
894 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

A Novel and Complete Approach for Storing

RDF(S) in Relational Databases

Fu Zhang1, Qiang Tong2, and Jingwei Cheng1
1School of Computer Science and Engineering, Northeastern University, China

2School of Software, Northeastern University, China

Abstract: Resource Description Framework (RDF) and RDF Schema (collectively called RDF(S)) are the normative language

to describe the Web resource information. With the massive growth of RDF(S) information, how to effectively store them is

becoming an important research issue. By analysing the characteristics of RDF(S) data and schema semantic information in

depth, this paper proposes a multiple storage model of RDF(S) based on relational databases. An overall storage framework,

some detailed storage rules, a storage algorithm and a storage example are proposed. Also, the correctness of the storage

approach is discussed and proved. Based on the proposed storage approach, a prototype storage tool is implemented, and

experiments show that the approach and the tool are feasible.

Keywords: RDF, RDF schema, relational database, storage.

Received June 26, 2016; accepted October 11, 2017

1. Introduction

Resource Description Framework (RDF) and RDF

vocabulary description language RDF Schema

(collectively called RDF(S)) are the normative

language to describe the Web resource information

[20]. By means of RDF(S), the information can be

easier to share, protect, and retrieve in the Web. In

current, the formal acceptance of RDF(S) by W3C

stimulates their utilization in many areas (e.g., life

sciences, GIS, Semantic Web, and etc.,) [12]. With the

massive growth of RDF(S) information, how to

effectively store them is becoming an important

research issue.

To this end, many approaches have been developed

to store RDF(S) (see surveys [9, 14, 17]). In general,

the RDF(S) storage methods can be classified into

several main categories: based on the file system, the

special storage tools, and the databases. The first

category methods store RDF(S) in XML/RDF format

files, the second category methods store RDF(S) in the

special storage tools, and the third category methods

store RDF(S) in the database systems. Moreover, some

RDF middlewares and parsers such as Jena and Sesame

can be used to implement the access to the physical

RDF data store, read and parse the RDF statements.

Among the storage methods above, the storage of

RDF(S) based on database systems occupy very

important position. As we have known, the database

research community has successfully developed a wide

theory corpus and a mature and efficient technology to

deal with large and persistent amounts of information.

In particular, relational databases have mature theory

and products. RDF(S) stores, which are backed by

relational databases, can apply different kinds of

storage models for representing the RDF(S) in the

underlying relational schemas. In this case, the storage

and retrieval functionality of existing relational

database management systems can be fully utilize.

As the literatures [1, 5] showed that, there are

several different RDF(S) storage patterns based on

relational databases, e.g., the common Horizontal [2,

5], Generic/Vertical [6, 10, 15, 23], and Specific/

Binary patterns [3, 4, 18], however, RDF(S)

information in some real applications is different in

respects of scales and characteristics. Therefore, it is

difficult to give a unified pattern which is enough to

effectively store all RDF(S) information. Besides, we

found that many existing methods (e.g., [2, 4, 18, 23])

only focused on storing the RDF data and did not fully

consider the semantic information storage of RDF

Schema corresponding to the RDF data. To this end,

in this paper we proposes a multiple storage model of

RDF(S) based on relational databases by analysing the

semantic characteristics of RDF data and RDF

Schema in depth. In brief, the paper makes the

following main contributions:

 After analysing semantic characteristics of RDF

and RDF Schema, we propose an overall

architecture of storing RDF(S) in relational

databases.

 Based on the architecture, we further propose

storage rules and explain how to store RDF(S) in

relational databases with a running example in

detail. Also, the correctness and quality of the

storage approach are proved and analysed.

 Finally, on the basis of the proposed approach, we

give a storage algorithm and test and compare our

approach with the existing work. The storage and

../../../../../../Program%20Files/Dict/7.2.0.0703/resultui/dict/

A Novel and Complete Approach for Storing RDF(S) in Relational Databases 895

query examples and the comparison results show

that the approach is feasible and efficient.

The remainder of this paper is organized: section 2

introduces basic concepts. Section 3 proposes a

multiple storage model of RDF(S) based on relational

databases. Section 4 implements a prototype storage

system. Section 5 introduces related work. Section 6

shows conclusions and future work.

2. Preliminaries

In this section, some preliminaries on RDF(S) and

relational databases are recalled.

2.1. RDF(S)

RDF [20] is a framework for expressing the Web

resource information. RDF provides a common

framework for expressing this information so it can be

exchanged between applications without loss of

meaning. The basic idea of RDF is: Anything is called

“resource”. A resource can be identified by URI

(Universal Resource Identifier). A resource may have

some “properties”, and these properties may have

“values”, which may be literal values (e.g., string or

float) or other resources. The relationships among

resources, properties and values can be described by

“statements”, which always have the structure of triple:

<subject predicate object>.

