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1. Introduction 

Classification is one of the most interested task in data 

mining that has attracted many researchers and 

scholars in the last few decades [5]. In general, 

classification could be categorized into two main 

types: Single Label Classification (SLC) and Multi-

Label Classification (MLC). In SLC, each instance is 

associated with only one class label from a set of 

disjoint class labels. If the total number of classes in 

the data set equals two, then the problem is called 

binary classification, otherwise, the problem is called 

multi class classification. On the other hand, MLC 

allows instances in the data set to be associated with 

one or more class labels at the same time [2, 3]. 

Two main differences between SLC and MLC. In 

SLC, labels are mutual exclusive, while they are not in 

MLC, and they do have correlations and dependencies 

among them. The second main difference is that the 

problem search space in SLC is quite limited when 

comparing with MLC. For example, if the total number 

of labels in SLC is 20, then, the problem search space 

consists of only 20 possible labels. While if the 

problem is a MLC, and the total number of labels 

equals 20, then, the problem search space consists of 

220 possible labels combinations, which is more than 

one million possible combinations. Thus, the problem 

of MLC is very complicated when compared to the 

problem of SLC; due to the existing dependencies and 

correlations among labels, which cause a huge problem 

search space [3]. 

According to Gibaja and Ventura [7], Multi-Label 

Learning (MLL) includes two different tasks: MLC 

and Label Ranking (LR). While the goal in MLC is to 

divide labels into two groups (relevant labels, 

irrelevant labels), based on a specific function for any 

test instance, the goal of LR is to order all labels, 

according to the relevance of the labels to a given test 

instance. Multi-Label Ranking (MLR) is a 

generalization of both tasks of learning, which outputs 

a bipartition and a ranking at the same time.  

Two main common approaches are being used to 

solve the problem of MLC. The first approach called 

Problem Transformation Methods (PTMs), while the 

second approach called Algorithm Adaptation Methods 

(AAMs). The former transforms the problem of MLC 

into one or several SLC problems, and then, trains a 

single label classifier or more on the transformed 

datasets. The predictions of these single label 

classifiers are merged to form a multi-label predictions. 

AAMs adapts a single label classification algorithm to 

handle multi-label data. According to Read, et al. 

Holmes, and Frank [12], PTMs are preferable over 

AAMs; since they are more simpler, more general, and 

not a domain specific like AAMs. 

Recently, there is a strong belief among many 

researchers regarding the importance of capturing the 

correlations and dependencies among labels, in order 

to reduce the huge search space of the MLC problem, 

as well as to improve the predictive performance of a 

MLC classifier [1, 4]. Hence, this paper is much more 

interested in capturing positive pairwise correlations 

among labels, as well as maximizing the exploitation 

of these discovered correlations. Thus, the discovered 

correlations will be exploited in several different steps 

of the proposed algorithm such as the transformation 
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step, multi-label classifier construction step and the 

ranking of the relevant labels step. 

In this paper, the researchers are more interested in 

the approach of PTMs to handle MLC; because we 

have a firm belief that this approach is more simpler, 

more general and applicable to any domain, and the 

AAMs approach in its essence, explicitly or implicitly 

performs a transformation step [12]. Hence, the outputs 

of this research will be applicable and generalized to 

both approaches. 

Since the transformation step is one of the main 

steps in many PTMs as well as AAMs, it is very 

important to think out of the box regarding this step. In 

Fact, most methods and algorithms utilize this step in 

only one task, which is the transformation of the multi-

label dataset into single label dataset. Nevertheless, we 

believe this step should be considered with more 

attention. Thus, we are proposing to use new PTMs 

based on the positive pairwise correlations among 

labels, and not based on labels frequency as in the 

conventional PTMs. Transforming multi-label dataset 

into a single label dataset using the correlations among 

labels as a transformation criterion will facilitate the 

utilization and exploitation of the significant 

correlations among labels greatly, and consequently 

improve the final predictive performance of the multi-

label classifier. 

Generally speaking, capturing the correlations 

among labels may increase the complexity of any 

proposed multi-label algorithm, as well as the running 

time. Thus, this task should be considered wisely and 

must be justified correctly. Hence, the proposed multi-

label ranking algorithm captures significant positive 

pairwise correlations among labels, and exploits it in 

three different main step (transformation step, multi-

label classifier construction step and the ranking step). 

We believe, the cost paid for capturing and exploiting 

the correlations among labels will be justified by the 

fair enhancement of the final multi label classifier 

predictive performance. 

This paper is organized as following. The next 

section briefly surveys the literature review. Section 3 

introduces the proposed PTMs and the proposed MLR 

algorithm. Section 4 concludes and describes few 

research works.  

2. Related Work 

Many algorithms have been proposed to solve the 

problem of MLC. These algorithms could be 

categorized based on the degree of correlations among 

labels, that has been considered in the learning step, 

into three approaches [16]. The first approach is known 

as a first order approach, and tackles the problem of 

MLC by considering labels to be mutual exclusive, and 

never considers the correlations among labels. 

