
1036 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Block Size Analysis for Discrete Wavelet

Watermarking and Embedding a Vector Image as a

Watermark

Hayri Sever1, Ahmet Şenol1, and Ersin Elbaşı2
1Department of Computer Engineering, Çankaya University, 06790 Etimesgut Ankara

2College of Engineering and Technology, American University of the Middle East, Kuwait

Abstract: As telecommunication and computer technologies proliferate, most data are stored and transferred in digital

format. Content owners, therefore, are searching for new technologies to protect copyrighted products in digital form. Image

watermarking emerged as a technique for protecting image copyrights. Early studies on image watermarking used the pixel

domain whereas modern watermarking methods convert a pixel based image to another domain and embed a watermark in the

transform domain. This study aims to use, Block Discrete Wavelet Transform (BDWT) as the transform domain for embedding

and extracting watermarks. This study consists of 2 parts. The first part investigates the effect of dividing an image into non-

overlapping blocks and transforming each image block to a DWT domain, independently. Then, effect of block size on

watermark success and, how it is related to block size, are analyzed. The second part investigates embedding a vector image

logo as a watermark. Vector images consist of geometric objects such as lines, circles and splines. Unlike pixel-based images,

vector images do not lose quality due to scaling. Vector watermarks deteriorate very easily if the watermarked image is

processed, such as compression or filtering. Special care must be taken when the embedded watermark is a vector image, such

as adjusting the watermark strength or distributing the watermark data into the image. The relative importance of watermark

data must be taken into account. To the best of our knowledge this study is the first to use a vector image as a watermark

embedded in a host image.

Keywords: Watermarking, DWT, block, vector, SVG.

Received Febrewary 7, 2017; accepted October 17, 2018

1. Introduction

The quantity of digital data has increased enormously

in the last decade, as digital camera image quality has

increased and the cost of such devices has decreased.

The greatest increase in stored digital data has come as

a result of cameras being embedded in smart phones.

As internet bandwidth increases, web sites are also

increasing the quantity and quality of their image and

video content. Due to the massive volume of traffic,

people must protect their digital property against theft

and unauthorized use. Before the advent of

watermarking, visible copyright signs were placed on

images and cryptographic methods were used for such

protection.

A disadvantage of encrypting images while

transferring to a target site is that the image is

completely defenceless following decryption at the

target site. Placing a visible copyright sign on an image

is minimally effective protection, as the copyright sign

and script can be easily removed. Image watermarking

for proving digital data ownership has emerged as a

new technology to compensate for the above

mentioned drawbacks. An image to be copyrighted is

referred to as the host image. A watermark is

embedded into a host image in a way that it is not

detectable by the human eye; it remains embedded in t

he host image as long as the image exists. Generally it

is not possible to remove a watermark from a host

image without diminishing image quality to a

considerable extent. A watermark can be a Pseudo

Random Number Sequence (PRNS) as in [4, 15, 18], a

binary image logo as in [1, 2, 5, 8, 9, 11, 13, 21, 23], a

gray scale logo as in [12, 17], a color image logo as in

[3], biometric data such as the owner’s voice, a Gabor

face as in [7], or a QR code as in [10].

Fidelity is the most important criterion for

measuring watermarking success. Fidelity is the level

of similarity between an original and watermarked

image. Following watermarking, it should not be

detectable that the image has been processed. Fidelity

is calculated as the PSNR, as in Equation (1) in which

Rounded Mean Square Error (RMSE) is given by

Equation (2). I is the original image, I* is the

watermarked image and i, j are the pixel coordinates.

PSNR = 20 log10(255 / RMSE)

RMSE = sqrt((∑i,j (I*ij – Iij)2) / (N×N))

Robustness is another criterion for measuring the

success of watermarking methods that aim to prove

ownership. After an original image is watermarked, it

can be modified by normal image processing such as

cropping, blurring and sharpening. Such modifications

(1)

(2)

Block Size Analysis for Discrete Wavelet Watermarking and Embedding ... 1037

can be performed to remove or destroy a watermark.

Watermarking must be performed in such a way that

the watermark can be extracted from the watermarked

image despite the image having been modified.

Furthermore, modifications to a watermarked image

should not be obvious.

