinary, NTB, MJB and CRB. Results of all
datasets were improved by using feature selection
techniques, i.e., GenSch and PCA with class imbalance
technique, i.e., Resample as displayed in Table 12 and
Figure 8.

Approximately 70% precision/recall values were
produced when RF was applied on dataset after using
GenSch with Resample, and PCA with Resample.

Machine Learning Based Prediction of Complex Bugs in Source Code 35

Table 12. Precision/Recall values (in %) according to Complex
Categories and Ordinary Bugs in Buggy Data.

GenSch-SMOTE | GenSch-Res PCA-SMOTE| PCA-Res

-4 o
SZ Class
Prec Rec |Prec| Rec | Prec | Rec | Prec | Rec
ORDINARY| 76.2 55.4 |91.7| 80.2 | 64.6 35 | 86.9 |71.7
w NTB 75.1 92.8 [89.6| 975 | 70.7 | 89.8 | 87.3 | 96
& MJB 61.7 16.4 |888| 712 | 384 | 7.2 | 865 | 66
CRB 80 717 92 | 795 | 721 68 | 85.7 |76.7
ORDINARY| 39.6 126 |454| 122 0 0 0 0
o NTB 66.5 90.7 |71.3| 953 | 625 | 96.6 | 67 |98.5
= MJB 37.7 55 4441 229 0 0 50 | 0.4
CRB 66.8 55.8 |685| 321 | 70.3 | 417 | 62.7 | 355
ORDINARY| 21.8 90.2 |23.6| 905 | 17.1 | 919 | 194 | 93
o NTB 63.1 40.9 |70.8| 42.8 | 56.1 | 28.6 | 67.4 | 32
z MJB 20.5 16.3 [299| 21.1 | 16.1 | 104 | 241 |145
CRB 78.2 315 |63.6| 31 83 | 18.2 | 69.7 |21.3
100 7 100 - PreRec Ord RF
X n X n W Pre-Rec-NTB-RF
e | 7 | #Pre-Rec-MJB-RF
575 51 * Pre-Rec CRB-RF
= B+ -Pre-Rec-Ord-MLP
250 - 50 Pre-Rec-NTB-MLP
£ 0 e +Pre-Rec MIB-MLP
1 T Pre-Rec-CRB-MLP
a5 25 4 o Pre-Rec-Ord-NB
o y) ¢ A PreRec NTB-NB
0) _ . 0 . : ‘ ‘ -Pre—Rer—.\IJBr.\:B
B s 75 100 0 25 s 75 oo nlreRecCREND
Recall (%) Recall (%)
a) Genetic search-SMOTE. b) Genetic search-resample.
100 Pre-Rec-Ord-RF
><I 10 A -P:: R:E ,\'Im RF
? 75 # Pre-Rec-MJB-RF
B 75 ry Pre-Rec-CRB-RF
= APre-Rec-Ord MLP
2 50 50 Pre-Rec-NTB-MLP
z lp}a - # Pre-Rec-MJB-MLP
4 y W Pre-Rec-CRB-MLP
£ o 25 n- Pre Rec.Ord.NB
° ™ » Pre-Rec-NTB-NB
¢ ® Pre-Rec MJB-NB

0 & T +

75 100 0

-»

i ' |mPre-Rec-CRB-NB
50 75 1w

25 5 5
Recall (%)
d) PCA-resample.

25 50
Recall (%)
c) PCA-SMOTE.

Figure 8. Precision/Recall according to complex categories and
ordinary bugs in buggy data.

e Ordinary Class: Approx. 80% precision/recall
values were produced when RF was applied on
dataset after using GenSch with Resample. 70%
precision/ recall values were produced when RF was
applied on dataset after using PCA with Resample.
60% precision/recall values were produced when
RF was applied on dataset after using GenSch with
SMOTE.

e NTB Class: Approximately 90% precision/recall
values were produced when RF was applied on
dataset after using GenSch and PCA with Resample.
80% precision/recall values were produced when
RF was applied on dataset after using GenSch with
SMOTE. 70% precision/recall values were
produced when RF was applied on dataset after
using PCA with SMOTE, and MLP was applied on
dataset after using GenSch with Resample and
SMOTE, and PCA with SMOTE. 60%
precision/recall values were produced when MLP
was applied on dataset after using PCA with
SMOTE.

e MJB Class: Approximately 70% precision/recall
values were produced when RF was applied on

dataset after using GenSch and PCA with Resample.
e CRB Class: Approx. 80% precision/recall values
were produced when RF was applied on dataset
after using GenSch and PCA with Resample. 70%
precision/recall values were produced when RF was
applied on dataset after using GenSch and PCA with
SMOTE. 60% precision/recall values were
produced when MLP was applied on dataset after
using GenSch with SMOTE modeling techniques.