One of the most popular algorithms that follows the 

approach of first order is the Binary Relevance (BR) 

algorithm. This algorithm assumes labels in a multi-

label dataset to be independent, and ignores any 

possible correlations and dependencies among them. It 

is similar to the concept of One-Versus-All (OVA) that 

has been extensively used in multi class classification 

[4]. BR divides the original multi-label dataset into (k) 

single label datasets, where each dataset is specific to 

one label only. Instances in this dataset are either 

labelled as “True”, if the original instance is associated 

with this label, or labelled as “False” otherwise. A 

binary classifier then is trained to predict the relevance 

of a test instance to each label. 

BR has several advantages over other methods such 

as: its simplicity in handling the problem of MLC, the 

ability to rum the algorithm in parallel, and therefore, 

speedup the process of constructing a multi-label 

classifier, the low possibility of over fitting, and 

finally, BR has a low computational complexity when 

compared with other methods [12]. 

Although BR is a simple method that inspired many 

researchers, but it has been criticized for several 

drawbacks like assuming labels to be independent, and 

not taking labels correlations into account. Another 

drawback is the huge loss of information regarding to 

ignoring labels correlations and dependencies. A third 

drawback appears when there are many labels in the 

dataset, which complicated the training phase of BR 

[14]. 

The simplicity of BR has inspired many scholars to 

design new methods that try to overcome the 

disadvantages of BR. One of the first method that was 

inspired and designed based on BR is the Classifier 

Chains (CC) algorithm [12]. Similar to BR, CC 

algorithm divides a multi-label dataset into (k) 

different single label datasets, then it trains a binary 

classifier for each label. A chain of classifiers then is 

build, where binary attributes are added to each 

classifier for all of the predictions of the previous 

classifiers. 

Considering the prediction of the previous 

classifiers in the chain is the CC's way to overcome BR 

drawback of not taking labels correlations into account. 

In average (k/2) binary attributes are added to every 

instance, but this addition has a small impact on the 

computational complexity of CC, which is almost close 

to BR computational complexity [7]. Execution of CC 

could be done in parallel like BR in the training phase, 

while it has to be serialized in the testing phase. The 

main drawback of CC is in determining the optimal 

order of the chains, where it has been proved, and 

stated by its author himself that different orders of the 

chains give different predictions, and therefore, will 

affect the accuracy of the final result [12]. 

To solve the problem of different orders give 

different predictions, a new version of CC was 

presented by the same author, using an Ensemble of 

Classifier Chains (ECC) which used a random ordering 
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of the chains, in addition to random training subsets 

[12]. 

In Goncalves, Plastino et al. [8], an attempt to 

optimize and determine the best order of the chains 

was presented. The authors proposed to use the 

capability of the (GA) in order to determine the 

optimal chains' order. The proposed algorithm Genetic 

Algorithm for optimizing the label ordering in multi-

label Classifier Chain (GACC) needs to be evaluated 

on more datasets using several evaluation measures 

that are more related to MLC. 

Another algorithm that follows the approach of the 

first order is the Multi Label K Nearest Neighbour 

(ML-KNN) [17]. ML-KNN is one of the first 

algorithm that adopted lazy learning to handle MLC. 

ML-KNN is based on the popular algorithm KNN. The 

first step in ML-KNN is to determine the (k) nearest 

neighbours for each new instance in the training test. 

The Maximum A Posteriori (MAP) is utilized to 

determine the label set of the test instance. MAP is 

utilized based on the statistical information of the label 

sets of the neighbouring instances. 

The second approach is known as a second order 

approach, and takes into consideration only pairwise 

correlations among labels. Two main popular methods 

that follow the second order approach. The first 

method is called Ranking by Pairwise Comparisons 

(RPC) [6]. RPC is similar to BR in dividing a dataset 

with (k) labels into (k (k-1)/2) binary datasets. A 

binary dataset for each pair of labels (L1, L2), where 

the instances of the dataset are those instances that are 

associated with L1 or L2, but not the both labels [12]. 

To classify a new instance, all the binary models are 

invoked, and a ranking is obtained by counting the 

votes for each label. RPC suffers from several 

limitations such as the high quadratic complexity that 

makes it a very bad choice when dealing with large 

number of labels. Another limitation is that RPC 

consumes a large space of the main memory to 

construct (k (k-1)/2) datasets. The last limitation of 

RPC is that it does not have a split point between 

relevant and irrelevant labels [7]. 

To overcome the last drawback of RPC, the 

Calibrated Label Ranking (CLR) was proposed. CLR 

is another pairwise method that enhanced RPC by 

introducing a calibration label. This virtual label (L0) 

works as a split point between relevant labels, and 

irrelevant labels [6]. As in RPC, the CLR method 

suffers from space complexity, and computational 

complexity also. 

