
The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019 947

EncCD: A Framework for Efficient Detection of

Code Clones

Minhaj Khan

Department of Computer Science, Bahauddin Zakariya University, Pakistan

Abstract: Code clones represent similar snippets of code written for an application. The detection of code clones is essential

for maintenance of a software as modification to multiple snippets with a similar bug becomes cumbersome for a large

software. The clone detection techniques perform conventional parsing before final match detection. An inefficient parsing

mechanism however deteriorates performance of the overall clone detection mechanism. In this paper, we propose a

framework called Encoded Clone Detector (EncCD), which is based on encoded pipeline processing for efficiently detecting

clones. The proposed framework makes use of efficient labelled encoding followed by tokenization and match detection. The

experimentation performed on the Intel Core i7 and Intel Xeon processor based systems shows that the proposed EncCD

framework outperforms the widely used JCCD and CCFinder frameworks by producing a significant performance

improvement.

Keywords: Clone detection, Software Engineering, Software Maintenance, Optimization, Speedup.

Received February 5, 2017; accepted September 30, 2018

1. Introduction

Software maintenance requires a careful traversal of all

the snippets of code which may be segregated. For

fixing a bug that is common in different snippets of

code, it is inevitable to make modification at all

locations of the erroneous code. This activity becomes

cumbersome for a large software having multiple

instances of duplicate code. Consequently, the

evolution and maintenance of a large software having a

large number of code clones becomes a challenging

issue. Currently, the open source inter-project clones

[19, 21] are also being detected to develop corpora

which may subsequently be used to minimize

development effort.

Various clone detection techniques with diverse

levels of automation have been proposed in the

literature. The diversity of the code clone detection

techniques even arises from the fact that the languages,

parameters and the benchmarks for evaluation are yet

to be standardized [10].

In general, there are four types of code clones: type-

1, type-2, type-3 and type-4 [18]. The type-1 clones

represent snippets of code which are exactly similar

except minor variations of whitespaces and comments.

The type-2 clones represent snippets of code with

similar syntactical structure with the exception of

variations in identifiers, literals and data types etc. The

type-3 clones add further possible variation of addition

and removal of statements to the exceptions of type-2

clones. Similarly, the type-4 clones represent snippets

performing similar computation with variation in

syntax.

The clone detection strategies incorporate the

mainsteps of pre-processing, code transformation,

matching and aggregation. The pre-processing phase is

used to eliminate irrelevant code, for instance, the

embedded language code or initialization code which

might otherwise produce false positives. The

transformation phase produces an intermediate form

which is subsequently used for matching. The existing

strategies usually produce dependence graphs, parse

trees or token sequences which are then normalized for

elimination of some elements such as whitespaces,

formatting or comments etc., Using the output of the

previous phase, the matching phase compares different

units of the code. It produces a list of matches which

are then represented in the form of the source code

coordinates. The code may then by further analyzed for

removal of false positives through a manual or some

heuristic based approach.

The code clone detection techniques are greatly

dependent on the transformation output which impacts

the execution performance of the code clone detection

technique. For instance, the efficient parse tree

approach requires the entire code to be represented in

the form of tree nodes prior to matching. However, as

the code size becomes large, the parsing techniques

suffer from performance degradation due to

architectural constraints such as the limited size of

cache memory.

In this paper, we propose a framework called

Encoded Clone Detector (EncCD), which is aimed at

improving the performance of the code clone detection

techniques. The proposed framework uses an efficient

encoding mechanism to store statement level

constructs with reduced code size. Due to reduction in

948 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

size of the code, the parsing and matching phases

become efficient which subsequently improve the

overall performance of the code clone detection

mechanism. We perform experimentation on a wide

collection of open source software for evaluating the

performance obtained through the EncCD framework

and compare it with other well-known code clone

detection frameworks.

The rest of the paper is organized as follows.