A watermarking algorithm is called non-blind if the

original image is needed for extracting the watermark,

whereas blind type if original image is not needed.

In early watermarking studies, watermarks were

embedded in the Least Significant Bits (LSB) [22].

When the LSBs of a grayscale image were changed the

overall appearance of the image did not change

obviously. LSB watermarking was eventually replaced

by transforming the cover image to another domain,

adding a watermark to transform domain values and

then applying inverse transform. Cox et al. [4]

transformed a cover image into a Discrete Cosine

Transform (DCT) domain and added a PRNS with

mean zero as watermark to the highest K coefficients,

except that the DC component where K is the PRNS

length.

Piva et al. [15] also used DCT-based watermarking

to embed a watermark PRNS again in the highest M

coefficients by skipping the L number of coefficients,

so as to show that the watermarking method does not

suffer from high pass filters, gamma correction, etc.

The correlation between the original and the

extracted watermark can be computed as in Equation

(3) where W is the original watermark, W* is the

extracted watermark and M is the watermark size.

Z = (W × W*) / M =

Piva et al. [15] calculated threshold Tz as shown in

Equation (4), where α = 0.2 in the paper. If Z > Tz,

then it was decided that a watermark was present.

Tz = , α = 0.2

 Tao and Eskicioğlu [21] embedded a binary image

logo in 4 of the bands (LL, LH, HL, HH) of DWT

decomposition of the cover image. Their embedding

and extraction values are given in Equation (5) and

Equation (6) respectively, where original image is size

2N×2N, k is the band number in {1, 2, 3, 4}, W is N×N

binary logo watermark image, Vk
ij are DWT

coefficients in the band k, Vk’ij are watermarked DWT

coefficients, V*k
ij are watermarked-and-probably-

changed-image’s DWT coefficients in band k, and W*

is an extracted watermark.

Vk’ij = V
k
ij + αkWij

W*ij = (Vk*
ij - V

k
ij) / αk

The watermark strength constant α is 2 in bands LH,

HL and HH, whereas in LL band α is used as value 8,

as LL band coefficients are larger in magnitude. Larger

magnitude coefficients provide greater watermark

holding capacity.

Other DWT-based watermarking methods were

subsequently proposed [2, 5, 9, 12, 14, 16, 21]. Lai and

Tsai [12] applied DWT to an image, and then

embedded a watermark into the singular values of the

Singular Value Decomposition (SVD) of bands LL,

LH, HL, and HH.

This paper contains two studies that have common

parts and also have different aims and contributions.

Section 2 has the purpose of clarifying the impact of

dividing the host image into blocks in DWT domain.

How the block size affects the success of watermarking

is analysed. In section 3, a method is developed to

embed a vector image as watermark to a host image.

Vector images have RGB colour info which is superior

to black-white binary images. Vector images also do

not lose quality when resized as opposed to pixel based

binary images.

2. Block Size Analysis for Block Discrete

Wavelet Watermarking

For this part of the study the Tao and Eskicioğlu’s [21]

method was used, except for blocking. The cover

image and binary watermark image were split into

blocks before DWT, and each cover image block was

transformed to DWT separately. Each block was

watermarked with a corresponding watermark block.

Watermark blocks were 25% of the size of the cover

blocks because of the nature of DWT. The algorithm

was run by no-blocks [21], at block sizes of 64×64,

32×32, 16×16 and 8×8 [19]. PSNR values for

watermarked images were calculated using Equation

(1) and Similarity Ratio (SR) values between

embedded and extracted watermarks were calculated

using Equation (7). S is the number of matching pixels

between the embedded and extracted watermark, and D

is the number of different pixels between them.

SR = S / (S + D)

2.1. Experiments

Image block sizes of 512×512 (full image), 64×64,

32×32, 16×16 and 8×8 were included in the

experiment. The original image, the binary watermark

image and second watermark image used for re-

watermark attack are shown in Figure 1. The

watermarked and attacked images are shown in Figure

2 in the case of an original image that was divided into

64×64 image blocks for some attack types. PSNR

values are given for each case. Common attacks were

applied to watermarked images.

Extracted watermarks from each DWT band and

corresponding SR values for each ‘attack type’-‘block

size’ combination are given in Tables 1-3. The numbers

given under extracted watermarks are SR values.