Back Propagation for Multilabel Learning (BP-

MLL) algorithm [17] is an adaptation of the traditional 

multi layer, feed-forward neural network to multi-label 

data. The net was trained with gradient descendent, and 

error back propagation with an error function closely 

related to the ranking loss, that took into account the 

multi-label data. Experimental results showed a 

competitive performance in genomics and text 

categorization domains, with a computational cost 

derived according to neural networks methods. 

The third approach that is known as a high order 

approach considers a high order of correlations among 

all labels in the labels set, or among a subset of labels 

[16]. One of the high order approach algorithm that 

captures and exploits high order correlations among 

labels is the Label Powerset (LP) algorithm. LP 

considers each unique set of labels combinations in the 

training set as a new class label, in a multi class 

classification problem. LP handles the problem of 

MLC by transforming it into a multi class classification 

problem [3]. LP has the ability to exploit the 

correlations among labels in a simple and effective 

way, but it suffers from several limitations. Firstly, LP 

is able to predict only those classes (labels 

combinations) that exist in the training set, and cannot 

predict new label sets that appear only in the test set. 

This is a major limitation, since it will lead to an over 

fitting problem. Secondly, there is a big possibility to 

suffer from the problem of imbalance class distribution 

when using LP, and the possibility increases as the 

number of labels and the number of distinct label sets 

increase [15]. Thirdly, the computational complexity of 

LP is exponential with respect to the number of labels, 

and the number of distinct label sets. Its complexity is 

upper bounded by min (m, 2k), but usually it is less 

than that. LP works well with small datasets, but 

quickly fails with moderate and large datasets.  

As in BR, LP has inspired many researchers to 

design new methods that consider labels correlations 

into account. The first method that was based on LP, 

and tried to enhanced LP by overcoming the problem 

of imbalance class distribution was the Pruned Set (PS) 

method [11]. PS prunes all the label sets that have a 

frequency less than a specific user defined threshold. 

This strategy may solve the problem of high 

computational complexity of LP, and the problem of 

imbalance class distribution, but at the same time it 

imposes a new problem, which is the information loss 

due to the pruned labels combinations. The author 

proposed to use small subsets of the pruned 

combinations, that are frequent in the dataset in the 

final prediction of the classifier.  

The Ensemble of Pruned Set (EPS) method 

constructs a number of pruned sets through sampling 

the training set, and builds the final prediction using 

voting schema, and a user predefined threshold, in 

order to form new combinations of labels [3]. 

Tsoumakas and Vlahavas [13] proposed their 

famous algorithm RAndom k labEL set (RAkEL) 

based on LP method. RAkEL constructs an ensemble 

of LP classifiers, where each classifier is trained using 

a smaller random subset that consists of (k) labels. To 

classify a new instance. The outputs of all classifiers 

are averaged per label with respect to a predefined 

threshold. RAkEL is a problem transformation method 

that is algorithm independent, thus any single label 
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classifier could be used with it. The authors of RAkEL 

recommended to use either C4.5 [10] or Support 

Vector Machine (SVM) [9] as a base classifier for 

RAkEL. This recommendation was based on an 

intensive experiment conducted by the authors 

themselves to determine the best base classifier for 

their algorithm. 

RAkEL manages to consider labels correlations into 

account, and at the same time avoids the computational 

complexity of LP, by considering smaller subsets of 

labels combinations. RAkEL has the ability to predict 

label sets that did not appear in the training phase, 

which LP failed to do. RAkEL is less possible to suffer 

from the over fitting or imbalance class distribution, 

due to minimizing the size of the label sets [1]. 

Regardless of the great advantages and 

enhancements of RAkEL over LP, but it still suffers 

from several limitations such as: the huge loss of 

information that is ignored to solve the problem of 

high computational complexity, and the imbalance 

class distribution. Another limitation is in determining 

the optimal value of (k). The authors suggested the best 

value of (k) to be 3, but they never showed why and 

how they reached to this value [15]. The authors never 

discussed the ability to determine the value of (k) 

automatically, and what is the relation between labels 

cardinality and the value of (k), and whether RAkEL 

has the ability to handle multi-label datasets with large 

label cardinality [2]. 

To summarize, the first approach may have the 

advantage of being simple and easy to implement, but 

suffers from a major limitation of not taking labels 

correlations into account. Hence, ignoring the basic 

principle of MLC problem, that is, the existence of 

dependencies and correlations among labels [2]. 

Although, the second order approach manages to 

enhance the predictive performance on some multi-

label datasets, but it has a limitation of addressing the 

correlations among labels into a certain extent. 

Therefore, it seems to be relatively effective, especially 

in datasets with large number of labels, where it needs 

to perform (𝑞
2
) pairwise comparisons [4].  

For the high order approach, it can be clearly seen 

that, it makes a better enhancement in the predictive 

performance, especially in moderate and large size 

datasets. Nevertheless, this approach has significant 

limitations in complexity, and tends to be more 

computationally demanding and time consuming [4]. 