But RDF cannot define semantic information, e.g.,

RDF cannot state http://www.example.org/brotherof

can be used as a property and that its subjects and

objects of triples must be the resources of the class

http://www.example.org/Person, which can be

described by RDF vocabulary Description Language

RDF Schema [20]. It uses the notion of “class” to

specify categories that can be used to classify

resources. The relation between an instance and its

class is stated through the “type” property. With RDF

Schema one can create hierarchies of classes and “sub-

classes” and of properties and “sub-properties”. Type

restrictions on the subjects and objects of particular

triples can be defined through “domain” and “range”

restrictions. An example of a domain restriction was

given above: subjects of “brotherOf” triples should be

of class “Person”. Also, one can define a class

“Faculty” is a subclass of the class “Staff”, and “John”

is an instance of “Faculty”.

In this paper, RDF and RDF Schema are collectively

called RDF(S). In brief, an RDF(S) model R can be

represented as R = (RI, RT), where RI = C ⋃ P ⋃ D ⋃ I

is a set of URIs partitioned into a set C of class

identifiers, a set P of property identifiers, a set D of

datatype identifiers, and a set of individual identifiers;

RT is a set of triples defined over RI.

2.2. Relational Databases

The relational database was first defined in June 1970

by Codd [8] and has become the predominant type of

databases. In general, each database is a collection of

tables, which are called relations, hence the name

"relational database". A relation is defined as a set of

tuples that have the same attributes. A tuple usually

represents an instance and its information.

Formally, a relation is usually described as a table,

which is organized into rows and columns. A domain

describes the set of possible values for a given

attribute, and can be considered a constraint on the

value of the attribute. Moreover, the keys within a

database are used to define the relationships among

the tables. A primary key uniquely specifies a tuple

within a table. When a primary key migrates to

another table, it becomes a foreign key in the other

table. A foreign key is a field in a relational table that

matches the primary key column of another table. In

addition, there are several constraints in the relational

databases, e.g., entity integrity constraints, i.e., every

relation should have a primary key and the value of

the primary key in each tuple should be sole and

cannot be null; referential integrity constraints, i.e., let

a relation r have a foreign key FK and the foreign key

value of a tuple t in r be t[FK], and let FK quote the

primary key PK of relation r′ and t′ be a tuple in r′,

then referential integrity constraint demands that t[FK]

comply with the constraint: t[FK] = t′[PK]/NULL. The

applications access data in relational databases by

specifying queries, which use operations such as select

to identify tuples, project to identify attributes, and

join to combine relations. Relations can be modified

using the insert, delete, and update operators.

3. Storing RDF(S) in Relational Database

The section proposes a multiple storage model of

RDF(S) based on relational databases by analysing the

semantics of RDF(S), including:

1. We propose an overall architecture of storing

RDF(S) in relational databases (section 3.1).

2. Based on the architecture, we further propose

storage rules and explain with a running example

(section 3.2).

3. The correctness of the storage approach is proved

(section 3.3).

3.1. An Overall Storage Architecture

In the following we propose an overall architecture of

storage approach, which is helpful to well understand

the storage process of RDF(S). Figure 1 shows an

overall architecture of storage approach. The analyses

and introduction of each table are explained as

follows:

 Resource and Namespace tables: As mentioned in

https://en.wikipedia.org/wiki/E.F._Codd
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Attribute_(computing)
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Row_(database)
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Foreign_key

896 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

Section 2, RDF(S) resources are expressed by URIs

(Universal Resource Identifiers). Each URI includes

a namespace and its resource name. For example,

http://purl.org/dc/elements/1.1/creator is an URI of a

resource, where http://purl.org/dc/ elements/1.1/ is a

namespace, and creator is the name of a term. Many

resources have the same namespace. Therefore,

resource and namespace tables need to be created to

save storage space.

 Class table: In real-world applications, many

instances having the same properties are gathered

into classes. The numbers of classes may be less than

the numbers of instances and properties. Therefore, a

class table is created for each class. Moreover, when

the value of a property belonging to that class is

literal (e.g., string, integer, and decimal), the

property is inserted as a column into the class table.

In this case, it does not need to create tables for each

property.

 Class hierarchy table: A class hierarchy table is

created to store all of RDF(S) subclass/superclass

(i.e., rdfs:subClassOf) relations.

 Property field table: In RDF(S), many properties

contain the constraints of domain and range.

Therefore, instead of creating tables for each

property, only a property field table is created to

store all of the constraints.

 Property hierarchy table: A property hierarchy table

stores all of RDF(S) subproperty/superproperty (i.e.,

rdfs:subPropertyOf) relations.

 Property relation table: When the value of a

property of a resource is another resource (non-

literal), the property expresses the relationship

between two resources, i.e., there is a foreign key

reference between two resources. In order to reduce

the connections of properties among tables, the

property relation table is created for each such

property to store relationship between resources.

 Multi-Property table: In RDF(S), a property may be

a multi-valued property. In relational databases, the

multi-valued properties cannot be directly stored.

Therefore, a multi-valued property table is created to

store the multi-valued properties.

3.2. The Detailed Storage Rules

Based on the storage framework in section 3.1, in the

following we further give some detailed storage rules,

which are illustrated by means of an example taken

from the education domain.