Extracted watermark quality and, hence, the SR value

increased as block size decreased. SR values obtained

in the present study for LL band are shown in Table 4

(3)

(4)

(5)

(6)

(7)

1038 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

with a comparison to those reported by [21]. Only 8x8

block size results are listed for LH, HL, HH bands. As

parameters for some attack types were not reported by

Tao et al. [21] such as the scaling factor or cropping

ratio, direct comparison is not possible. It is clearly

seen that block-DWT watermarking yielded better

results than the non-block condition.

 a) Original image. b Binary img watermark. c) 2nd watermark.

Figure 1. The original image & watermark images used in the

study.

Unattacked JPEG Compress.25%. Scale by 0.5 then 2

Histogram eq. Intensity [0 0.8]-[0 1] Gamma correction.

Rotate – rerotate20o Crop 50.4%

Figure 2. Un-attacked Watermarked and attacked images for 8 type

of attacks.s

Table 1. Extracted watermarks for various block sizes in lossy
JPEG compress attacks and Histogram Eq.

JPEG 75% Q JPEG 25% Q Histogram Eq.

LL LH HL HH LL LH

N
o

B
lo

c
k

s

0.8976 0.4534 0.4540 0.4138 0.6269 0.6355

6
4

×
6
4

B
lo

c
k

s

0.8976 0.4534 0.4540 0.4138 0.6269 0.6355

3
2

×
3
2

B
lo

c
k

s

0.9048 0.4810 0.4847 0.4411 0.6639 0.6637

1
6

×
1
6

B
lo

c
k

s

0.9119 0.5063 0.5129 0.4679 0.6996 0.6916

8
×

8

B
lo

c
k

s

0.9156 0.5204 0.5287 0.4828 0.7177 0.7059

Table 2. Extracted watermarks for intensity adjustment, gamma
correction and rotate attacks.

Intensity A. Gamma correction Rotate 20 ̊

HL HH LL LH LL LH

N
o

B
lo

c
k

s

0.7549 0.8391 0.1991 0.8269 0.7660 0.4576

6
4

×
6
4

B
lo

c
k

s

0.7549 0.8391 0.1991 0.8269 0.7660 0.4576

3
2

×
3
2

B
lo

c
k

s

0.7736 0.8522 0.1991 0.8363 0.7764 0.4823

1
6

×
1
6

B
lo

c
k

s

0.7549 0.8391 0.1991 0.8477 0.7838 0.5060

8
×

8

B
lo

c
k

s

0.7980 0.8721 0.1991 0.8536 0.7893 0.5197

Table 3. Extracted watermarks for crop and re-watermark

attacks.

 Crop 50.40% Re-watermark Re-watermark

LL LH LL LH HL HH

N
o

 B
lo

c
k

s

0.5859 0.6996 0.8645 0.8269 0.8645 0.8645

6
4

×
6
4

B
lo

c
k

s

0.5860 0.6996 0.8645 0.8269 0.8645 0.8645

3
2

×
3
2

B
lo

c
k

s

0.5859 0.7167 0.9151 0.8363 0.9151 0.9151

1
6

×
1
6

B
lo

c
k

s

0.5859 0.7245 0.9516 0.8477 0.9516 0.9516

8
×

8
 B

lo
c
k

s

0.5860 0.7309 0.9770 0.8536 0.9770 0.9770

a) Embed CPU time. b) Extract CPU time.

Figure 3. Block size versus CPU time graphs for a. embedding

b.extraction phases.

Block-DWT watermarking does not negatively

affect image fidelity because PSNR values are the

same as the non-block counterparts.

The downside of the block-DWT algorithm is that it

requires more CPU time for embedding and extraction

phases than non-block-DWT watermarking. The CPU

Cpu Time Cpu Time

Block Size Analysis for Discrete Wavelet Watermarking and Embedding ... 1039

time required for embedding and extraction for each

block size is given in Figure 3. As block size

decreased, CPU time increased. If extra CPU time is

not a problem, block-DWT yields better results. It must

be noted that only first-level DWT decomposition is

possible for a block size of 8×8, which prohibits

watermarking in further level DWT decompositions.