3. Multi Label Ranking based on Positive 

Pairwise Correlations among Labels 

(MLR-PPC) 

According to Read et al. [12], the first step in most 

PTMs is the transformation step that aims to fit the 

data into any single label classifier. All existing PTMs 

depend on label's frequency as a transformation 

criterion. Thus, any multi-label dataset is transformed 

to be associated with the Most Frequent Label (MFL) 

that is associated with it or the Least Frequent Label 

(LFL). The ignore transformation method discards any 

multi-label instance, and considers only instances that 

are associated with one label only. 

The previous PTMs share several limitations such as 

the huge loss of information; due to the transformation 

step, imbalance class distribution especially when 

choosing the MFL as a transformation method, and not 

facilitating the step of capturing and exploiting the 

correlations among labels. 

Thus, in this paper, we claim that the transformation 

step should be considered wisely. The transformation 

step should not only utilized to transform the multi-

label dataset into a single label dataset, but also should 

facilitate capturing the correlations among labels. 

Hence, the proposed PTMs consider the positive 

pairwise correlations among labels, and not the label's 

frequency as in the existing PTMs.  

To transform a multi-label dataset into single label 

dataset using correlations among labels as a 

transformation criterion, we need to capture these 

correlations first. Thus, the label space of the multi-

label dataset is extracted firstly, and then an adapted 

version of Predictive Apriori is applied on the 

extracted label space, to discover the positive pairwise 

correlations only, in the form of (IF L1=1 THEN 

L2=1). After discovering all the positive correlations 

for each label in the label set, the labels are ordered 

according to their highest positive pairwise correlations 

or their highest Standard Deviation between the 

discovered positive correlations for each label, or 

according to the summation of the highest accurate 

positive correlations accuracy and the Standard 

Deviation of the that label. The three proposed PTMs 

are described next. 

a) Highest Accurate Positive Correlations First 

(HAPCF) 

1. Discover all positive pairwise association rules in 

the label space of the dataset, using the adapted 

version of Predictive Apriori. 

2. For every label in the label set, identify the 

maximum accurate positive association rule with 

other labels. 

3. Order the labels according to the maximum 

accurate positive association rule in a descending 

way. 

4. Use the order discovered in the previous step to 

transform the multi-label dataset into a single 

label dataset. 

b) Highest Standard Deviation First (HSDF) 

1. Discover all positive pairwise association rules in 

the label space of the dataset, using the adapted 

version of Predictive Apriori. 
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2. For every label in the label set, calculate the 

Standard Deviation among all the discovered 

positive association rules. 

3. Order the labels according to the Standard 

Deviation calculated in the previous step in a 

descending way. 

4. Use the order discovered in the previous step to 

transform the multi-label dataset into a single 

label dataset. 

c) Highest Accurate Positive Correlations and 

Standard Deviation First (HAPCSDF) 

1. Discover all positive pairwise association rules in 

the label space of the dataset, using the adapted 

version of Predictive Apriori. 

2. For every label in the label set, compute the 

summation of the maximum accurate positive 

association rule and the Standard 

Deviationamong all the discovered positive rules 

for that label. 

3. Order the labels according to the summation 

computed in the previous step in a descending 

way. 

4. Use the order discovered in the previous step to 

transform the multi-label dataset into a single 

label dataset. 

The three proposed PTMs will be used as 

transformation methods, and applied to four multi-

label datasets with another two existing PTMs (MFL, 

LFL); to prove the effectiveness of the proposed 

PTMs. The evaluation process will not only considered 

the evaluation of the base classifier using the five 

PTMs, but also will consider the final accuracy of the 

proposed MLR-PPC, when applied using the proposed 

and the existing transformation method, since the 

proposed PTMs are expected to improve the predictive 

performance of a multi-label classifier by facilitating 

capturing of significant positive correlations among 

labels. Hence, increase the accuracy of the final multi-

label classifier. 

In order to maximize the exploitation of the 

discovered positive correlations among labels, and 

justify the additional step of capturing these 

correlations, the discovered positive pairwise 

correlations will be exploited in another two important 

steps. The first step is the step of constructing a multi-

label classifier, while the second step is the ranking 

step. Algorithm 1 depicts the proposed Multi Label 

ranking algorithm based on Positive Pairwise 

Correlations among labels (MLR-PPC). 

MLR-PPC starts with extracting the label space of 

the input multi-label dataset, and considers it as a 

transactional dataset. The second step in MLR-PPC is 

to apply an adapted version of Predictive Apriori 

algorithm, where an additional filtering step has been 

added to Predictive Apriori algorithm to consider only 

positive association rules in the form of (IF L1=1 

THEN L2=1), where L1 and L2 are two disjoint labels. 