Figure 2 shows an RDF(S) model (including RDF

Schema information and RDF instance data). Here, for

ease of understanding, the graphical structure is used to

describe the RDF(S) model and parts of properties in

RDF Schema are omitted.

Given an RDF(S) model R = (RI, RT) as mentioned in

section 2.1, the following rules introduce how to store

the RDF(S) model R in a relational database.

Resource_Table

Property_Field_Table SubPro_Table

Class_Table

Relation_Pro_Table Multi_Pro_Table

NamespaceID Localname PreIDPreID

ProID Domain Range SubProID SupProID

SID OID M_PID Value

Namespace_Table

InsID Pro1ID Pro2ID ... PronID

SubClass_Table

SubCID SupCID

Type

Figure 1. An overall architecture of storing RDF(S) based on

relational databases.

rd
f:

ty
p

e

dc:teaches

s:Student

rdfs:Class

s:GraduateStudent

s:Courses:Department

s:chooseCourse

dc:Staff

dc:AcademicStaffdc:AdminStaff

Information

rd
f:

ty
p

e

John

Mary

Database

NEU
SW John@163.com

22 NetWork

PREFIX s=http://www.neu.edu.cn/semantic/

 dc=http://purl.org/dc/elements/1.1/

Note that: rdfs:subClassOf is abbreviated as sub

RDF Schema

RDF Data

s:study_in

s:Part_of

dc:work_in

dc:email

dc:teaches

rd
fs

:s
u
b
P

ro
p
e
rt

y
O

f

John@tom.com

Figure 2. An RDF(S) modelling parts of the reality at a university.

 Rule 1 (Storage of RDF(S) resources): Given the

set of resource identifiers RI of RDF(S) R, creating

two tables named Resource_Table and

Namespace_Table in Figure 1.

In detail, the Namespace_Table contains 2 fields

(PreID and Namespace), where PreID is the primary

key of the table, which uniquely identifies a

namespace; the Resource_Table contains 4 fields (ID,

PreID, Localname and Type), where ID is the primary

key, which uniquely identifies a resource, PreID and

LocalName together describe a resource IRI

(International Resource Identifier), and Type identifies

the type of a resource, i.e., class, property or

individual.

For example, Table 1 stores all of the resource

information of RDF(S) in Figure 2, including classes,

properties, and individuals.

A Novel and Complete Approach for Storing RDF(S) in Relational Databases 897

Table 1. Resource_table and namespace_table.

Namespace_table.

PreID Namespace

Pre_1 http://www.neu.edu.cn/semantic/

Pre_2 http://purl.org/dc/elements/1.1/

Resource_table.

ID PreID Localname Type

c_1 Pre_1 Department Class

c_2 Pre_2 Staff Class

c_3 Pre_2 AdminStaff Class

c_4 Pre_2 AcademicStaff Class

c_5 Pre_1 Student Class

c_6 Pre_1 GraduateStudent Class

c_7 Pre_1 Department Class

c_8 Pre_1 Course Class

p_1 Pre_1 study_in Property

p_2 Pre_2 work_in Property

p_3 Pre_1 chooseCourse Property

p_4 Pre_2 advices Property

… … … …

i_1 Pre_2 John Individual

i_2 Pre_1 Mary Individual

 Rule 2 (Storage of RDF(S) classes): Given a class c

 C in RDF(S), creating a class table named

c_Table, and inserting the literal properties as the

columns into the class table as mentioned in section

3.1.

In detail, each class table may contain many individual

instances, and they are identified by the primary key

InsID in the class table (note that InsID reference to the

key ID in Namespace_Table as shown in Figure 1). In

addition, when the value of a property belonging to the

class c is literal (e.g., string, integer, and decimal), it

does not need to create tables for each such property.

The literal properties are inserted as the columns into

the class table c_Table, and each property pi P are

identified by ProiID, which reference to the key ID in

Namespace_Table as shown in Figure 1.

For example, Table 2 stores the class AcademicStaff,

its individual instance John (i_1), and a property

investigate (p_7) and a multi-valued property email

(p_8) in the RDF(S) of Figure 2. Noted that, M_PID1 is

used to identify values of the multi-valued property

email, which will be stored in a multi-valued property

table as will be introduced in later Rule 7. The other

classes in Figure 2 can be stored similarly.

Table 2. Academic staff_table.

InsID p_7 p_8

i_1 SW M_PID1

 Rule 3 (Storage of RDF(S) class hierarchies): Given

all of the class hierarchy relations <ci

rdfs:subClassOf cj> in RDF(S), where ci, cj C,

and i j, creating a class hierarchy table

SubClass_Table to store all of the class hierarchy

relations.

In detail, SubClass_Table contains two fields (i.e.,

SubCID and SupCID), used to represent the

subclasses and superclasses of the class hierarchy

relations.

For example, Table 3 stores all of the class

hierarchies of RDF(S) model in Figure 2, including

AdminStaff (c_3) is a subclass of Staff (c_2),

AcademicStaff (c_4) is a subclass of Staff, and

GraduateStudent (c_6) is a subclass of Student (c_5).