Table 4. SR values for extracted watermarks from LL band for each type of attack.

LL LH HL HH

512×512 64×64 32×32 16×16 8×8 Tao&Esk 8×8 8×8 8×8

Filter 0.772 0.772 0.79 0.805 0.815 0.822 0.442 0.482 0.501

Gauss 0.685 0.688 0.709 0.727 0.737 0.717 0.62 0.622 0.625

Scale 0.75 0.75 0.773 0.795 0.807 0.7795 0.496 0.523 0.48

JPEG 75 0.898 0.898 0.905 0.912 0.916 0.92 0.52 0.551 0.481

Intens.Adj. 0.801 0.801 0.867 0.932 0.966 0.197 0.795 0.798 0.872

Hist.Eq. 0.627 0.627 0.664 0.7 0.718 0.421 0.706 0.708 0.754

Crop 0.586 0.586 0.586 0.586 0.586 0.996 0.731 0.761 0.734

Gamma 0.199 0.199 0.199 0.199 0.199 0.803 0.854 0.865 0.9

Rotate 0.766 0.766 0.776 0.784 0.789 0.91 0.52 0.558 0.484

Rewatermark 0.864 0.864 0.915 0.952 0.977 0.905 0.977 0.977 0.977

TOTAL 7.878 7.881 8.149 8.39 8.526 8.0615 6,661 6.845 6.808

3. Block DWT-Based Vector Image

Watermarking

A color vector image was inserted as a watermark into

a grayscale host image [20]. This DWT-based study

was, robust and non-blind. To the best of our

knowledge it is the first study to insert a vector image

as a watermark. Adding a color vector image as a

watermark facilitates proving ownership, without

hesitation, in case the watermark is fully recovered. As

vector images do not lose quality after resizing, the

study is valuable for steganography.

Vector image formats were investigated to determine

which format best suited the research. The SVG format

was chosen because it was editable via a text editor and

it stored objects in the XML format. The two vector

SVG images used as watermarks and a section of one

of the SVG images source code are shown in Figure

4.The same host image shown in Figure 1.a was used.

3.1. Watermarking Pre-Processing

The vector image source was preprocessed before

embedding a watermark into the host image. The image

format SVG has some backward compatibility parts

that do not affect vector image appearance. Backward

compatibility parts were eliminated beforehand. ID

numbers given to objects were also disposed of,

because when the vector image is extracted it can be

rendered without the ID numbers. The numbers that

exist in an SVG file were fetched and loaded in an

array, programmatically. The part of an SVG file that

didn’t contain numeric tokens was saved as an SVGNS

file. The array containing numeric values was saved as

an SVGNN file. Numeric values were used for the

watermark embedding phase. Another array was

produced that contained the number types in the

number array. This array was saved as an SVGNG file.

For each value in the SVGNN array, one of the

attribute values {“integer”, “RGB intensity value”,

“real value between (-1.0 and 1.0)”, “real value”} was

assigned in SVGNG array. This SVGNG array was

used for the watermark embedding and extraction

phases and affected how many transform domain

values would be consumed for each type of numeric

value.

Numeric values were analyzed when parsing the

SVG file during the preprocessing phase. The

Figure 4. Two vector images and part of the source code of one of

them.

maximum of two values, namely the absolute value of

the whole part of numbers and the RGB band values

in the SVGNN array was found. Then how many bits

this max value can be stored in a binary number

system, which is assigned to IBC variable, was

calculated. If, for example, the maximum value is 384,

then 9 is assigned to the IBC. For real values’ whole

parts, another maximum of absolute values was found

and the number of bits required to store this maximum

value was calculated, and an RIBC value was

assigned. The absolute maximum fractional part of

real numbers between (-1, 1) (-1 and 1 not included) in

an SVGNN array was determined. This value was

multiplied by 100 and the first 3 digits were taken,

which shows how many bits can store this value, and

an RFBC variable was assigned. The three calculated

values, IBC, RIBC, and RFBC were added to SVGNG

array and stored in a file. These numbers in the

SVGNG file were used during the watermark

extraction phase. The preprocessing phase is shown in

Figure 5.