Section 2 discusses the related work in the context of

the code clone detection techniques. The architecture

and implementation details of the proposed EncCD

framework are described in section 3. The

experimental setup and results are given in section 4

before the conclusion and future work which are

described in section 5.

2. Related Work

The techniques proposed for clone detection range

from simple text based syntactic comparisons to the

complex semantic comparisons. A categorization of

clone detection techniques based on text, trees, tokens,

metrics and graphs is given by Roy et al. [18].

The text based techniques rely on performing

substring comparisons using fingerprints or hashes.

The technique by Johnson [13] initially applies hashing

on a snippet of code, followed by a sliding window

based comparison to search for the lines of code

having the similar hash codes. A similar technique by

Smith et al. [20] computes fingerprints by finding all

sequences of tokens of a particular length, also called

n-grams. Another approach using line-based hashes for

finding similar code is given by Ducasse et al. [7].

Their technique uses dot plots for visualization of

clone detection. A single dot is used to represent a

similarity of two lines based on hash values. A pattern

matcher is then run on the dot plot to automate

detection of clones of different types.

The token based approaches use sequences of small

substrings called tokens similar to those produced

during lexical analysis. The sequences of tokens are

then matched to determine the clones within the code.

The token based clone detection approach proposed by

Baker [1] uses two types of tokens. For tokens such as

identifiers or literals, the location in the code is

determined, whereas, for other tokens, a hashing

function is applied. A suffix tree is then used to

represent the sequences resulting from the previous

step. In the suffix tree, common prefixes are used to

indicate clones and are represented by shared edges in

the tree. Similarly, a widely used framework called

CCFinder [14] uses the token based approach for

detecting clones. It supports clone detection for

different languages and works by incorporating the

conventional suffix trees.

While the token based approaches use tokens as the

basic construct for searching, the tree based approaches

find similarity by using subtrees as the basic constructs

for finding clones. The tree based approach by Baxter

et al. [2] uses annotated parse trees which are then

divided into buckets. The subtrees in the buckets are

then compared to search for clones. The searching

phase is further improved by comparing the hashed

subtrees. Another technique to search for similar

subtrees through dynamic programming is proposed by

Yang [25]. The technique may work for searching

clones having different syntax. An XML based

approach proposed by Wahler et al. [23] converts

Abstract Syntax Tree (AST) into XML. The technique

then uses data mining approach for finding clones of

various types. Similarly, another technique using deep-

learning based detection of clones is proposed by

White et al. [24]. Their technique works by linking

patterns mined at syntactic and lexical levels. The

training phase of such techniques may however

dominate the overall performance of clone detection

procedure.

The widely used Java Code Clone Detection

(JCCD) tool [4] incorporates a pipelined approach for

detecting clones. The pipeline uses the phases of

parsing, pre-processing, pooling and filtering, which

generates AST after parsing of source code. Its

enhancement proposed in [16] using a divide-and-

conquer approach divides an input source file into

smaller files, which are then refactored for clone

detection. A smaller size of file is shown to produce

better performance. Similar to the EncCD framework,

their approach also uses the JCCD pipeline, however,

in contrast to our approach, it is limited to dividing a

source code into smaller parts instead of actually

reducing the size of input.

3. Architecture of the EncCD Framework

The EncCD framework incorporates an efficient

encoding mechanism to represent the method bodies as

encoded text which results in the reduced code size. It

deploys the generic pipeline model [4] for detecting

clones. The framework initially parses and transforms

the code using the steps (parsing, labelled encoding

and output) described below:

Let S = S1 × S2 × ... × Sn be the set of n input source

files. Let parse P be the function that transforms a

source code file into a set M with q units, so that, we

have:

P: Si → M, for i=1,2,..., n, where,

M = U(Mk), for k=1,2,..., q, and, M ⊆ Si

Let ψ be the labelled encoding function which

transforms a unit into encoded form, so that, we have,

ψ: Mk → Mk
E, for k=1,2,...,q.