Table 3. Sub class_table.

SubID SupCID

c_3 c_2

c_4 c_2

c_6 c_5

 Rule 4 (Storage of RDF(S) property fields): Given

properties and the constraints of their domains and

ranges, creating a property field table named

Property_Field_Table, used to store all property

fields.

In detail, the table Property_Field_Table contains

three fields (i.e., ProID, Domain, and Range), used to

represent the domain and range of a property.

For example, Table 4 stores all of properties and

their domains and ranges in RDF(S) model of Figure

2.

Table 4. Property_field_table.

ProID Domain Range

p_1 c_5 c_7

p_2 c_2 c_7

p_3 c_5 c_8

p_4 c_4 c_6

p_5 c_6 c_8

… … …

 Rule 5 (Storage of RDF(S) property hierarchies):

Given all of the property hierarchy relations <pi

rdfs:subPropertyOf pj> in RDF(S), where pi, pj
P, and ij, creating a property hierarchy table

SubPro_Table to store all property hierarchy

relations.

In detail, the table SubPro_Table contains two fields

(SubProID and SupProID), used to represent the

subproperties and superproperties of the property

hierarchy relations, respectively.

For example, Table 5 stores the property

hierarchies, including chooseGraCourse (p_5) is a

subproperty of ChooseCourse (p_3), where p_i is the

property identifier as shown in Table 1.

Table 5. SubPro_Table.

SubProID SupProID

p_5 p_3

 Rule 6 (Storage of RDF(S) property relations):

Given a property p in RDF(S), if the value of

the property is non-literal value, the property

expresses the relationship between resources,

898 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

creating a property relation table named

Relation_p_Table for p.

In detail, Relation_p_Table contains two fields (i.e.,

SID and OID), used to represent subjects and objects of

the property p. Here we create a property table for each

non-literal property and such table can intuitively

reflect the property relation.

For example, Table 6 stores the property relation

advices (p_4) in Figure 2, the property advices

represents the relationship between subject John (i_1)

and object Mary (i_2).

Table 6. Relation_advices_Table.

SID OID

i_1 i_2

 Rule 7 (Storage of RDF(S) multi-valued properties):

Given multi-valued properties p in RDF(S),

creating a property table Multi_Pro_Table.

In detail, the table Multi_Pro_Table contains two fields

(i.e., M_PID and value), used to store the multi-valued

properties and their values.

For example, Table 7 stores the multi-valued

property email in Figure 2, where M_PID1 is used to

identify the values of email as shown in Table 2.

Table 7. Multi_Pro_Table.

M_PID Value

M_PID1 John@163.com

M_PID1 John@tom.com

 Rule 8 (Storage of RDF(S) datatypes): Given

datatypes of RDF(S) (i.e., XML Schema datatypes

[24]), and they will be mapped to the corresponding

SQL datatypes as shown in Table 8.

Table 8. Mapping RDF(S) datatypes to SQL datatypes.

RDF(S) datatypes SQL datatypes

xsd:integer INTEGER

xsd:decimal DECIMAL

xsd:float FLOAT

xsd:Date DATE

... ...

3.3. The Correctness of Storage

Based on the approach proposed in Sections 3.1 and

3.2, RDF(S) can be stored in relational databases. From

the view of the storage procedures, it shows that the

storage approach can be seen as a transformation. There

is no a standard that can be used to prove the

correctness of the transformation between two kinds of

models. As the literature [16, 22], pointed out, if a

transformation can keep the information capacity, then

it can be considered as the correct transformation. Here,

based on the information capacity theory [16, 22], the

following Theorem 1 proofs the correctness of the

storage approach by proving that the stored procedures

can keep the information capacity.

 Theorem 1: Given a RDF(S) model R, φ(R) is the

corresponding relational database based on the

approach above, if φ is an injective function from R

to φ(R), then the storage is information capacity

preserving storage.

 Proof (sketch). Assuming that R is an

individual instance of a class c C in RDF(S)

model R, then φ() is a tuple in the stored class

table c_Table as mentioned in Section 3.2.

Formally, φ can be defined as follows (Here, we

take the class table as example): if m classes {c1,

…, cm} C, each class ci contains n literal

properties {pi
1, pi

2, …, pi
n} and s individual

instances {idi
1, idi

2, …, idi
s}, then the following

three mapping relations can be established:

1. φ()[InsIDi
k] idi

k.

2. φ()[ProIDi
j] pi

j.

3. φ()[valuei
j] [pi

j].

Based on the mapping relations above, the RDF(S)

model R can be stored into the corresponding

relational database φ(R). Next, we prove that φ is an

injective function. Assuming 1 = (1[pi
1], 1[pi

2], …,

1[pi
n]) and 2 = (2[pi

1], 2[pi
2], …, 2[pi

n]) are two

different instances of class ci in R, then according to

the definition of φ above, there are two corresponding

tuples in the stored table: φ(1) = (φ(1)[IndIDi
1],

φ(1)[ProIDi
j], φ(1)[valuei

j]) and φ(2) =

(φ(2)[IndIDi
2], φ(2)[ProIDi

j], φ(2)[valuei
j]) such that

φ(1) φ(2), where j {1, …, n}, that is to say, there

is at least one j {1, …, n} that makes 1[pi
j] 2[pi

j],

and thus φ is an injective function. As a result, it can

be inferred that the transformation from the RDF(S)

model R to the relational database φ(R) is information

capacity retentive, i.e., the storage is an information

capacity preserving and correct storage.

