
348 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Automated Software Test Optimization using Test

Language Processing

Mukesh Mann1, Om Prakash Sangwan2, and Pradeep Tomar3
1,3Department of Computer Science and Engineering, Gautam Buddha University, India

2Department of Computer Science and Engineering, Guru Jambheshwar University of Science and

Technology, India

Abstract: The delivery of error free software has become a major challenge for software practitioner since many past years.

In order to deliver an error free software testers spends 40-50 % software design life cycle cost during testing, which further

get incremented with changing user demands. The Large existence of test cases for a particular functionality is possible and

some of them may cause software fails. Thus it raises a demand to automate existing approach of manual testing which can

minimize execution efforts while maintaining the quality of testing. In this paper, a regression framework based on keyword

oriented data-driven approach has been proposed for generation and execution of test cases. The methodology for the

developed framework is based on Test Language Processing (TLP) which acts as a comprehensive approach to design and

execution of test cases. The framework is tested on an open source web application called Vtiger-Customer Relationship

Management (CRM) version 5. The framework is compared against manual testing in terms of test suite execution and their

optimization. Based on our experiments it is concluded that (1) Test execution time using TLP based framework is significantly

low and (2) a test suite optimization of 83.78% is achieved through the proposed TLP framework.

Keywords: (TLP) framework, manual testing, effort reduction, test optimization.

Received June 17, 2015; accepted July 4, 2016

1. Introduction

Recent years have seen a dramatic growth in the

software industries whose focus is on fast delivery of

client’s requirements. In order to maintain rapidness in

delivery, functional quality of software system has

become a new subject of interest. In order to meet this

demand various software testing techniques have been

proposed, for instance, Boundary Value Analysis

(BVA) in which test cases are designed from a given

input domain whose values are either on the boundary

or near to boundary.

Figure 1. Input values for a program.

Such test cases results in high fault detection [12].

Extension to BVA is robustness testing through which

invalid test cases are selected, and observe the program

under test. Two more states are induced, one below

and other above the minimum and maximum value

respectively, i.e., 0 and 102 as shown in Figure 1.

Other frequently used testing techniques include

control flow, coverage [5, 26, 27, 28, 31, 36] path, data

flow, and loop testing [23, 37].

Many similar approaches are there to test a software

system with one common goal which is to decrease test

time and increase faulty coverage. Thus to apply and

implement similar testing techniques, a traditional

manual approach is usually followed in most practical

scenarios in which designed test cases are executed by

manual tester. Certainly, such techniques save huge

time in designing effective test cases but the efforts

consumed in design and manual execution of these

designed test cases using prior techniques are very

high. Therefore the requirement to establish a test

automation framework in organization progressing

towards mature quality assurance model has become a

demand in today’s agile environment. Automation

tools are used to design and execute effective test

cases, therefore investment in such tools is a subject of

research and it is always stated that careful investments

in any such tools may decide the success and failure of

an enterprise [18, 34, 36, 41].

In this paper, a regression framework is designed

and developed for functional test cases and to compute

the level of test case optimization achieved during

regression cycle in comparison to manual testing.

 Section 2, gives introduction about the related work

in this area. Section 3 discusses in detail the

methodology and framework. Section 4 discusses the

experimental setup and design. In section 5

performance evaluation of the proposed framework is

done. The effort reduction using proposed framework

is discussed in section 6 and finally, the paper is

Boundary Values

0 1 2 50 99 100 102

Inside Boundary Outside Outside

Automated Software Test Optimization using Test Language Processing 349

summarized by discussing conclusion and future

prospects in section 7.

2. Related Work

Previous studies in software engineering estimated that

more than fifty percent of development cost is

consumed in software testing, and some studies also

pointed out the high economic impact on the United

States due to poor testing infrastructure [9, 25].

Therefore the need for improving the existing testing

infrastructure and development of better software

testing techniques that can meet up the demand for

today’s complex software has opened up the door for

further research in the areas such as the design of

effective test cases that can validate dynamic user

requirements and how to execute them in minimum

time. These new challenges go further to open up a

debate over longstanding problems such as how to

quantify and evaluate more robust testing criteria and

how to minimize regression testing efforts.