The third step is the transformation step of the input 

multi-label dataset into a single labeldataset. After 

transforming the input multi-label dataset into a single 

label dataset, MLR-PPC uses any rule-based single 

label classifier on the transformed data set to construct 

a single label classifier. The fifth step in MLR-PPC 

aims to convert the single label classifier constructed 

earlier to a multi-label classifier. To achieve this goal, 

MLR-PPC modifies the consequent of every rule's 

consequent in the single label classifier, by amending 

the best (n) pairwise correlations for the label that 

exists in the consequent of the classification rule under 

processing. The value of (n) equals to the Label 

Cardinality (LC) -1, where LC refers to the average 

number of labels per instance. The last step in MLR-

PPC is the evaluation step, where the new multi-label 

classifier is tested against new data. 

Algorithm 1: MLR-PPC Algorithm 

Input: Multi-label dataset (D), minacc threshold 

Output: Multi-label classifier 

TD=Label Space (D) 

For each x in TD 

 { 

Generate all Positive Pairwise Association Rules (PARs) in a 

form of<<xy>>,where y has a lower transformationorder 

than x, using Predictive Apriori algorithm.  

} 

SLD= Transform (D, {HAPCF, HSDF, HAPCSDF}) //SLD: the 

transformed Single Label Dataset. 

Classify (SLD) //Using PART Algorithm 

For each rule(r) generated by PART 

{    

   Modify the consequent thus new consequent = consequent + 

[Z], where [Z]= labels with the best positive pairwise 

correlations with the label in the consequent of r. 

} 

Use the new multi-label classifier to test the data 

4. Evaluation of the Proposed PTMs and 

the Proposed MLR-PPC Algorithm 

In this section, a description of the evaluation step of 

both the proposed PTMs, and the proposed MLR-PPC 

algorithm is presented. Firstly, a description of the 

proposed PTMs evaluation is introduced, then the 

evaluation of the proposed MLR-PPC ispresented. It is 

very crucial to mention that the evaluation of the 

proposed PTMs is based on the accuracy of the single 

label classifier constructed using any of the proposed 

PTMs, and the final accuracy of the multi-label 

classifier when combined with any of the proposed 

PTMs, as well as the existing transformation methods. 

4.1. Evaluation of the Proposed PTMs 

The evaluation of the proposed PTMs consists of two 

phases. The first phase considers the accuracy of the 

base classifier trained on a transformed dataset using 

one of the existing (MFL, LFL) or the proposed PTMs 
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(HAPCF, HSDF, and HAPCSDF). This phase is not 

significant as the second phase, since it considers only 

one class labels, while the second phase of evaluating 

the proposed PTMs is more significant, as it considers 

predicting several class labels and not only one class 

labels. The significance of the second phase becomes 

more and more important as LC of the dataset gets 

higher. In general, the final accuracy of any multi-label 

classifier depends on the accuracy of two tasks. The 

first task is the classification of the transformed 

dataset, while the second task is the predicting of all 

labels that have been discarded due to the 

transformation step. The second task has more affect 

on the final accuracy of the multi-label classifier as it 

considers more labels than the first task. For example, 

if the LC of a dataset is 4, then after transforming this 

multi-label dataset into single label dataset, 3 labels 

will be discarded in average per instance. Thus, it is 

very crucial that the proposed PTMs facilitate the task 

of predicting these discarded labels. 

4.1.1. Evaluating the Proposed PTMs based on 

the Accuracy of the Base Classifiers 

Four data set have been used in this research 

(Emotions, Flags, Yeast). Table 1 describes the main 

characteristics of each data set. 

Table 1. Data sets main characteristics. 

Dataset Instances Attributes Labels LC Domain 

Yeast 2417 103 14 4.327 Biology 

Emotions 593 72 6 1.868 Media 

Flags 194 19 7 3.392 Image 

Scene 2712 294 6 1.074 Image 

Each dataset has been transformed into a single 

label dataset 5 times, where each time a transformation 

method is used. The considered transformation 

methods are: MFL, LFL, HAPCF, HSDF, and finally 

HAPCSDF. Then, five different base classifiers 

(PART, ONER, Ridor, CR, JRIP) were trained on the 

transformed versions of the datasets. Table 2 depicts 

the accuracy of the five base classifiers on the 

transformed version of Emotions dataset. 

Table 2. Evaluating the base classifiers on the transformed versions 
of Emotions dataset. 

PTMs PART ONER Ridor CR JRIP Average 

HAPCF 96.03 52.47 68.81 48.51 72.27 67.618 

HSDF 96.03 52.47 68.81 48.51 72.27 67.618 

HAPCSDF 96.03 52.47 68.81 48.51 72.27 67.618 

LFL 96.03 52.47 68.81 48.51 72.27 67.618 

MFL 96.53 64.85 84.15 62.37 82.67 78.114 

Table 3 shows the accuracy of the five base 

classifiers when applied to the Flags dataset after 

transformation. 