4. Prototype Storage Tool and Experiments

4.1. Prototype Storage Tool

On the basis of the proposed storage approach in the

previous sections, we implemented a prototype tool

called RDFS2RDB for storing RDF(S) in relational

databases. The tool takes RDF(S) data sets as input

and the stored relational databases as output. The

following briefly describes the overall framework,

gives a running example, and further tests and

compares the approach and tool with the common

existing works.

RDFS2RDB is developed by Java language on

MyEclipse 7.0 platform. In the implementation, the

java.awt and javax.Swing packages are used to exploit

the graphical user interface, and the results are stored

in MySQL. The overall framework mainly includes:

an parse module, which uses Jena API [11] and the

SPARQL query language [21] to parse the RDF/XML

data sets, and also some semantic information of RDF

A Novel and Complete Approach for Storing RDF(S) in Relational Databases 899

Schema will be analysed and extracted as mentioned in

section 3; and a storage module, this module takes the

parsed results as input, and then according to the

Algorithm 1, the data and schema information of

RDF(S) data sets are stored in relational databases. The

algorithm 1 is the straightforward consequences of the

storage approach proposed in section 3, and thus the

detailed discussion of the algorithm is omitted.

Moreover, all of the input RDF(S), the parsed results,

and the stored results are displayed on the graphical

user interface.

Here, we give the screen snapshot of RDFS2RDB,

and an example is provided to well show the running

process. Figure 3 shows the screen snapshot of

RDFS2RDB, which displays the storage of an RDF(S)

data set (including the RDF data and RDF Schema

information in Figure 2) in a relational database. In

Figure 3, the source RDF(S) information, the parsed

results, and the target database information are

displayed in the left, middle and right areas,

respectively.

Algorithm 1：The storage algorithm of RDF(S) in relational

databases

Noted that the algorithm is given according to the approach in

Section 3, and the algorithm only provides the storage steps of

some main classes and properties.

Input: RDF(S) Model R

Output: Relational Tables

(1) Begin:

(2) CreateResourceTable(R);//Create the corresponding

resource and namespace tables as shown in rule 1

(3) EnQueue(Q, rdfs:Class); // Push the classes into queue Q

(4) while(!isEmpty(Q))

(5) C = DeQueue(Q) // Remove an element from the queue

Q and delete it from the queue

(6) if (C != “rdfs:Class”)

(7) According to the rule 2, store the class C to relational

database

(8) if (hasChildNodes (C)) // To determine whether a node C

has a child node

(9) for each Ci SubClassOnNextLevel(C) (i = 1…n) // All

subclasses of the class C

(10) EnQueue(Q, Ci). According to the rule 3, store the

corresponding class hierarchies

(11) end for

(12) EnQueue(Q, rdf:Property) // Push the properties into

the queue

(13) while(!isEmpty(Q))

(14) if ((P=DeQueue(Q)) != “rdf:Property”)

(15) if (range(P=DeQueue(Q)) = Literal)

(16) According to rules 2 and 7, insert the property into

class table and create multi-valued property table

(17) else According to the rule 6, create the corresponding

tables

(18) if (hasChildNodes(P))

(19) for each Pi SubPropertyOnNextLevel (P) (i =

1…n) // All subproperties of P

(20) EnQueue(Q, Pi). According to the rule 5, store the

corresponding property hierarchies

(21) end for

(22) if (!isEmpty(Pro_Fields)) // There are constraints of

properties (i.e., domains and ranges)

(23) According to the rule 4, store the corresponding

property constraints

End

Figure 3. Screen snapshot of RDFS2RDB.

900 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

4.2. Experiments

In addition, in order to further verify the storage

approach is information capacity preserving and correct

storage and compare with the existing work, we also

carried out some storage experiments of RDF(S) using

the implemented tool RDFS2RDB, the data sets used in

the experiments are mainly from the RDF(S) standard

test data set LUBM (Lehigh University Benchmark)

[13], and some ones (e.g., RDF(S) in Figure 2) are

created manually by us with the RDF editor Protégé

[19]. The experiments mainly cover the following two

parts:

Firstly, we design some queries to query the original

RDF(S) documents and the stored relational databases,

where SPARQL is a W3C recommendation query

standard for RDF(S), and SQL is the query standard for

relational databases. Table 9 and Table 10 show several

query statements (Q′1-Q′5), which are used to query the

original RDF(S) documents in Figure 2 and the stored

relational databases in Section 3.2, respectively. Here,

Q′1 queries the class hierarchies; Q′2 queries the

property hierarchies; Q′3 queries the constraints of

properties; Q′4 queries the instances of classes; Q′5

queries the relations of instances. The other queries can

be done similarly. The results show that several query

statements get the same results.