<svg> <linearGradient Id = linearGradient5520>

<stop style = stop-color: #2b71d9;stop-opacity:
0.91891891; offset = 0 Id = stop5522 />

1040 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

3.2. Watermark Embedding Phase

After the original image was loaded from the file

system, the SVGNN and SVGNG files that were

produced during the preprocessing phase were loaded

from files to arrays. The last three values of the

SVGNG array were assigned to IBC, RIBC, and RFBC

variables.

The original image was divided into 8×8 blocks and

each block was transformed separately into DWT.

Block size was 8×8, but the algorithm was also run

according to block sizes of 16×16, 32×32, and 64×64.

The purpose of dividing the image into blocks and

taking each block’s DWT was to increase the

algorithm’s resistance to attacks. After DWT, a DWT

values pool was formed, as shown in Figure 6. If the

original image is M×N, then there are (M/2) × (N/2)

values in each of the LL, LH, HL, and HH bands. As

the values in an SVGNN array would be watermarked

separately into each of the LL, LH, HL, and HH bands,

each numeric value would be watermarked into a

KSPN number of transform values, as in Equation (8).

A description of how each numeric value is

watermarked with KSPN transform values is presented

later.

KSPN = ⌊ (⌊M / 2⌋ ∗ ⌊N / 2⌋) / SzWn⌋

Figure 5. Vector image preprocessing.

Numeric values were categorized as integer value,

RGB brightness value, real value with no integer part,

real value with an integer value of 0, and those

categories of each numeric values in the SVGNN array

were loaded into the SVGNG array from the SVGNG

file. Numeric values were considered bit sequences of 0

and 1. If the bit value of a numeric value was 1, a

Pseudo Random Sequence (PRNS) was added to the

corresponding DWT values, and if the bit value was 0,

the same PRNS was subtracted from the corresponding

DWT values.

Watermarking success was dependent on how close

in proximity the numeric values extracted from the

watermarked (and possibly attacked) image were to the

original embedded numeric values; therefore, digit bit

significance was taken into consideration. The number

of values from the transformation value pool of the

original host necessary to embed a 1 or 0 values for this

digit was calculated. The calculated number is the

PRNS length that can watermark a bit value of 1 or 0.

The array for holding the value range count for the

digits of integer values was PRNS_BC.

Figure 6. Formation of the DWT value pool.

The size of the PRNS_BC array was IBC.

PRNS_BC (1) holds the number of transformation

values (PRNS bit length) that hold the watermark bit

value for the first, i.e., the LSB of the integer value.

PRNS_BC (IBC) holds the PRNS length for the most

significant bit of the integer value. As PRNS length

increases resistance to attacks increases; as such, so

we want the most significant bits to be more resistant

to attacks than less significant bits. The contribution of

digit bits to the overall numeric value increases in

powers of 2, as the position of the digit increases in

significance. Firstly, 20 values were given to each

digit including the LSB. Next, significant bits were

watermarked with longer PRNS as the length of PRNS

was calculated using Equation (10) where y is the digit

position to be embedded. The PRNS_R_BC array held

the PRNS length of each bit for the whole number of

real numeric values, which have a whole number

greater than 0. PRNS_R_BC values were calculated

according to Equation (13). PRNS length for the

fractional part of real numbers between -1 and 1 were

held in array PRNS_F_BC and calculated using

Equation (15). If for example the KSPN value is 1969,

and IBC is 8, then PRNS_BC array was calculated as

in Equation (10) and given in Table 5. Whole

calculated PRNS_R_BC and PRNS_F_BC are

calculated as in Equation (13) and Equation (15).

kspn_r = kspn – 20 × ibc

prns_bc(y) = 20 + floor(2(y-1) / 2ibc) ×kspn_r

rbc=ribc + rfbc

kspn_r = kspn – 20 × rbc

prns_r_bc(y) = 20 + floor(2(y-1) / 2rbc) ×

kspn = kspn – 20 × rfbc

prns_f_bc(y) = 20 + floor(2(y-1) / 2rfbc) ×

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Block Size Analysis for Discrete Wavelet Watermarking and Embedding ... 1041

After prns length values were calculated and put in

arrays, the actual pseudo random sequences of those

lengths were produced during the image watermarking

phase. All PRNS length values were put in the

M_PRNS matrix and written to a file to be used during

the watermark extraction phase. Figure 7 shows how

each bit of the watermark was embedded.