 

Table 3. Evaluating the base classifiers on the transformed versions 
of Flags dataset. 

PTMS PART ONER Ridor CR JRIP Average 

HAPCF 92.3 58.64 76.92 55.38 70.76 70.8 

HSDF 89.23 64.61 66.15 56.92 60 67.382 

HAPCSDF 89.230 63.076 75.384 50.7692 72.3077 70.15384 

LFL 84.61 43.07 66.15 41.53 46.15 56.302 

MFL 89.23 75.38 75.38 75.38 81.53 79.38 

Table 4 shows the accuracy of the five base 

classifiers when applied to the Yeast dataset after 

transformation. 

Table 4. Evaluating the base classifiers on the transformed versions 
of Yeast dataset. 

PTMs PART ONER Ridor CR JRIP Average 

HAPCF 97.341 63.8796 61.8729 60.5351 70.5686 70.83944 

HSDF 92.307 43.1438 70.5686 26.087 48.8294 56.1873 

HAPCSDF 93.624 61.4094 76.5101 57.3826 70.8054 71.94634 

LFL 90.103 36.4548 63.5452 28.4281 45.4849 52.8032 

MFL 95.65 74.247 74.247 74.247 80.936 79.86624 

It can be clearly seen from the previous 3 tables that 

the MFL has the best accuracy over the 5 base 

classifiers on the three multi-label datasets. The 

proposed PTMs overcome the LFL on the three 

datasets using Accuracy as evaluation metric. 

Tables 5, 6, and 7 summarize the evaluation of the 

proposed PTMs using four evaluation metrics 

(Precision, Recall, F1-Measure, and Receiver 

Operating Characteristic (ROC)) on the three datasets, 

averaged using the 5 base classifiers used previously. 

Table 5. Evaluating the proposed PTMs using four evaluation 
metrics on Emotions dataset. 

PTM Precision Recall F1-Measure ROC 

HAPCF 0.6452 0.6762 0.6422 0.8072 

HSDF 0.6452 0.6762 0.6422 0.8072 

HAPCSDF 0.6452 0.6452 0.6452 0.6452 

LFL 0.6452 0.6452 0.6452 0.6452 

MFL 0.7224 0.7814 0.7378 0.8224 

Table 6. Evaluating the proposed PTMs using four evaluation 

metrics on Flags dataset. 

PTM Precision Recall F1-Measure ROC 

HAPCF 0.6386 0.7078 0.663 0.7804 

HSDF 0.6374 0.6738 0.6436 0.7614 

HAPCSDF 0.6204 0.7016 0.648 0.7606 

LFL 0.4616 0.5632 0.4822 0.74 

MFL 0.6722 0.7938 0.7162 0.61 

Table 7. Evaluating the proposed PTMs using four evaluation 
metrics on Yeast dataset. 

PTM Precision Recall F1-Measure ROC 

HAPCF 0.6132 0.703 0.6338 0.6804 

HSDF 0.5346 0.5618 0.5148 0.7358 

HAPCSDF 0.6266 0.7194 0.6554 0.7346 

LFL 0.4746 0.5324 0.4762 0.7374 

MFL 0.7236 0.7938 0.7384 0.7094 

In general, and based on the evaluation metrics from 

the three previous tables, it can be seen clearly that the 
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MFL transformation method overcomes all other 

transformation methods on all the three datasets. Also, 

the proposed PTMs overcome the LFL transformation 

method in mostly all cases for the three datasets. 

To conclude, the evaluation process of the proposed 

PTMs based on the accuracy of the base classifier 

showed that the MFL is the best transformation 

method, while the LFL is the worst choice. For the 

proposed PTMs, it is clear that they showed an 

accepted performance when considering the first step 

of constructing the multi-label classifier. The following 

subsection describes the evaluation of the proposed 

PTMs based on the final accuracy of the constructed 

multi-label classifier using MLR-PPC algorithm.  

4.1.2. Evaluating the Proposed PTMs based on 

Facilitating Correlations Capturing 

To evaluate the proposed PTMs based on facilitating 

the correlations capturing task, the proposed MLR-

PPC algorithm was applied on the three multi-label 

data sets using the proposed PTMs (HAPCF, HSDF, 

and HAPCSDF), as well as the existing PTMs (MFL, 

LFL). PART algorithm have been used as a base 

classifier for the proposed MLR-PPC algorithm. Table 

8 to Table 10 show the final Accuracy of the MLR-

PPC algorithm, when applied using PART algorithm as 

a base classifier, and one of the PTMs from both 

existing (MFL, LFL) and proposed (HAPCF, HSDF, 

and HAPCSDF) transformation methods. 

Table 8. Evaluating MLR-PPC using Emotions dataset. 

MLR-PPC + PTMs Accuracy 

MLR-PPC-HAPCF 77.01 

MLR-PPC-HSDF 77.01 

MLR-PPC-HAPCSDF 77.01 

MLR-PPC-LFL 76.53 

MLR-PPC-MFL 61.29 

Table 9. Evaluating MLR-PPC using Flags dataset. 