Secondly, we compare our work with the common

and typical existing works (e.g., Horizontal,

Generic/Vertical, and Specific/Binary storage patterns)

as mentioned in section 1. After storing several

different scale RDF(S) data sets (i.e., the numbers of

RDF triples) in relational databases, we carried out

some queries to the stored relational databases. Figure 4

shows the execution time of queries Q1-Q3. Here, Q1

queries all of properties of a class; Q2 queries all of

instances of a class; Q3 queries the property value of an

instance; and the other queries are done similarly. In the

experiments, each query is tested 10 times, and the

average time is calculated as shown in Figure 4.

Table 9. The SPARQL query examples for the original RDF(S)
document.

Name SPARQL Query Condition Results

Q′1 SELECT ?x WHERE {?x rdfs:subClassOf

dc:Staff.}

AdminStaff

AcademicStaff

Q′2 SELECT ?x WHERE {?x
rdfs:subPropertyOf dc:chooseCourse.}

chooseGraCourse

Q′3 SELECT ?x,?y WHERE {s:study_in

rdfs:domain ?x. s:study_in rdfs:range ?y.}

Student

Department

Q′4 SELECT ?x WHERE {?x rdf:type
dc:AcademicStaff.}

John

Q′5 SELECT ?x,?y WHERE{{?x dc:Advices

?y.}

John Mary

Table 10. The SQL query examples for the stored relational

database from the original RDF(S).

Name SQL Query Condition Results

Q′1 SELECT Resource_Table.Localname FROM

Resource_Table

WHERE ID IN (SELECT SubCID

FROM Resource_Table, SubClass_Table

WHERE Resource_Table.Localname = 'Staff' AND

Resource_Table.ID = SubClass_Table.SupCID)

AdminStaff

AcademicStaff

Q′2 SELECT Resource_Table.Localname FROM

Resource_Table

WHERE ID IN (SELECT SubProID

FROM Resource_Table, SubPro_Table

WHERE Resource_Table.Localname = 'chooseCourse'

AND

Resource_Table.ID = SubPro_Table.SupProID)

chooseGraCourse

Q′3 SELECT Resource_Table.Localname FROM

Resource_Table

WHERE ID IN (SELECT Domain, Range

FROM Resource_Table, Property_Field_Table

WHERE Resource_Table.Localname = 'study_in' AND

Resource_Table.ID = Property_Field_Table.ProID)

Student

Department

Q′4 SELECT Resource_Table.Localname

FROM Resource_Table, AcademicStaff_Table

WHERE Resource_Table.ID = AcademicStaff_Table.InsID

John

Q′5 SELECT Resource_Table.Localname

FROM Resource_Table, Relation_Advices_Table

WHERE Resource_Table.ID =

Relation_Advices_Table.SID OR Resource_Table.ID =

Relation_Advices_Table.OID

John Mary

Q1/520 Q2/520 Q3/520 Q1/2100 Q2/2100 Q3/2100 Q1/4608 Q2/4608 Q3/4608
0

50

100

150

200

250

300

350

400

450

Query/Numbers of RDF triples

ti
m

e
/m

s

Our Method

Horizontal

Vertical

Binary

Figure 4. Comparison of query time among different storage

models.

4.3. Discussions

Based on the observations above, the approach and

tool in our work can store RDF(S) in relational

databases. Moreover, comparing with the common

existing work, it can be found that:

 Comparing with the Horizontal storage pattern as

mentioned in section 1, when using the Horizontal

storage pattern, only a relational table is created and

its columns store all RDF(S) properties, and each

RDF(S) individual instance is a record in the table.

But in some RDF(S) data sets, different individual

instance may contain different properties. Therefore,

in this pattern, the created table may have many

null values. In addition, each query needs to search

all of the columns and tuples, and thus the query

time may be increased.

 Comparing with the Generic/Vertical storage

A Novel and Complete Approach for Storing RDF(S) in Relational Databases 901

pattern, when using such pattern, only a relational

table is created, the table contains only three

columns which are used to store the subject,

predicate, and object of an RDF(S) triple. In this

pattern, the semantic information of RDF(S)

resources cannot be directly represented and stored,

and each query needs to search all of the tuples in

the table and execute the self-join operation.

 Comparing with the Specific/Binary storage pattern,

when using such pattern, many tables may be created,

and each table corresponds to an RDF(S) class or

property. Each class table contains only one column

which is used to store the RDF(S) individual

instances belonging to the class. Each property table

contains two columns which are used to store

subjects and objects of the property. In this pattern,

there are the potential scalability problems when the

number of properties in an RDF(s) data set is high,

since there may be many property tables in relational

databases.

Of course, it should be noted that, as mentioned in

section 1, RDF(S) information in some real applications

is different in respects of scales and characteristics, and

thus it is also difficult for us to give a unified pattern

which is enough to effectively store all RDF(S)

information. For example, if each individual instance

has the same properties in some RDF(S) data sets, both

of our approach and the existing Horizontal storage

approach may be suited to store the RDF(S). In our

work, we consider the semantic characteristics of RDF

data and RDF Schema, the approach in our work

creates the different relational tables for storing the

different RDF(S) resources, and the tool and

experiments show that the approach is feasible.