 In last few years, automated software testing has

given a huge focus in the software industry as verified

by many specific events, conferences, and workshops

across the globe. But the two main important aspects of

software testing i.e., test data generation and their

execution is still in infancy.

 Although many researchers have proposed many

techniques [6, 8, 14, 15, 29, 36] for automatic test case

generation which has overwhelm reduced the burden

of manually writing unit test cases but still we are

missing a general purpose tool which can test a

software system with great zeal.

 One possible method to improve the yield of

automation testing is to use the method of formal

specifications that can guide test data generation and

execution [12, 17, 24] but unfortunately, most of these

specifications are missing in practice. A number of

automation tools for testing are available such as Quick

Test Professional-(QTP) (Mercury), Rational tool from

IBM and Selenium as an open source. The wonderful

advantage of these tools is in automatic execution of

manually created test sequences without the need for

manual intervention. Among many available testing

tools QTP [24] and Selenium are used by most

software testing practitioners. The use of a particular

tool depends on a number of factors such as cost,

availability, proficiency, easiness and the scripting

time. A few advantages of considering QTP for testing

solution by many organizations are summarized below

 The language used is Visual Basic (VB) script

which is very easy to learn and the organization

does not really require skilled coders to work with

it.

 The object repository is a great feature in this tool

with which the team can meet up the demand for

today’s component-based orientation and web

service testing.

 An excellent technical support which is missing in

selenium due to its open source nature and hence

developers have to rely on community support.

 Although our motivation is not to underestimate

Selenium as it has many other features that arguments

it applicability but again such choices have always

been biased by the organizations testing requirements.

Our motivation in this paper is to propose a regression

framework through TLP methodology using QTP, But

before that a brief of available Regression Test case

Selection Technique (called as RTS) is necessary, with

various RTS techniques proposed in literature one can

select test case’s from test suite (T), such a T validate

if any previously modified part of software is

continuously working without causing any error

condition. Thus RTS has an advantage in reducing

efforts such as testing cost when working in the

dynamic environment. Table 1, briefly summarizes the

comparison of such techniques [4].

Table 1. Comparison of various RTS techniques.

RTS Technique Contributor(s) Criteria Pros Cons

Data Flow Analysis [3, 22, 23, 33]
Data flow in programs and it

structure

Modifications like intraprocedural and

interprocedural are easy to analyze.
Low safety level and highly imprecise

Slicing Techniques [1. 5]
Involves slicing in programs and

dependency graph models

Can analyze intraprocedural and

interprocedural modifications.

Imprecise and low-level safety. It also involves high

cost as compared to other data- flow methods

Module Based Firewall

Techniques

(MFT)

[14, 19, 38]
Modules dependencies are

analyzed

Due to analysis of source code of modified

modules, it is more efficient than other

regression techniques

Low safety and high imprecision level

Modified Code Entity

Technique
[42]

High granularity level can be

adapted

High efficiency and safety make it most safe

RTS among other techniques.
imprecise nature

Textual Based Differencing

Techniques

(TBDT)

[9, 8, 10, 16, 32]
Textual based differencing of

procedural programs like c
Easy to implement and average safety level.

Safety is average and it is difficult to adjust TBDT to

current languages. Also for big programs, its

efficiency is too low

Graph Walk Technique

(GWT)
[12] Flow graph are analyzed in depth Safe and precise in nature Efficiency is less than [12, 14]

Database Techniques [7, 32]
All states in database need to be

taken into consideration
Safety is high. Precision is low

Web Based Techniques
[2, 7, 11, 20, 21,

40]

Source code for web service

cannot be used for analysis of

whole web page..

This technique is safer and system designed

using [2] is highly efficient in comparison to

techniques proposed by [11, 21]

The precision level depends on the net content of

information in a module, thus a varying level of

precession can be observed with different modules.

AspectJ Techniques [13, 16, 39]

Dependencies occurrence due to

join-points and Pointcuts must be

taken into account

The technique proposed by [13] is more safe

as compared to [16].
These techniques are computationally high in cost.

350 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

In the next section, the methodology and the

framework are introduced to:

1. Automate the process of manually executing test

cases.

2. To optimize functional test cases so as to minimize

regression testing efforts.

3. Methodology and Framework

 Definition: Test Language Processing (TLP): “A

tester-specified dictionary of keywords and

parameters that facilitate communication among

testers and other subject-matter specialists” [22].