MLR-PPC + PTMs Accuracy 

MLR-PPC-HAPCF 67.93 

MLR-PPC-HSDF 61.83 

MLR-PPC-HAPCSDF 60.32 

MLR-PPP-LFL 60.78 

MLR-PPC-MFL 50.32 

Table 10. Evaluating MLR-PPC using Yeast dataset. 

MLR-PPC + PTMs Accuracy 

MLR-PPC-HAPCF 55.67 

MLR-PPC-HSDF 57.41 

MLR-PPC-HAPCSDF 53.22 

MLR-PPC-LFL 53.16 

MLR-PPC-MFL 42.56 

The three previous Tables show clearly that the 

evaluation of the proposed MLR-PPC algorithm using 

the proposed PTMs overcomes the case when using the 

existing PTMs.  

4.2. Evaluation of the Proposed MLR-PPC 

Algorithm 

Table 11 depicts a comparison between the proposed 

MLR-PPC algorithm and other multi-label learning 

algorithms using four multi-label datasets with 

different characteristics. The compared algorithms 

have been chosen to represent the three types of 

correlations capturing approaches (first order, second 

order, and high order). 

Also, the chosen algorithms belong to both PTMs 

and AAMs approaches. Three multi-label evaluation 

metrics that are related to the classification task have 

been used to evaluate the proposed MLR-PPC 

algorithm (Accuracy (Acc), Exact Match, and 

Hamming Loss (H.L)). 

Table 11. Evaluating the proposed MLR-PPC with respect to the existing algorithms. 

Algorithm 
Flags Emotions Yeast Scene 

Acc Exact Match H.L Acc Exact Match H.L Acc Exact Match H.L Acc Exact Match H.L 

MLR-PPC-HAPCF 67.93 24.60 17.30 77.01 60.80 09.70 55.67 18.70 14.52 0.908 0.863 0.0014 

MLR-PPC-HSDF 61.83 20.00 18.90 77.01 60.80 09.70 57.41 19.00 13.11 0.908 0.863 0.0014 

MLR-PPC-HAPCSDF 60.32 24.60 19.50 77.01 60.80 09.70 53.22 18.00 14.57 0.908 0.863 0.0014 

MLR-PPC-LFL 60.78 30.70 17.50 76.53 60.30 10.30 53.16 15.70 14.58 0.881 0.858 0.0014 

MLR-PPC-MFL 50.32 20.00 25.70 61.29 33.10 14.70 42.56 09.70 18.93 0.885 0.859 0.0014 

BR 57.63 07.69 27.47 55.10 30.70 18.80 55.20 20.10 19.30 0.64 0.617 0.009 

LP NG NG NG 58.40 35.10 19.80 52.30 26.00 20.60 0.7350 0.6960 0.0900 

RAKEL NG NG NG 59.20 34.10 18.60 49.30 16.30 20.70 0.6940 0.6620 0.0950 

CC 55.87 20.00 29.89 58.40 34.90 19.70 52.10 25.40 21.10 0.7360 0.6690 0.1000 

PS NG NG NG 59.90 36.70 19.20 53.30 25.80 20.50 0.7510 0.7170 0.0840 

ECC 56.00 19.10 28.80 28.20 00.07 49.40 29.90 24.30 46.20 0.2700 0.0070 0.4700 

EPS NG NG NG 59.90 36.60 19.30 53.70 25.30 20.70 0.7510 0.7150 0.0850 

ML-KNN 55.50 09.80 28.40 36.60 14.30 26.20 52.00 18.90 19.30 0.69 0.643 0.085 

BP-MLL NG NG NG 27.60 27.60 43.30 18.50 18.50 32.20 0.21 0.212 0.057 
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Table 12 depicts a comparison between the 

proposed MLR-PPC algorithm and other multi-label 

learning algorithms on the four considered multi-label 

datasets and using two metrics that are most related  

to MLR task. The first metric is called One Erro 

(1Error), and the second metric is called Coverage 

(Cov.). 

Table 12. Evaluating the proposed MLR-PPC with respect to the existing algorithms. 

 Flags Emotions Yeast Scene 

 1Error Cov. 1Error Cov. 1Error Cov. 1Error Cov. 