5. Related Work

With the development of RDF(S), lots of RDF(S) data

sets have been created and they tend to become very

large to huge. Therefore, one problem is considered that

has arisen from practical needs: namely, efficient

storage of RDF(S). The existing RDF(S) storage

methods may be classified into several main categories:

based on the file system, the special storage tools, and

the databases. Among the storage methods above,

according to their focuses, the storage of RDF(S) based

on databases are closely related to our work. Therefore,

in the following we will focus on the existing RDF(S)

storage methods with databases.

In current, relating RDF(S) with databases becomes

a topical problem since databases have the support of

relatively mature theories and technologies. In general,

the existing RDF(S) storage works mainly use the

Horizontal, Generic/Vertical, and Specific/Binary

patterns:

 Horizontal storage pattern: The work in [2, 5],

investigated some related points of the Horizontal

storage pattern of RDF(S), where only a generic

table in the database is created, and its columns

store all RDF(S) properties, and each RDF(S)

individual instance is a record in the table. Also,

some query optimization techniques (e.g., Hash) are

introduced in the work.

 Generic\Vertical storage pattern: The work in [6, 10,

15, 23], investigated some related points of the

Generic\Vertical storage pattern of RDF(S), where

only a relational table is created, the table contains

only three columns which are used to store the

subject, predicate, and object of an RDF(S) triple.
 Specific\Binary storage pattern: The work in [3, 4,

18], proposed the Specific\Binary storage pattern.

They proposed two types of property tables. The

first type, which they call a clustered property table,

contains clusters of properties that tend to be

defined together. The second type of property table,

termed a property-class table, exploits the type

property of subjects to cluster similar sets of

subjects together in the same table. Unlike the first

type of property table, a property may exist in

multiple property-class tables.

It should be noted that we do not cover all

publications in the research area. The other kinds of

methods and the comprehensive introduction of

storage and reverse engineering can be found at [7, 9,

14, 17], in detail. In this paper, after we consider RDF

instance data and the semantic characteristics of RDF

Schema (e.g., the class hierarchies, the property

hierarchies, the constraints of properties, multi-valued

properties, the relationships between classes and

properties, the namespaces, and etc.,), an RDF(S)

storage framework and tool based on relational

databases is developed, and also some related details

are provided as shown in Sections 3 and 4 of this

paper.

6. Conclusions

In this paper we investigated the storage of RDF and

RDF Schema (collectively called RDF(S)) in

relational databases, and proposed a formal approach

and developed a prototype tool for storing RDF(S) in

relational databases. By analysing the characteristics

of RDF(S) data and schema semantic information in

depth, an overall storage framework was developed

first. On this basis, some detailed storage rules, a

storage algorithm, and a storage example were given.

Also, the correctness of the storage approach was

discussed and proved. Based on the proposed storage

approach, a prototype storage tool was implemented,

and experiments and comparisons showed that the

approach and the tool are feasible.

As mentioned in the existing work, it is difficult to

give a unified pattern which is enough to effectively

store all RDF(S) information. In our future work, we

will further investigate the storage approach in depth,

javascript:void(0);
javascript:void(0);

902 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

test and compare with more existing storage models to

improve the storage and query efficiency. Also some

optimization techniques (e.g., Hash and Index) may be

introduced. In addition, extending a database system

with reasoning capabilities for supporting the reasoning

of RDF(S) stored in databases is an important direction.

Acknowledgments

The work is supported by the National Natural Science

Foundation of China (61672139), the Natural Science

Foundation of Liaoning Province, China (2015020048),

and the Fundamental Research Funds for the Central

Universities (N151704001).

References

[1] Aluc G., Ozsu M., and Daudjee K., “Workload

Matters: Why RDF Databases Need a New

Design,” in Proceedings of VLDB Endowment,

Hangzhou, pp. 837-840, 2014.

[2] Agrawal R., Somani A., and Xu Y., “Storage and

Querying of E-Commerce Data,” in Proceedings

of 27th International Conference on Very Large

Data Bases, Rome, pp. 149-158, 2001.

[3] Alexaki S., Christophides V., Karvounarakis G.,

Plexousakis D., and Tolle K., “On Storing

Voluminous RDF Description: the Case of Web

Portal Catalogs,” in Proceedings of 4th

International Workshop on the Web and

Databases, California, pp. 43-48, 2001.

[4] Abadi D., Marcus A., Madden S., and Hollenbach

K., “Scalable Semantic Web Data Management

Using Vertical Partitioning,” in Proceedings of

33rd International Conference on Very Large Data

Bases, Vienna, pp. 411-422, 2007.

[5] Bornea M., Dolby J., Kementsietsidis A., Srinivas

K., Dantressangle P., Udrea O., and Bhattacharjee

B., “Building an Efficient RDF Store over a

Relational Database,” in Proceedings of ACM

SIGMOD Conference on Management of Data,
New York, pp. 121-132, 2013.