The λ output function uses the encoded set ME to

produce the encoded file SE, so that, we have,

λ: ME → SE

EncCD: A Framework for Efficient Detection of Code Clones 949

Which is then processed through the generic pipeline

for the steps of parsing, preprocessing, pooling,

comparison and filtering for clones detection.

Figure 1. Working mechanism of the encoded pipelined clone

detection.

 The main steps of the proposed framework are

illustrated in Figure 1. The input source is initially

parsed and encoded to produce a compact code.

For implementation of the EncCD framework, the

methods in the source code are used as basic units

which are encoded. The encoded code is then

input to the generic pipeline of the Java Code

Clone Detection (JCCD) tool which parses the

code to generate AST representing the syntactical

structure of the encoded code. This is followed by

pre-processing phase which normalizes the code

units. The normalized units are then joined as

pools based on different criteria such as similar

variable names or values. The contents of every

pool are compared for clone detection and then

filtered to remove false positives.
The labelled encoding of all the source files is

performed by the Encode_Source algorithm

(Algorithm 1) as given below.

Algorithm 1: Encode_Source

 1. foreach (file in source folder)

 2. {

 3. Get compilation unit by parsing

code

 4. Call Encode_Methods for

 the compilation unit

 5. Write modified compilation code to

 file in target folder

 6. }

Using the Encode_Source algorithm, a compilation

unit is initially obtained by parsing the code through

JavaParser [5]. The compilation unit is then encoded

using the steps 1-6 of the algorithm which contain the

main loop iterating over all the files of an input source

folder.

For each file, the source code is parsed to obtain a

compilation unit which is then passed to the algorithm

Encode_Methods (Algorithm 2) to generate an

encoded form of the source code. The compilation unit

obtained after encoding is then stored as encoded

source file. The reduced size of the encoded source file

results in efficient parsing and match detection thereby

improving the overall performance of clone detection.

Algorithm 2: Encode_Methods

 1. Get List of Method Declarations from

 compilation unit

 2. foreach (method in Method Declarations)

 3. {

 4. Let B be the block statement (body)

 string

 5. start = B.indexof("{")

 6. end = B.lastIndexof("}")

 7. S0 = substring(start+1, end-1)

 8. String arStr [] = split S0 into array

of

 strings (statements)

 9. Create empty Statement stmt, and

let

 lStm be LabeledStatement

 10. List <Statement> aList = new

 ArrayList()

 11. foreach (line in arStr)

 12. {

 13. Remove spaces from line

 14. if (line is not empty) then

 15. {

 16. String hStr = (String)

 temp.hashCode()

 17. Replace '-' with '_' in hStr

 18. lStm = new LabeledStatement

 ("m"+hStr, stmt)

 19. aList.add (lStm)

 20. }

 21. }

 22. BlockStmt bst = new BlockStmt()

 23. bst.setStmts(aList)

 24. Set Block Statement of the Method

 Body = bst

 25. }

The Encode_Methods algorithm is invoked by the

Encode_Source algorithm. The step 1 of the algorithm

obtains the list of method declarations whose body

blocks are subsequently modified through the loop in

steps 2-25. In steps 4-7, the statements of the body

block are obtained and placed collectively in a string

S0. Using step 8, the string S0 is split into statements

thereby producing an array of strings arStr. An empty

statement and an array list are created in steps 9-10.

The loop at steps 11-21 works for each line (substring)

in the array of strings arStr to encode each statement.

Table 1. Software together with source size used for

experimentation.

Software
DirBuster

[9]

J8583

[26]
JHotDraw [11]

Open Visual

Traceroute [15]
SableCC [6]

Size 758 KB 297KB 2.05 MB 474 KB 0.99 MB

Software
Jalopy

[22]

PKI

Applet

[12]

Class Editor [17] JavaCSV [8]
Apache HTTP

Server [3]

Size 3.35 MB 52.0 KB 528 KB 137 KB 11.1 MB

Table 2. Specification of the machines used for experimentation.