 Where the keyword is an English word specified by

the manual tester as per their level of understanding.

Usually, it is recommended to specify meaningful

keyword so that it becomes easy to understand the

context in which they were used.

 The TLP can be seen as a dictionary of keyword

and their parameters. Various elements present over

any WebPages/windows application are called an

object for that application. Form fields such as

user_name and password are an example of an object.

An object itself constitutes a dictionary. While testing

any such system the dictionary plays an important role.

A logical value to an object is called its parameter and

whatever the operation(s) carried out on such an object

represents its keyword.

 For Example: consider a web page that has

constituted a login screen having:

1. user_name.

2. User_password fields.

Such fields are termed as objects and their logical

names are “user_name” and “user_password”. The

type of these objects is “INPUT” which means a user is

allowed to enter text in these objects. Therefore the

“INPUT” is termed as a keyword to these objects. The

value entered by the user in the object is called its

parameter. In summary, an object constitutes an

object’s logical name and its dictionary (keyword and

parameter) as shown in Figure 2.

Figure 2. The structure of TLP.

 The two teams play a vital role in TLP

infrastructure management are:

1. Functional testing team.

2. Automation testing team.

Functional testing is responsible for adding and

updating new keywords whereas the automation team’s

responsibility is to design, develop and manage test

scripts on the basis of keywords supplied by the

functional team.

A complete regression framework using TLP

methodology for reducing the manual testing time and

for achieving the highest level of test optimization

during regression testing is shown in Figure 3.

 Test Driver

 Configuration File

 Driver Script

 Automation Script

 Functional Library

 Test Data

 Output

F
u

n
ct

io
n

a
l

T
e

a
m

U
p

d
a

ti
n

g

Generate Run

Update
Test Driver

Script

Dr_Workbook

Resources

Functional
Library

Object
Repository

Test_Data

Test Automation
Script

XL_Test
Script

Result

Automation Team

Graphical user Interface and Web Testing

Web or GUL Application Testing

Figure 3. The Framework.

A brief overview of various terms appeared in

proposed methodology are discussed below.

 Driver-the driver script and its workbook are

contained in a folder called Driver.

 Test Driver Script-The code for the framework is

implemented in a workspace called Test driver

script.

 Driver workbook-an excel sheet that contains the

sequence of tasks/ modules to be tested.

 Test Automation Script-Actual keywords as

specified by the functional tester are contained in an

excel sheet called XL_test_script which is further

put in a folder named Test Automation Script. The

sequence which is specified in XL_test_ scripts are

derived by the Driver Workbook.

 Functional libraries-various functions are

implemented for various requirements and

keywords. These functions are well coded in a

workspace. The name of such workspace is called

Functional libraries.

 Object repository-the various objects in an

application is identified through the object

repository that contains number of predefined

identifiers to identify a particular object.

 Test data: the data to be supplied while testing an

Object. It is specified in an excel sheet called test

data.

 Output-this folder holds the testing report in various

formats such as excel, image, text format.

Thus the TLP infrastructure has two main teams as

(Keyword,Parameter) Login_UserName_Ed

ObjectLogicalName Dictionary

Automated Software Test Optimization using Test Language Processing 351

a) Functional testing team-specify which module (s) is

/are to be tested for a given application and timely

update keywords sequence.

b) Automation testing team-implements the keywords

sequence in the form of test scripts.

The collaborative efforts of both teams result in

effective framework development. Following are the

main steps for design, development, and execution of

framework.

 The test sequences specified by the functional team

in XL_test_script are implemented by the

automation team by writing the code using VB

script. Before that, loading of the configuration file

is done to specify the path of SUT.

 The automation team implements the driver script in

such as way that it calls the automation script as per

the sequence of driver script. The sequence

specified in the automation script cannot be

implemented without the help of functional

libraries. Thus the selection of functional libraries

according to the requirements is very necessary for

the success of automation process.

 After the development of the framework, the

execution is carried out by the automation team. The

update of various elements is done by both teams in

collaboration as shown in methodology

 The output is stored in excel file that contains

detailed information about the result such as total

testing time for individual modules, a number of

passed/failed test cases and snapshots of failed test

cases.