[6] Broekstra J., Kampman A., and Van Harmelen F.,

“Sesame: A Generic Architecture for Storing and

Querying RDF and RDF Schema,” in

Proceedings of 1st International Semantic Web

Conference, Sardinia, pp. 54-68, 2002.

[7] Benslimane S., Malki M., and Bouchiha D.,

“Deriving Conceptual Schema from Domain

Ontology: a Web Application Reverse

Engineering Approach,” The International Arab

Journal of Information Technology, vol. 7, no. 2,

pp. 167-176, 2010.

[8] Codd E., “A Relational Model of Data for Large

Shared Data Banks,” Communications of the

ACM, vol. 13, no. 6, pp. 377-387, 1970.

[9] Faye D., Cure O., and Blin G., “A Survey of RDF

Storage Approaches,” ARIMA Journal, vol. 15,

pp. 11-35, 2012.

[10] Harris S. and Gibbins N., “3Store: Efficient Bulk

RDF Storage,” in Proceedings of 1st

International Workshop on Practical and

Scalable Semantic Systems, Sanibel Island, pp.

1-15, 2003.

[11] Jena, https://jena.apache.org/, Last Visited, 2016.

[12] Kaoudi Z. and Manolescu I., “RDF in the

Clouds: a Survey,” VLDB Journal, vol. 24, no. 1,

pp. 67-91, 2014.

[13] Lehigh University Benchmark (LUBM). http://

swat.cse.lehigh.edu/projects/lubm/index.htm,

Last Visited, 2016.

[14] Modoni G., Sacco M., and Terkaj W., “A Survey

of RDF Store Solutions,” in Proceedings of

International Conference on Engineering,

Technology and Innovation, Bergamo, pp. 1-7,

2014.

[15] Ma L., Su Z., Pan Y., Zhang L., and Liu T.,

“RStar: an RDF Storage and Query System for

Enterprise Resource Management,” in

Proceedings of 13th ACM Conference on

Information and Knowledge Management,

Washington, pp. 484-491, 2004.

[16] Miller R., and Ioannidis Y., “The Use of

Information Capacity in Schema Integration and

Translation,” in Proceedings of VLDB

Endowment, Dublin, pp. 120-133, 1993.

[17] Nitta K. and Savnik I., “Survey of RDF Storage

Managers,” in Proceedings of 6th International

Conference on Advances in Databases,

Knowledge, and Data Applications, Chamonix,

pp. 1-6, 2014.

[18] Pan Z. and Heflin J., “DLDB: Extending

Relational Database to Support Semantic Web

Queries,” in Proceedings of 1st International

Workshop on Practical and Scalable Semantic

Systems, Sanibel Island, pp. 43-48, 2003.

[19] Protégé, http://protege.stanford.edu, Last

Visited, 2016.

[20] RDF 1.1 Primer, W3C Working Group, 25 Feb

2014, http://www.w3.org/TR/2014/NOTE-rdf11-

primer-20140225/, Last Visited, 2016.

[21] SPARQL 1.1 Overview, W3C Recommendation

21 March 2013,

http://www.w3.org/TR/sparql11-overview/, Last

Visited, 2013.

[22] van Rijsbergen C., “A New Theoretical

Framework for Information Retrieval,” in

Proceedings of 9th Annual International ACM

SIGIR Conference on Research and

Development on Information Retrieval, Pisa, pp.

194-200, 1986.

[23] Wood D., Gearon P., and Adams T., “Kowari: a

Platform for Semantic Web Storage and

Analysis,” in Proceedings of 14th International

Conference on World Wide Web, Chiba, pp. 1-7,

2005.

https://jena.apache.org/
http://protege.stanford.edu/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/sparql11-overview/

A Novel and Complete Approach for Storing RDF(S) in Relational Databases 903

[24] XML Schema Part 2: Datatypes Second Edition,

http://www.w3.org/TR/xmlschema-2/, Last

Visited, 2016.

Fu Zhang received his PhD degree

in 2011 from Northeastern

University, China. He is currently an

associate professor in School of

Computer Science and Engineering

at Northeastern University, China.

He has authored more than 40

refereed international journals and conference papers.

His research work is published in high quality

international conferences (e.g., CIKM and DEXA) and

in highly cited international journals (e.g., Fuzzy Sets

and Systems, Knowledge-Based Systems, and
Integrated Computer-Aided Engineering). He has also

authored two monographs published by Springer. His

current research interests include knowledge graph, the

Semantic Web, and knowledge representation and

reasoning.

Qiang Tong received his PhD degree

from Northeastern University, China.

He is currently working in School of

Software at Northeastern University,

China. His research interests include

RDF data management.

Jingwei Cheng received his PhD

degree in 2011 from Northeastern

University, China. He is currently

working in School of Computer

Science and Engineering at

Northeastern University, China. He

has authored more than 20 refereed

international journals and conference papers. His

current research interests include knowledge graph, the

Semantic Web, and Description Logics.

http://www.w3.org/TR/xmlschema-2/