 Machine-A Machine-B

Architecture Intel Core i7 processor, 4

cores

Intel Xeon X5560 processor

Server, 2x4 cores

Operating

System

Windows 7 64-bit, JDK 1.7 Windows Server 2008, JDK

1.7

950 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

After removing spaces at step 13, the hash code is

generated for non-empty lines and subsequently

processed to generate labelled statements using steps

14-20. At step 16, the hash code is generated, which is

then modified at step 17 by replacing '-' with '_' to

ensure a valid token in the language. A labelled

statement is created at step 18 with a label having an

empty statement stmt. The label contains the encoded

value concatenated with the prefix 'm' so that a valid

token is generated. Each labelled statement is added to

the array list at step 19, which is then used for

generating main block statement of the method in steps

22-24. The overall encoding technique incurs a small

overhead which is amortized through reduced parsing

time during clone detection, thereby improving the

efficiency of code clone detection.

Figure 2. Execution time (in nanoseconds) for clone detection on

Machine-A.

4. Experimentation: Implementation and

Results

The EncCD framework is implemented by

incorporating the algorithms of Encode_Source

(Algorithm 1) and Encode_Methods (Algorithm 2)

while using the generic pipeline model of JCCD [4].

The code is parsed and modified by using the

JavaParser software [5]. For performance evaluation,

we perform experimentation using the well known

open source software available from sourceforge.net.

The source code of every software is initially filtered

to contain only .java source files for which clone

detection is performed.

4.1. Performance Results on Machine-A

Figure 2 shows the results obtained for the machine

having Intel Core i7 based processor. Corresponding to

each software, the execution time in nanoseconds (in

logarithmic scale) is presented in the Figure. The

EnCCD clone detection takes a very small amount of

time in comparison with JCCD and CCFinder. It

outperforms both these clone detectors in terms of

average execution time which is 31999901385,

100859289559, and 2475104568 nanoseconds for

JCCD, CCFinder and EnCCD, respectively.

Figure 3. Speedup obtained by EncCD over JCCD and CCFinder

on Machine-A.

The speedups obtained by EncCD over JCCD and

CCFinder are given in Figure 3. On machine-A, the

overall average and maximum speedups obtained by

the EncCD clone detector over JCCD are 1.31 and

1.76, respectively. Similarly, the overall average and

maximum speedups obtained by EncCD over

CCFinder are 9.12 and 13.29, respectively. The

significant performance improvement demonstrates the

effectiveness of the proposed EncCD framework for

clone detection.

4.2. Performance Results on Machine-B

For the machine having the Intel Xeon processor, the

performance results in terms of execution time are

shown in Figure 4. Similar to the results on Machine-

A, the EnCCD clone detection takes a very small

amount of execution time and outperforms both the

JCCD and CCFinder clone detectors. The average

execution time taken for clone detection by JCCD,

CCFinder, and EncCD is 23559356466, 81169657557,

and 15085237687 nanoseconds, respectively.

Figure 4. Execution time (in nanoseconds) for clone detection on

Machine-B.

Figure 5 shows the speedups obtained by EncCD

over JCCD and CCFinder on machine-B. The overall

average and maximum speedups obtained by the

EncCD clone detector over JCCD are 1.70 and 2.41,

respectively. Similarly, the average and maximum

speedups obtained by the EncCD clone detector over

CCFinder are 11.40 and 19.04, respectively.

EncCD: A Framework for Efficient Detection of Code Clones 951

Figure 5. Speedup obtained by EncCD over JCCD and CCFinder

on Machine-B.

4.3. Performance Results Summary and

Discussion

For both the machines used for experimentation, a

summarized view of performance is given in Table 3.