4. Experimental Setup and Design

The performance of proposed framework using the

TLP methodology is validated using an open- source

application [35]. The large size and high complexity of

this Customer Relationship Management (CRM)

application ensure more possibility for testing modules

in depth and it also builds confidence in the developed

framework for more complex and large size

applications. The SignIn-Signout module of this

application is chosen to test the framework. Also in a

later phase, a regression testing framework is also

developed to check application by deleting many

existing functionalities including various forms,

buttons, and Text name. This is done in order to check

the working of the framework under heavy changes in

application and to make sure that the framework is able

to capture errors during regression testing with great

zeal.

The SigIn-Signout functionality of Vtiger

application is considered as a Module Under Test

(MUT), for which 20 subjects or functional testers

each having an industrial experience in testing in a

range of 1-3 years were selected to functionally test the

MUT with dataset [22] obtained using (BVA). The

average testing time for the MUT is obtained by asking

each subject to test it twenty times using the given

dataset. In this way, we get manual test readings for the

MUT. The same work is the carried out using the

developed framework by executing it on QTP 10.00

[30] and windows 7 version having the configuration

of 64 bit and 4GB RAM. The Driver script for MUT as

made by the automation tester is first called by the

executed framework. A complete driver script for the

MUT is shown in Figure 4.

Figure 4. Driver_script for MUT.

The key elements of Driver Script are:

 Tc_ID-randomly chosen test case id is assigned with

each Script_id. This helps to identify functionalities

which need to be tested.

 Module_name- The name of MUT to be tested, here

“Lead” is the MUT in driver_script.

 Script_id-It represents the tasks to be performed.

For example “SC_SIGNIN_1’’ in Script_id

represents that user had login for the first time. For

the second time, the script id is SC_SIGNIN_2. The

automation script runs according to these sequences.

 Execution-It represents which Script_id the tester

wants to run. The symbol “Y” (yes) in front of any

script-id represents that tester want to run that id

whereas the symbol “N” stands for No.

 Execution_time- It counts the total execution time

for a particular Script id.

Automation tester develops scripts as per the

sequences specified in Script_id column of Figure 4.

The automation script is shown in Figure 5.

The key elements of Automation script are:

 TC ID-It is used to track which test scripts were

failed/passed during the execution.

 Module name-the module to be tested.

 Script id-performs the same task as performed in

driver_script. More the functional requirements

more will be the steps required to execute a

script_id.

352 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

 Object logical name-It is the logical name of an

object as specified by the tester.

 Keyword-the operation to be performed on a

particular object is identified by the keyword. For

instance, the keyword “CLICK” represents a mouse

click operation on an object in the application.

 Chklogname-the validation of supplied input and/or

the properties of a current object is verified using

Chklogname filed.

Figure 5. Test script for automation.

Finally, the framework is executed and results

summary is shown in Table.

Table 2. Result summary.

Pass Failed Total

122 199 321

Tcid
Modulena

me
Scriptname Objectlogname Status

Screensho

ts

Prpna

me

Expv

al

Actva

l

TC00

1
Lead

SC_SIGNI

N1

Login_Username_

ED
Pass

TRUE

TC00

2
Lead

SC_SIGNI

N1

Login_Password_

ED
Pass

TRUE

TC00

3
Lead

SC_SIGNI

N1
Login_Signin_IM Pass

TRUE

TC00

4
Lead

SC_SIGNI

N1
colortheme_WE Pass

TRUE

TC00

5
Lead

SC_SIGNI

N1
logintheme_WL Pass

TRUE

TC00

6
Lead

SC_SIGNI

N1
loginimage_IM Pass

TRUE

TC00

8
Lead

SC_SIGNI

N1

Login_Username_

ED
Pass

value

admi

n
admin

TC01

0
Lead

SC_SIGNI

N1

Login_Password_

ED
Fail Snapshot value

admi

n

admin

1

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

TC01

2
Lead

SC_SIGNI

N1
Loginmsgobj_WE Fail Snapshot

outerte

xt

admi

n
*U&P

*Indicates that you must specify a valid username and password

The result summary is briefly discussed below.

 Propname-Objects in the application is validated

against their property values. The Propname

indicates its property value. If the required property

(Chklogname) as mentioned in the driver script is

not matched with the Propname then a test gets a

failed status.