MLR-PPC-HAPCF 0.0769 2.8923 0.0390 1.1930 0.0530 5.1725 0.0550 0.13377 

MLR-PPC-HSDF 0.1076 2.9384 0.0390 1.1930 0.0760 4.5975 0.0550 0.13377 

MLR-PPC-HAPCSDF 0.1076 2.8307 0.0390 1.1930 0.0630 5.1075 0.0550 0.13377 

MLR-PPC-LFL 0.1538 3.0000 0.0390 1.3520 0.0760 4.2982 0.0610 0.15800 

MLR-PPC-MFL 0.1076 3.7384 0.0340 1.5247 0.0430 5.6500 0.0590 0.16200 

BR NG NG 0.256 2.400 0.227 6.350 0.262 1.232 

LP NG NG 0.3100 2.235 0.2670 8.065 0.2460 0.733 

RAKEL NG NG 0.2600 1.986 0.2550 9.155 0.2370 0.593 

CC NG NG 0.2830 1.756 0.2560 7.249 0.2680 0.619 

PS NG NG 0.4270 2.331 0.3210 8.313 0.2870 0.845 

ECC NG NG 0.8020 3.817 0.6850 10.731 0.7750 2.662 

EPS NG NG 0.3000 2.138 0.2650 8.303 0.2250 0.689 

ML-KNN NG NG 0.263 2.320 0.228 6.300 0.219 0.456 

BP-MLL NG NG 0.318 3.150 0.235 8.005 0.821 0.7447 

From Tables 11 and 12, the following significant 

points could be noted: 

 In general, and using any of the proposed or existing 

PTMs, MLR-PPC overcomes the existing 

algorithms using the four datasets, and based on the 

most commonly used evaluation metrics. 

 MLR-PPC shows a superior performance over most 

other existing multi-label algorithms, when using 

the HAPCF or HSDF as a transformation methods. 

 In general, MLR-PPC when applied using the 

proposed PTMs overcomes the case when applied 

using the existing PTMs, on the four datasets using 

the five evaluation metrics. 

 The transformation step of a multi-label dataset into 

single label dataset plays an important role in the 

predictive performance of any multi-label classifier. 

Hence, this step should be considered wisely. Also, 

the transformation step should facilitate capturing 

the most accurate correlations among labels, in 

order to enhance the final accuracy of any multi-

label classifier. 

Table 13 shows the running time (in seconds) for the 

proposed algorithm with respect to the PTMs being 

used. 

 

 

 

 

 

 

Table 13. Running time for the proposed MLR-PPC algorithm with 
respect to PTM being used. 

Dataset Algorithm Running Time (S) 

S
ce

n
e 

MLR-PPC-HAPCF 5.1 

MLR-PPC-HSDF 5.1 

MLR-PPC-HAPCSDF 5.17 

MLR-PPC-LFL 5.4 

MLR-PPC-MFL 6.33 

E
m

o
ti

o
n

s 

MLR-PPC-HAPCF 1.06 

MLR-PPC-HSDF 1.06 

MLR-PPC-HAPCSDF 1.06 

MLR-PPC-LFL 1.07 

MLR-PPC-MFL 1.06 

F
la

g
s 

MLR-PPC-HAPCF 1.0 

MLR-PPC-HSDF 1.0 

MLR-PPC-HAPCSDF 1.0 

MLR-PPC-LFL 1.01 

MLR-PPC-MFL 1.0 

Y
ea

st
 

MLR-PPC-HAPCF 3.52 

MLR-PPC-HSDF 3.41 

MLR-PPC-HAPCSDF 3.35 

MLR-PPC-LFL 3.49 

MLR-PPC-MFL 3.72 

Figure 1 depicts the running time for the proposed 

MLR-PPC algorithm with respect to the three proposed 

PTMs (HAPCF, HSDF, and HAPCSDF) and the two 

existing PTMs (LFL and MFL). 

From Table 13 and Figure 1, the conclusion that 

could be made is that the proposed PTMs showed 

better results in the four considered datasets in term of 

running time. Moreover, the HSDF showed the best 

running time among the proposed and the existing 

PTMs. The HAPCF and the HAPCSDF nearly showed 

the same performance on the four datasets. 
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Figure 1. The MLR-PPC running time with respect to the PTM 

being used. 

5. Conclusions and Future Work 

In this paper, three new PTMs have been proposed. 

These PTMs are based on pairwise positive 

correlations among labels, and not based on labels 

frequency as in conventional PTMs. Also, this paper 

proposed a second order MLR algorithm. The 

proposed algorithm showed a superior performance 

when compared to a wide variety of multi-label 

classification and ranking algorithms. Also, this paper 

showed that the proposed PTMs are better than the 

existing PTMs;due to two main reasons. First, the 

proposed PTMs do not suffer from the common 

problems in the traditional PTMs that depend on the 

frequency of labels as a transformation criterion 

(imbalance class distribution with the MFL and the 

small number of instances associated with each label 

when using the LFL). Second, the proposed PTMs 

guarantees the exploiting of the most accurate positive 

correlations among labels, and hence, improving the 

predictive performance of the classification and 

ranking tasks. 

As a future work, we intend to maximize the 

exploitation of the correlations among labels by 

proposing new high order MLR algorithms. Also, we 

intend to propose new PTMs that optimize the 

accuracy of the base classifier on the transformed 

dataset, as well as the accuracy of predicting the labels 

that have been discarded due to the transformation 

step. 
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