On machine-A, the maximum speedup obtained by

EncCD over JCCD and CCFinder is for Jalopy and

ClassEditor software, respectively, whereas, the

minimum speedup by EncCD over JCCD and

CCFinder is for PKIApplet and Apache software,

respectively. On machine-B, however, the maximum

speedup obtained by EncCD over JCCD and CCFinder

both is for the Jalopy software, whereas, the minimum

speedup by EncCD over JCCD and CCFinder is for

PKIApplet and Apache software, respectively. Overall,

a better performance enhancement is obtained on the

machine-B in comparison with the machine-A.

The difference in the speedup occurs mainly due to

the source code pattern and number of files being

processed for clone detection in a software. On the

Intel Xeon based system, the clone detection

performance is better since the work-pool of threads

used for clone detection by the frameworks is able to

fully exploit the cores available on the system.

Table 3. A summarized analysis of the speedup obtained by the
EncCD framework.

 Machine-A Machine-B

 JCCD CCFinder JCCD CCFinder

Max.

Speedup
Jalopy Class Editor Jalopy Jalopy

Min.

Speedup
PKIApplet Apache PKIApplet Apache

5. Conclusions

This paper proposes a framework called EncCD, which

aims at efficient detection of code clones. The

proposed framework combines the pipelined approach

with encoded detection. The source code after parsing

is encoded with labelled statements through a

lightweight mechanism. It incurs a very small overhead

which is amortized through enhanced efficiency

obtained due to smaller size of the source code.

The proposed EncCD framework outperforms the

well-known JCCD and CCFinder clone detectors in

terms of execution speed. On the Intel Core i7 based

system, the average speedups of clone detection

obtained by EncCD over JCCD and CCFinder are 1.31

and 9.12, respectively. Similarly, on the Intel Xeon

based system, the average speedups of clone detection

obtained by EncCD over JCCD and CCFinder are 1.70

and 11.40, respectively.

As future work, we intend to incorporate a multi-

pipeline architecture to further improve the

performance of clone detection while supporting

dynamicity in terms of phases depending upon the

available computational resources.

References

[1] Baker B., “On Finding Duplication and Near-

duplication in Large Software Systems,” in

Proceedings of the 2nd Working Conference on

Reverse Engineering, Washington, pp. 86-95,

1995.

[2] Baxter I., Yahin A., Moura L., Santanna M., and

Bier L., “Clone Detection Using Abstract Syntax

Trees,” in Proceedings of the International

Conference on Software Maintenance, Bethesda,

pp. 368-377, 1998.

[3] Behlendorf B., “Apache HTTP Server Project",

Apache, Available at: https://httpd.apache.org/,

Last Visited, 2016.

[4] Biegel B. and Diehl S., “JCCD: A Flexible and

Extensible API for Implementing Custom Code

Clone Detectors,” in Proceedings of the

IEEE/ACM International Conference on

Automated Software Engineering, New York, pp.

167-168, 2010.

[5] Bruggen D., “JavaParser,” Available at:

http://javaparser.org, Last Visited, 2016.

[6] Cagnon E., “SableCC,” SableCC.org, Available

at: http://www.sablecc.org/, Last Visited, 2016.

[7] Ducasse S., Rieger M., and Demeyer S., “A

Language Independent Approach for Detecting

Duplicated Code,” in Proceedings of the IEEE

International Conference on Software

Maintenance, Oxford, pp. 109-118, 1999.

[8] Dunwiddie B., “Java CSV,” Csvreader.com,

Available at: https://www.csvreader.com/, Last

Visited, 2017.

[9] Fisher J., “OWASP DirBuster Project,”

Owasp.org, Available at:

https://www.owasp.org/index.php

/Category:OWASP_DirBuster_Project, Last

Visited, 2017.

[10] Gauci R., “Smelling out Code Clones: Clone

Detection Tool Evaluation and Corresponding

Challenges,” CoRR, vol. abs/1503.00711, 2015.