 Actval-The actual value achieved during the actual

execution of the framework.

 Screenshot- It represents the snapshots for the failed

test cases.

 Expval-it represents the expected outcome

according to the client’s requirements.

 All other Labels i.e., Module, Tci_id, Script_name and

ObjectLogicalName are same as discussed before

Table 3 indicates average testing time in manual

approach.

Table 3. Time in manual approach.

Iteration_count

No. of

Test_case

executed

No. of Passed

Test _case

No. of Test

_case Failed
Total_Time

1 19 10 9 1200

2 13 6 7 1440

3 13 4 9 1200

4 13 4 9 1260

5 13 4 9 1020

6 13 4 9 1320

7 13 4 9 1200

8 13 4 9 1380

9 13 4 9 1500

10 13 4 9 1110

11 13 4 9 1260

12 13 4 9 1380

13 13 4 9 1320

14 13 4 9 1440

15 13 4 9 1260

16 13 4 9 1500

17 13 5 8 1380

18 13 4 9 1440

19 13 4 9 1320

20 13 4 9 1260

The testing time using proposed TLP based

framework is shown in Table 4.

Table 4. Time in TLP based approach.

Iteration_count

No. of

Test_case

executed

No. of Passed

Test _case

No. of Test

_case Failed
Total_Time

1 17 8 9 75

2 16 6 10 80

3 16 6 10 80

4 16 6 10 80

5 16 8 8 80

6 16 6 10 80

7 16 6 10 80

8 16 8 8 76

9 16 6 10 74

10 16 6 10 76

11 16 6 10 76

12 16 8 8 76

13 16 6 10 76

13 16 6 10 75

15 16 8 8 77

16 16 6 10 75

17 16 6 10 78

18 16 8 8 76

19 16 6 10 75

20 16 6 10 77

file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Login_Password_ED.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp
file:///C:/Users/mann/Desktop/figures/Original%20Files%20from%20which%20figures%20are%20drawn/screenshots_file/Loginmsgobj_WE.bmp

Automated Software Test Optimization using Test Language Processing 353

For performance analysis of the methods, a

correlation and regression analysis is performed

5. Performance Analysis

The regression analysis [10] for each approach is

shown in Figures 6 and 7.

Figure 6. Regression analysis in manual testing approach.

Figure 7. Regression analysis in TLP based testing approach.

The standard error obtained between the regression

line and various data points are found to be 0.260 for

manual approach and 0.126 for the proposed

automation approach. A final comparison between

both the methodologies is shown in Figure 8.

Figure 8. Manual vs. TLP efficiency.

 Thus, the time remains almost same with

successive iterations in proposed framework i.e. time

taken to reveal a fault during regression cycle is same.

While in manual testing, it depends on the speeds,

accuracy, and performance of manual tester.

6. Effort Reduction using Regression

Framework

With regression testing the tester re-test all modified

parts of the software and ensures that any change to the

software has not introduced any error in previously

tested functionalities and also ensures that the newly

added functionalities are working fine. With TLP

methodology we have also developed a regression

testing framework by extending the SigIn-Signout

framework. The developed regression framework is

used for retesting some old functionalities of a CRM-5

Module-Create_Lead. This module has a number of

forms, Text fields, Buttons, and text area. We first

check each area manually and then some of the

functionalities of this module are removed. Our motive

is to check how much time a tester will take to identify

these changes manually and to see whether the

developed regression framework is more efficient in

finding the changes than manual approach.
Given below are the steps followed to measure

regression time for Create_Lead Module of Vtiger

application

1. Open the Vtiger’s Create_Lead Module in local

host.

2. Some functionalities of module Create_Lead are

removed as shown in Table 5.

3. The developed regression framework for

Create_Lead is launched in QTP.

4. Execute the framework and note total regression

testing time along with a count of passed/failed test

cases.

The testing time obtained using regression framework

is compared against manual testing time. Our basic

assumption during regression testing is that any change

to the application will affect previous functionalities.

With this assumption, some functionality are

intentionally removed from the module Create_Lead as

shown in Table 5. The developed regression

framework is then executed on the Create_Lead with

removed functionalities and the regression testing time

using developed framework (Table 6) is compared

against manual regression testing time. As manual

tester has to re-test all functionalities of the

Create_Lead module by re-executing all previous test

cases, therefore the manual testing time will remain

same as it was before removing the functionalities.