Table 5. Examples of PRNS_BC values calculated for KSPN=1969

and IBC = 8.

Bit digit position 7 6 5 4 3 2 1 0

PRNS length 924 472 246 133 76 48 34 27

3.3. Watermark Extraction Phase

The original and watermarked (and possibly-attacked)

image was transformed into the DWT domain, taking

into consideration block size (64, 32, 16, and 8). The

DWT values of any watermarked image were

subtracted from the DWT values of the original image

and difference of the DWT values pool was obtained.

The SVGNG file that was formed and saved during the

image-embedding phase was loaded from the file. The

values PRNS_BC, PRNS_R_BC, and PRNS_F_BC

were assigned values from the SVGNG array. For each

of numeric value in an SVGNG array the type of

numeric value determines the bit count of the value to

be extracted. For each bit of the numeric value to be

extracted the number of DWT values from the DWT

difference value pool that would be used was

calculated. Correlations between the PRNS values and

the difference in DWT values were calculated.

Correlations between the PRNS values and the negative

difference in DWT values were also calculated. The

extracted bit value was 1 or 0 according to comparison

of the two computed correlation values. The extraction

phase algorithm is shown in Figure 8. The vector

watermarks extracted from watermarked and attacked

images are shown in Table 9.

3.4. Evaluation of Extracted Vector Image

Watermarks

The PSNR value between the watermarked and original

image was 35.301, which is lower than previously

reported by Huang and Fang [6], but they only used

80% JPEG quality compression and 3×3 median filter

attacks. As such, the degree of robustness needed for

their study was much lower than required for the

present study. The watermarking method presented

herein resisted JPEG compression that reduced image

quality by 50% or 75%, 20 degree rotation, scaling and

cropping which all distort an image to a greater extent

than the two attacks applied by [6]. General comparison

with [6] can be seen in Table 6.

Figure 7. Watermarking one bit.

When vector image logo is used as a watermark,

the success of the algorithm can be measured in two

ways, as described in Table 7.

The SR and RMSE values for measuring the

algorithm’s robustness against various types of attacks

can be seen in Table 8.

Figure 8. Watermark extraction.

Table 6. Results Given in Comparison to Huang and Fang [6].

Transform

Domain

Watermark

Type
Attacks Resisted

PSNR

(AVG)

Proposed

Method
DWT

Vector Image

Logo

JPEG %50 Q
JPEG %25 Q

Blurring

Histogram Eq.
Gaussian Noise

Gamma Corre.

35.301

Huang &

Fang [6]
DCT

EXIF

MetaData

JPEG %80 Quality

Filter 3x3
46.2

Table 7. Methods for measuring the success of the vector image
watermark algorithm.

M
et

h
o
d
 1

1.1
Convert the original vector image and extracted vector image into

pixel based images

M
et

h
o
d
 1

1.2

Convert pixel-based images to YUV format and compute SR

values between two using Eq. (7). Usually the SR value is
computed between two binary images but here we have two

grayscale images. If the brightness value (0-255) difference

between the extracted watermark pixel and original watermark

pixel > 10, they are considered equal while calculating the SR

value. As SR value increases, the algorithm is more effective.

M
et

h
o
d
 2

 2.1 Calculate RMSE (2) between extracted numeric values and

embedded original numeric values.

2.2 As the RMSE value decreases, the algorithm is more effective

1042 The International Arab Journal of Information Technology, Vol. 16, No. 6, November 2019

Table 8. SR and RMSE values between original and extracted
values.

No

atta

ck

Jpeg

%50

Jpeg

%25
Filter

Gaus

sian

N.

Scale

Histo

gram

Eq.

Brightne

ss Adjust
Gamm

a C.
Rotate Crop

SR 0.982 0.982 0 .794 0 . 9 5 0.982 0.546 0.982 0 . 4 7 1 0.982 0 . 7 2 5 0.598

RM

SE
0.000 0.000 0 .001 0.017 0.000 0.044 0.000 0 . 1 4 8 0.000 0 . 1 4 0 0.069

Table 9. Vector image watermarks extracted from images attacked
using various attacks for 2 different embedded vector watermarks.