[11] Gamma E. and Eggenschwiler T., “JHotDraw as

Open-Source Project,” JHotDraw.org, Available

at: http://www. jhotdraw.org/, Last Visited, 2016.

https://httpd.apache.org/
http://www.sablecc.org/

952 The International Arab Journal of Information Technology, Vol. 16, No. 5, September 2019

[12] Javacardos F., “Java Card PKI Applet,”

Sourceforge, Available at:

https://sourceforge.net/projects/java-card-

pkiapplet/, Last Visited, 2016.

[13] Johnson J., “Identifying Redundancy in Source

Code Using Fingerprints,” in Proceedings of the

Conference of the Centre for Advanced Studies

on Collaborative Research, Toronto, pp. 171-

183, 1993.

[14] Kamiya T., Kusumoto S., and Inoue K.,

“CCFinder: A Multilinguistic Token-based Code

Clone Detection System for Large Scale Source

Code,” IEEE Transactions on Software

Engineering, vol. 28, pp. 654-670, 2002.

[15] Lewis L., “Open Visual Traceroute,”

Visualtraceroute, Available at:

http://visualtraceroute.net/, Last Visited, 2016.

[16] Mubarak-Ali A., Syed-Mohamad S., and

Sulaiman S., “Enhancing Generic Pipeline Model

for Code Clone Detection using Divide and

Conquer Approach,” The International Arab

Journal of Information Technology, vol. 12, no.

5, pp. 510-517, 2015.

[17] Mohapatra T., “Java Class File Editor,”

Sourceforge, Available at:

http://classeditor.sourceforge.net/, Last Visited,

2016.

[18] Roy C., Cordy J., and Koschke R., “Comparison

and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach,”

Science of Computer Programming, vol. 74, pp.

470-495, 2009.

[19] Sajnani H., Saini V., Svajlenko J., Roy C., and

Lopes C., “SourcererCC: Scaling Code Clone

Detection to Big Code,” in Proceedings of the

38th International Conference on Software

Engineering, Texas, pp. 1157-1168, 2016.

[20] Smith R. and Horwitz S., “Detecting and

Measuring Similarity in Code Clones,” in

Proceedings of the 13th European Conference on

Software Maintenance and Reengineering, USA,

pp. 28-34, 2009.

[21] Svajlenko J., Keivanloo I., and Roy C., “Big Data

Clone Detection Using Classical Detectors: an

Exploratory Study,” Journal of Software:

Evolution and Process, vol. 27, no. 6, pp. 430-

464, 2015.
[22] Triemax S., “Jalopy Java Source Code Formatter

Beautifier Pretty Printer,” TrieMax, Available at:

https://www.triemax.com/, Last Visited, 2016.

[23] Wahler V., Seipel D., Gudenberg J., and Fischer

G., “Clone Detection in Source Code by Frequent

Itemset Techniques,” in Proceedings of the

Source Code Analysis and Manipulation, 4th

IEEE International Workshop, Washington, pp.

128-135, 2004.

[24] White M., Tufano M., Vendome C., and

Poshyvanyk D., “Deep Learning Code Fragments

for Code Clone Detection,” in Proceedings of the

31st IEEE/ACM International Conference on

Automated Software Engineering, New York, pp.

87-98, 2016.

[25] Yang W., “Identifying Syntactic Differences

Between Two Programs,” Software-Practice and

Experience, vol. 21, no. 7, pp. 739-755, 1991.

[26] Zamudio E., “Introduction to ISO8583,”

Sourceforge, Available at:

http://j8583.sourceforge.net/ iso8583.html, Last

Visited, 2016.

 Minhaj Khan obtained his MS and

Ph.D degrees from University of

Versailles, France. He is currently

working as Associate Professor at

Bahauddin Zakariya University,

Multan. His research interests

include code optimization and high

performance computing.

https://sourceforge.net/projects/java-card-pkiapplet/
https://sourceforge.net/projects/java-card-pkiapplet/
http://visualtraceroute.net/
http://classeditor.sourceforge.net/
https://www.triemax.com/