5. Conclusions

Prediction of software defect provides a list of defect-
prone code modules which need thorough testing.
Software metrics (e.g., process metrics and product
metrics) and machine learning techniques are
commonly used to develop automatic software fault
(bug) prediction models. Since fixing of complex
faults consumes more resources, therefore, in this
paper, we used a specific set of metrics to construct
machine learning based fault prediction models to
predict different types of bugs. Our proposed models
can be used to predict more precisely those source
codes’ modules which could generate complex bugs.
Our research revealed that complexity code Change
Metrics (ComCdChg), Change Metrics (ChgMet), and
Chidamber and Kemerer and object-oriented (CKOO)
metrics are crucial to predicting those source codes
which may induce high priority and severe bugs.
Overall five metrics such as MCCU, CBU, CLNE,
CLGE, and CEXE were found to be more crucial for
severe and high priority bugs.

It was also observed that after dealing with the well-
known class imbalance and feature selection issues of
machine learning, the overall rate of model’s precision
and recall were improved (to above 90%). Our
experimental results revealed that the supervised ML
technique, i.e., Random-Forest outclassed the other
techniques of machine learning. In order to further
enhance the prediction capability of our proposed fault
prediction models in future, the metrics data of other
projects can be used to build the fault prediction
models, and additional metrics related to software
project, product and process could also be considered.

References

[1] Ahsan S. and Wotawa F., “Fault Prediction
Capability of Program File’s Logical-Coupling
Metrics,” in Proceedings of Software
Measurement, Joint Conference of the 21% Int'l
Workshop on and 6" Int'l Conference on
Software Process and Product Measurement,
Nara, pp. 257-262, 2011.

[2] Catala C. and Diri B., “A Systematic Review of
Software Fault Prediction Studies,” Expert
Systems with Applications, vol. 36, no. 4, pp.
7346-7354, 2009.

36

3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

The International Arab Journal of Information Technology, Vol. 17, No. 1, January 2020

Cotroneoa D., Pietrantuono R., Russo S., and
Trivedi K., “How Do Bugs Surface? A
Comprehensive Study on The Characteristics of,”
Journal of Systems and Software, vol. 113, pp.
27-43, 2016.

D’Ambros M., Lanza M., and Robbe R,
“Evaluating Defect Prediction Approaches,”
Empirical Software Engineering, An
International Journal, vol. 17, no. 4-5, pp. 531-
577, 2012.

D’Ambros M., Lanza M., and Robbe R., “An
Extensive Comparison of Bug Prediction
Approaches,” in Proceedings of 7" IEEE
Working Conference on Mining Software
Repositories, Cape Town, pp. 31-41, 2010.
Gyimothy T., Ferenc R., and Siket I., “Empirical
Validation Of Object-Oriented Metrics on Open
Source Software for Fault Prediction,” IEEE
Transactions on Software Engineering (IEEE
Computer Society), vol. 31, no. 10, pp. 897-910,
2005.

Hall T., Beecham S., Bowes D., Gray D., and
Counsell S., “A Systematic Literature Review on
Fault Prediction Performance in Software
Engineering,” Software Engineering, IEEE
Transactions (IEEE Computer Society), vol. 38,
no. 6, pp. 1276-1304, 2012.

Hassan A., “Predicting Faults Using the
Complexity of Code Changes,” in Proceedings of
the 31% International Conference on Software
Engineering, Vancouver, pp. 78-88, 20009.
Hassan A. and Holt R., “The Top Ten List:
Dynamic Fault Prediction, ” in Proceedings of
the 21% IEEE International Conference on
Software Maintenance, Budapest, pp. 263-272,
2005.

Jeon C., Kim N., and In H., “A Probabilistic
Approach to Building Defect Prediction Model
for Platform-based Product Lines,” The
International Arab Journal of Information
Technology, vol. 14, no. pp. 413-422, 2017.

Jiang Y., Cukic B., Menzies T., and Lin J.,
“Incremental Development of Fault Prediction
Models,” International Journal of Software
Engineering and Knowledge Engineering (World
Scientic Publishing Company), vol. 23, no. 10,
pp. 1399-1425, 2013.

Kamei Y. and Shihab E., “Defect Prediction:
Accomplishments and Future Challenges,” in
Proceedings of the IEEE 23™ International
Conference on Software Analysis, Evolution, and
Reengineering, Suita, pp. 33-45, 2016.

Lamkanfi A., Demeyer S., Soetens Q., and
Verdonck T., “Comparing Mining Algorithms for
Predicting the Severity of a Reported Bug,” in
Proceedings of the 15" European Conference on
Software Maintenance and Reengineering,
Oldenburg, pp. 249-258, 2011.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Madeyski L. and Jureczko M., “Which Process
Metrics Can Significantly Improve Defect
Prediction Models? An Empirical Study,”
Software Quality Journal, vol. 23, no. 3, pp. 393-
422, 2015.