JPEG %50 JPEG %25 Blurring

Scale-rescale Histogram E Adjust Brightn

Crop Gaussian N Gamma C

Rotation(2,1st

Vector)
 Rotation(2nd Vector)

JPEG %50 JPEG %25 Blurring

Scale-rescale Histogram E Adjust Brightn

Crop Gaussian N Gamma C

4. Conclusions

The present findings clearly show that dividing an

image into blocks, taking the DWT of each block

separately and then watermarking each block with a

corresponding watermark block increased the resistance

of watermarking against many types of the attacks. As

block size decreased, the robustness of the algorithm

increased. The only drawback of block-based

watermarking is that the CPU time required increases

as block size decreases. If there are no time constraints

for the watermarking and extraction phases, then block-

based watermarking increases robustness considerably.

The present study is the first to use a vector image as

a watermark. Block-based DWT watermarking was

used as a general approach. The SVG vector image

format was used, and was preprocessed before

watermarking. The numbers in the SVG file were

categorized and watermarked on a bit-by-bit basis,

taking into consideration the significance of each bit

in numeric form. Various attacks were applied to the

watermarked image showing that the algorithm was

robust against many types of attacks. Nonetheless, the

algorithm described herein was relatively weak

against scale, rotation, and crop attacks.

As of future work, embedding vector image as

watermark may be investigated in different transform

domains and different methods can be developed to

overcome the weakness of proposed algorithm to

scale, crop, rotation attacks. Vector image can be

hidden in a host image or file using a similar method

as a steganography study.

References

[1] Amira-biad S., Bouden T., Nibouche M., and

Elbaşı E., “A Bi-Dimensional Empirical Mode

Decomposition Based Watermarking Scheme,”

The International Arab Journal of Information

Technology, vol. 12, no. 1, pp. 24-31, 2015.

[2] Chamlawi R., Khan A., Idris A., and Munir Z.,

“A Secure Semi-Fragile Watermarking Scheme

for Authentication and Recovery of Images

based on Wavelet Transform,” International

Journal of Computer, Electrical, Automation,

Control and Information Engineering, vol. 2, no.

11, pp. 727-7319, 2008.

[3] Chen B., Coatrieux G., Chen G., Sun X., Louis

J., and Shu H., “Full 4-D Quaternion Discrete

Fourier Transform Based Watermarking for

Color Images,” Digital Signal Processing, vol.

28, pp. 106-119, 2014.

[4] Cox I., Kilian J., Leighton F., and Shamoon T.,

“Secure Spread Spectrum Watermarking for

Multimedia, in Image Processing,” IEEE

Transactions on Image Processing, vol. 6, no.

12, pp. 1673-1687, 1997.

[5] Dharwadkar N. and Amberker B., “An Efficient

Non-blind Watermarking Scheme for Color

Images using Discrete Wavelet Transformation,”

International Journal of Computer Applications,

vol. 2, no. 3, pp. 60-66, 2010.

[6] Huang H. and Fang W., “Metadata-Based Image

Watermarking for Copyright Protection,”

Simulation Modelling Practice and Theory, vol.

18, no. 4, pp. 436-445, 2010.

[7] Inamdar V. and Rege P., “Dual Watermarking

Technique with Multiple Biometric

Watermarks,” Sadhana, vol. 39, no. 1, pp. 3-26,

2014.

[8] Jane O., İlk H., and Elbaşı E., “A Robust

Transform Domain Watermarking Technique by

Triangular and Diagonal Factorization,” in

Proceedings of 36th International Conference on

Telecommunications and Signal Processing,

Roma, pp. 867-871, 2013.

Block Size Analysis for Discrete Wavelet Watermarking and Embedding ... 1043

[9] Jane O. and Elbaşı E., “A New Approach in Non-

Blind Watermarking Method Based on DWT and

SVD Via LU Decomposition,” Turkish Journal of

Electrical Engineering and Computer Sciences,

vol. 22, no. 5, pp. 1354-1366, 2014.

[10] Jin R. and Kim J., “A Robust Watermarking

Scheme for City Image,” International Journal of

Security and Its Applications, vol. 10, no. 1, pp.

303-314, 2016.