Table 5. Removed functionalities from create_lead module.

S.no functionality Removal Status

1 Lead_Fax Y

2 Lead_Email Y

3 Lead_Phone Y

4 Lead_Mobile Y

5 Lead_firstname Y

6 Lead_Leadsource Y

7 Lead_Leadstatu_WL Y

8 Lead_No N

9 Lead_Lat Name N

10 Lead_Company N

11 Lead_Title N

*Y-Yes| N-No

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19

TLP
M…

Iterations

Time

354 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Table 6. TLP execution time.

TC_ID Module_Name Script_ID Execution Execution_Time

TC01 Lead SC_SIGNIN1 Y 0:01:19

TC02 Lead SC_CreateLead Y 0:01:05

TC03 Lead SC_EditLead Y 0:00:09

TC04 Lead SC_SaveLead N 0:00:08

TC05 Lead SC_Delete Y 0:00:05

TC06 Lead SC_Logout Y 0:00:03

Both manual and TLP based regression framework

approach are compared in Table 7. It is clear that with

manual regression testing it takes 37 test cases to

completely re-check all functionalities in total 300 sec

while in TLP based regression framework only 6 test

cases in 161 sec are sufficient to do so.

Table 7. Total testing time in manual vs. regression framework.

S.no Manual Regression framework

Total_ test_ case 37 6

Total_Time (in sec) 300 169

Therefore, the percentage reduction in test cases is

calculated using following formula % test case

reduction=(total test cases in manual-total test case in

regression framework)/ (total test cases in manual)

*100.Thus, % reduction=((37-6)/37)x100=83.78%

 In this way, a high level of test case reduction is

achieved using the TLP based framework.

7. Conclusions and Future Prospects

In this paper, a Regression Framework (TLP based) is

developed for test suite execution and optimization in

minimum time. With detailed analysis, it has been

observed that in manual testing the time value depends

on each successive iteration because in manual

approach the testing depends on the human efficiency

which itself depends on a number of factors such as-

experience and tester’s domain knowledge. But with

the developed framework it has been observed that

successive cycles of iterations do not play a much vital

role as far as time is concerned. With each iteration,

the testing time remains same for MUT. Thus this

framework helps in carrying out testing at a rapid rate.

The framework is further extended to check if it is

able to reduce manual regression efforts. With the

successful execution of regression framework, it has

been verified that 83.7 % of test suite reduction is

achieved along with fully tested MUT which is not

possible through the mannual approach in time bound

environment. The proposed solution is not only

applicable for web applications but also to mobile and

desktop applications testing. In starting phase of paper

the SignIn-Signout module was tested to build

confidence in the proposed system. But in later phase

i.e., during regression framework development, the

proposed solution is tested on the larger module

(Create_Lead) that contains a number of forms, input

texts and radio buttons. The smooth working of

framework biased its application to more complex and

larger systems.

On problem faced during the development of

proposed solution is the time taken to develop

requirement oriented test scripts. The time can be

minimized by giving proper training to the automation

team. It is also pointed out that script development

time becomes less important when deploying the large

scale complex application.

In future, this work can be extended to check

whether more optimized test scripts are possible to

decrease script development time and also managing

whole testing infrastructure for more complex

benchmarks under a single solution.

 Acknowledgement

This research work is supported by University Grant

Commission, Govt. of India under Grant No. F/

NFO201415OBCDEL16123

References

[1] Bates S. and Horwitz S., “Incremental Program

Testing Using Program Dependence Graphs,” in

Proceedings of the 20th ACM SIGPLAN-SIGACT

symposium on Principles of Programming

Languages, Charleston, pp. 384-396,1993.

[2] Bicevskis J., Borzovs J., Straujums U., Zarins A.,

and Miller E., “SMOTL-A System to Construct

Samples for Data Processing Program

Debugging,” IEEE Transactions on Software

Engineering, vol. 5, no. 1, pp. 60, 1979.

[3] Binkley D., “Semantics Guided Regression Test

Cost Reduction,” IEEE Transactions on Software

Engineering, vol. 23, no. 8, pp. 498-516, 1997.