Menzies T. and Marcus A., “Automated Severity
Assessment of Software Defect Reports,” in
Proceedings of IEEE International Conference
on Software Maintenance, ICSM. Software
Maintenance, Beijing, pp. 346-355, 2008.
Nagappan N. and Ball T., “Use of Relative Code
Churn Measures to Predict System Defect
Density,” in Proceedings of the 27" International
Conference on Software Engineering, St. Louis,
pp. 284-292, 2005.

Nagappan N., Ball T., and Zeller A., “Mining
Metrics to Predict Component Failures,” in
Proceedings of the 28" International Conference
on Software Engineering, Shanghai, pp. 452-461,
2006.

Prusa J., Khoshgoftaar T., and Seliya N.,
“Enhancing Ensemble Learners with Data
Sampling on High-Dimensional Imbalanced
Tweet Sentiment Data,” in Proceedings of the
29" International Flairs Conference, Key Largo,
pp. 322-327, 2016.

Sharma M., Kumari M., and Singh V.,
“Understanding the Meaning of Bug Attributes
and Prediction Models,” in Proceedings of the 5"

IBM Collaborative Academia Research
Exchange Workshop, New Delhi, 2013.
Shatnawi R. and Li W. “An Empirical

Investigation of Predicting Fault Count, Fix Cost
and Effort Using Software Metrics,”
International Journal of Advanced Computer
Science and Applications, vol. 7, no. 2, pp. 484-
491, 2016.

Subramanyam R. and Krishnan M., “Empirical
Analysis of Ck Metrics for Object-Oriented
Design Complexity: Implications for Software
Defects,” |EEE Transactions on Software
Engineering (IEEE Computer Society), vol. 29,
no. 4, pp. 297-310, 2003.

Thung F., Wang S., Lo D., and Jiang L., “An
Empirical Study of Bugs in Machine Learning
Systems,” in Proceedings of 23™ International
Symposium on Software Reliability Engineering,
Dallas, pp. 271-280, 2012.

Tian Y., Lo D., and Sun C., “Information
Retrieval Based Nearest Neighbor Classification
for Fine-Grained Bug Severity Prediction,” in
Proceedings of 19" Working Conference on
Reverse Engineering, Kingston, pp. 215-224,
2012.

Van Hulse J., Khoshgoftaar T., and Napolitano
A., “Experimental Perspectives on Learning
From Imbalanced Data. ” in Proceedings of the
24" International Conference on Machine

Machine Learning Based Prediction of Complex Bugs in Source Code 37

[25]

[26]

[27]

[28]

[29]

Learning, Corvalis, pp. 935-942, 2007.

Xuan J., Jiang H.,, Ren Z., and Zou W,
“Developer Prioritization in Bug Repositories,”
in Proceedings of the 34" International
Conference on Software Engineering, Zurich, pp.
25-35, 2012.

Yu L. and Mishra A., “Experience in Predicting
Fault-Prone Software Modules Using Complexity
Metrics,” Quality Technology and Quantitative
Management, vol. 9, no. 4, pp. 421-433, 2012.
Zhang W., Sun C., and Lu S., “ConMem:
Detecting Severe Concurrency Bugs through an
Effect-Oriented Approach,” in Proceedings of the
15™ Edition of ASPLOS on Architectural Support
for Programming Languages and Operating
Systems, Pittsburgh, pp. 179-192, 2010.
Zimmermann T., Nagappan N., Gall H., Giger E.,
and Murphy B., “Cross-Project Defect
Prediction: A Large Scale Experiment on Data
Vs. Domain Vs. Process,” in Proceedings 7™
Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, Amsterdam, pp. 91-100, 2009.
Zimmermann T., Nagappan N., Guo P., and
Murphy B., “Characterizing and Predicting
Which Bugs Get Reopened, ” in Proceedings 34™
International Conference on Software
Engineering, Zurich, pp. 1074-1083, 2012.

Ishrat-Un-Nisa Uqaili is a Final
year student of M.S (Computer
Science) at Faculty of Engineering
Science and Technology (FEST),
Igra University (1U), Defence View
(Main Campus), Shaheed-e-Millat
Road (Ext.) Karachi-75500,
Pakistan. She did B.E in Computer Systems from
Mehran University of Engineering & Technology,
Jamshoro, Pakistan. Her research interests include
machine learning application in Software Engineering,
and build models for automatic software maintenance.
She has recently completed her MS final year thesis on
Fault Prediction Model for Software using Soft
Computing Techniques.

5 : Syed Nadeem Ahsan did his Ph.D.
A B in Computer Science from GRAZ
“#% University of Technology, Austria.
Currently, he is doing R&D work in
software engineering and machine

\ learning applications, and also
4 L associated with FEST, IU, Main
Campus, Karachi. His Research interest includes

software maintenance & evolution, software testing,
formal methods in software engineering, modeling and
simulation of complex system, and computational
intelligence.