[11] Kusyk J. and Eskicioglu A., “A Semi-Blind Logo

Watermarking Scheme for Color Images by

Comparison and Modification of DFT

Coefficients,” in Proceedings of SPIE-The

International Society for Optical Engineering, pp.

107-121, 2005.

[12] Lai C. and Tsai C., “Digital Image Watermarking

Using Discrete Wavelet Transform and Singular

Value Decomposition,” IEEE Transactions on

Instrumentation and Measurement, vol. 59, no.

11, pp. 3060-3063, 2010.

[13] Lang J. and Zhang Z., “Blind Digital

Watermarking Method in the Fractional Fourier

Transform Domain,” Optics and Lasers in

Engineering, vol. 53, pp. 112-121, 2014.

[14] Minamoto T. and Ohura R., “A Blind Digital

Image Watermarking Method Based on the

Dyadic Wavelet Transform and Interval

Arithmetic,” Applied Mathematics and

Computation, vol. 226, pp. 306-319, 2014.

[15] Piva A., Barni M., Bartolini F., and Cappellini V.,

“DCT-Based Watermark Recovering without

Resorting to the Uncorrupted Original Image,” in

Proceedings of International Conference on

Image Processing, Santa Barbara, pp. 520-523,

1997.

[16] Ratakonda K., Dugad R., and Ahuja N., “Digital

Image Watermarking: Issues in Resolving

Rightful Ownership,” in Proceedings

International Conference on Image Processing,

Chicago, pp. 414-418, 1998.

[17] Saryazdi S. and Nezamabadi-pour H., “A Blind

Digital Watermark in Hadamard Domain,” World

Academy of Science, Engineering and

Technology, pp. 126-129, 2005.

[18] Swanson M., Zhu B., and Tewfik A.,

“Transparent Robust Image Watermarking,” in

Proceedings of 3rd IEEE International Conference

on Image Processing, Switzerland, pp. 211-214,

1996.

[19] Şenol A., Elbaşı E., Dinçer K., and Sever H., “A

Block Size Analysis for Blocked Discrete

Wavelet Watermarking,” in Proceedings of 7th

International Conference on Information Security

and Cryptology, Istanbul, pp. 77-81, 2014.

[20] Şenol A., Elbaşı E., Dinçer K., and Sever H.,

“Bloklu Ayrık Dalgacık Dönüşümü ile Vektör

Resim Damgalama,” in Proceedings of 23nd

Signal Processing and Communications

Applications Conference, Malatya, 2015.

[21] Tao P. and Eskicioglu A., “A Robust Multiple

Watermarking Scheme in the DWT Domain,” in

Proceedings of Internet Multimedia

Management Systems, Philadelphia, pp. 133-144,

2004.

[22] Van Schyndel R., Tirkel A., and Osborne C., “A

Digital Watermark,” IEEE International

Conference Image Processing, vol. 2, pp. 86-90,

1994.

[23] Wang X., Yang H., and Cui C., “An SVM-Based

Robust Digital Image Watermarking Against

Desynchronization Attacks,” Signal Processing,

vol. 88, no. 9, pp. 2193-2205, 2008.

Hayri Sever got his Bsc degree

from Hacettepe University

Computer Eng. Faculty, Ankara in

1986, MSc degree from Maine

University, USA in 1991, Phd

degree Louisiana University, Center

of Advanced Computer Studies, in

1995. His research areas are Knowledge Discovery in

Databases, Multimedia Retrieval Models and Systems,

Multimedia Systems, Uncertainty Reasoning,

Business Process Management, Machine Learning,

and Speech Analysis.

Ahmet ŞENOL got his B.Sc.

degree from Middle East Technical

University(METU), Computer

Engineering(CENG) Department in

1993, M.Sc. degree in 1993, METU

CENG Department, Phd from

Hacettepe University Computer

Engineering Department. His current interest is on

“Image Processing”, “Image Watermarking”, “Image

Authentication”, “Computer Forensics”.

Ersin Elbasi is currently working

for American University of the

Middle East. He received MSc

degree in computer science at

Syracuse University; MPhil and

PhD degrees in computer science at

Graduate Center, The City

University of New York. His research interests

include multimedia security, event mining in video

sequences and medical image processing