[4] Biswas S., Mall R., Satpathy M., and Sukumaran

S., “Regression Test Selection Techniques: A

Survey,” Informatica, vol. 35, no. 3, pp. 289-321,

2011.

[5] Boujarwah A. and Saleh K., “Compiler Test Case

Generation Methods: A Survey and Assessment,”

Information and Software Technology, vol. 39,

no. 9, pp. 617-625, 1997.

[6] Boyer R., Elspas B., and Levitt K., “SELECT-A

Formal System for Testing and Debugging

Programs by Symbolic Execution,” ACM

SIGPlan Notices, vol. 10, no. 6, pp. 234-245,

1975.

[7] Chaudhary N., Sangwan O., and Arora R.,

“Event-Coverage and Weight Based Method for

Test Suite Prioritization,” International Journal

of Information Technology and Computer

Science, vol. 6, no. 12, pp. 61-66, 2014.

[8] Chen Y., Rosenblum D., and Vo K., “TestTube:

A System For Selective Regression Testing,” in

Proceedings of the 16th International Conference

Automated Software Test Optimization using Test Language Processing 355

on Software Engineering, Sorrento, pp. 211-220,

1994.

[9] Dustin E., Rashka J., and Paul J., Automated

Software Testing: Introduction, Management,

And Performance, Addison-Wesley Professional,

1999.

[10] Gavetter F., In: Statistics for Behavioral

Sciences, Wadsworth Publishing, 2010.

[11] Graham D. and Fewster M., Experiences of Test

Automation: Case Studies of Software Test

Automation, Addison-Wesley Professional, 2012.

[12] Grieskamp W., Gurevich Y., Schulte W., and

Veanes M., “Generating Finite State Machines

from Abstract State Machines,” ACM SIGSOFT

Software Engineering Notes, vol. 27, no. 4, pp.

112-122, 2002.

[13] Gupta R., Harrold M., and Lou Soffa M.,

“Program Slicing-Based Regression Testing

Techniques,” Journal of Software Testing

Verification and Reliability, vol. 6, no. 2, pp. 83-

111, 1996.

[14] Haraty R., Mansour N., and Daou B., In Volume

3 of Advanced Topics in Database Research, Idea

Group Publishing, 2004.

[15] Harris P. and Raju N., “A Greedy Approach for

Coverage-Based Test Suite Reduction.,” The

International Arab Journal of Information

Technology, vol. 12, no. 1, pp. 17-23, 2015.

[16] Harrold M. and Lou Soffa M., “Interprocedual

Data Flow Testing,” ACM SIGSOFT Software

Engineering Notes, vol. 14, no. 8, pp. 158-167,

1989.

[17] Harrold M. and Rothermel G., “Performing Data

Flow Testing on Classes,” ACM SIGSOFT

Software Engineering Notes, vol. 19, no. 5, pp.

154-163,1994.

[18] Leung H. and White L., “A Study of Integration

Testing and Software Regression at The

Integration Level,” in Proceedings Conference

on Software Maintenance, San Diego, pp. 290-

301, 1990.

[19] Lin F., Ruth M., and Tu S., “Applying Safe

Regression Test Selection Techniques to Java

Web Services,” in Proceedings International

Conference on Next Generation Web Services

Practices, Seoul, pp. 133-142, 2006.

[20] Mann M. and Sangwan O., “Generating and

Prioritizing Optimal Paths Using Ant Colony

Optimization,” Computational Ecology and

Software, vol. 5, no. 1, pp. 1-15, 2015.

[21] Mann M. and Sangwan O., “Test Case

Prioritization Using Cuscutta Search,” Network

Biology, vol. 4, no. 4, pp. 179-192, 2014.

[22] Mann M. and Sangwan O., “Test Language

Processing: A Novel Approach for Automated

Software Testing,” Software Engineering:An

International Journal, vol. 3, no. 2, pp. 29-34,

2013.

[23] Nidhra S. and Dondeti J., “Blackbox and

Whitebox Testing Techniques-A Literature

Review,” International Journal of Embedded

Systems and Applications, vol. 2, no. 2, pp. 29-

50, 2012.

[24] Quick Test Professional: QTP helps

documentation. Available with QTP 10.00

Version,” 2014.

[25] Ramamoorthy C., Ho S., and Chen W., “On the

Automated Generation of Program Test Data,”

IEEE Transactions on Software Engineering, vol

SE-2, no. 4, pp. 293-300, 1976.

[26] Rothermel G. and Harrold M., “A Safe, Efficient

Regression Test Selection Technique,” ACM

Transactions on Software Engineering and

Methodology, vol. 6, no. 2, pp. 173-210, 1997.

[27] Ruth M. and Tu S., “A Safe Regression Test

Selection Technique for Web Services,” in

Proceedings of 2nd International Conference on

Internet and Web Applications and Services,

Morne, pp. 47, 2007.

[28] Ruth M. and Tu S., “Towards Automating

Regression Test Selection For Web Services,” in

Proceedings of the 16th International Conference

on World Wide Web, Banff, pp. 1265-1266, 2007.

[29] Sangwan O., Bhatia P., and Singh Y., “Radial

Basis Function Neural Network Based Approach

to Test Oracle,” ACM SIGSOFT Software

Engineering Notes, vol. 36, no. 5, pp. 1-5, 2011.

[30] Singh Y., Software Testing, Cambridge Press,

2012.

[31] Taha A., Thebaut S., and Liu S., “An Approach

to Software Fault Localization and Revalidation

Based on Incremental Data Flow Analysis,” in

Proceedings of the 13th Annual International

Computer Software and Applications

Conference, Orlando, pp. 527-534, 1989.

[32] Tarhini A., Fouchal H., and Mansour N.,

“Regression Testing Web Services-based

Applications.,” in Proceedings of the IEEE

International Conference on Computer Systems

and Applications, Dubai, pp. 163-170, 2006.

[33] Vokolos F. and Frankl P., “Empirical Evaluation

of The Textual Differencing Regression Testing

Technique,” in Proceedings of International

Conference on Software Maintenance, Bethesda,

pp. 44-53,1998.

[34] Vokolos F. and Frankl P., in Reliability, Quality

and Safety of Software-Intensive Systems,

Springer, 1997.

[35] Web Link, Online Available at-

http://sourceforge.net/projects/vtigercrm/files/vti

ger CRM, Last Visited, 2005.

[36] Web Link, Online, Available at-

http://www.internetjournals.net/journals/tir/2009

/January/Paper% 2006.pdf., Last Visited, 2014.

[37] White L. and Leung H., “A Firewall Concept for

Both Control-Flow and Data-Flow in Regression

356 The International Arab Journal of Information Technology, Vol. 16, No. 3, May 2019

Integration Testing,” in Proceedings of

Conference on Software Maintenance, Orlando,

pp. 262-271, 1992.

[38] Willmor D. and Embury S., “A Safe Regression

Test Selection Technique for Database-Driven

Applications,” in Proceedings of 21st IEEE

International Conference on Software

Maintenance, Budapest, pp. 421-430, 2005.

[39] Xu G. and Rountev A., “Regression Test

Selection for Aspectj Software,” in Proceedings

29th International Conference on Software

Engineering, Minneapolis, pp. 65-74, 2007.

[40] Xu L., Xu B., Chen Z., Jiang J., and Chen H.,

“Regression Testing for Web Applications Based

on Slicing,” in Proceedings of the 27th Annual

International Conference on Computer Software

and Applications, Dallas, pp. 652-656, 2003.

[41] Zallar K., “Are you Ready for the Test

Automation Game,” Software Testing and

Quality Engineering, vol. 3, pp. 22-27, 2001.

[42] Zhao J., Xie T., and Li N., “Towards Regression

Test Selection for Aspectj Programs,” in

Proceedings of the 2nd Workshop on Testing

Aspect-Oriented Programs, Portland, pp. 21-26,

2006.

Mukesh Mann is a Research

Scholar in Department of CSE,

School of ICT, GBU, India. He is a

recipient of UGC-JRF Award -2014,

CSIR-SRF Award-2014 and UGC-

SRF Award-2016. His areas of

research are Computational

Intelligence and Software Engineering.

Om Prakash Sangwan is working

as an Associate Professor in

Department of CSE, GJUST Hisar,

India. His areas of research are

Software Engineering and Soft

Computing.

Pradeep Tomar is an Assistant

Professor in Department of CSE,

School of ICT, GBU, India. His area

of research are Computational

Intelligence and Component based

Software Engineering.

