
The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020 769

Improved Streaming Quotient Filter: A Duplicate

Detection Approach for Data Streams

Shiwei Che, Wu Yang, and Wei Wang

Information Securityresearch Center, Harbin Engineering University, China

Abstract: The unprecedented development and popularization of the Internet, combined with the emergence of a variety of

modern applications, such as search engines, online transactions, climate warning systems and so on, enables the worldwide

storage of data to grow unprecedented. Efficient storage, management and processing of such huge amounts of data has

become an important academic research topic. The detection and removal of duplicate and redundant data from such multi-

trillion data, while ensuring resource and computational efficiency, has constituted a challenging area of research.Because of

the fact that all the data of potentially unbounded data streams can not be stored, and the need to delete duplicated data as

accurately as possible, intelligent approximate duplicate data detection algorithms are urgently required. Many well-known

methods based on the bitmap structure, Bloom Filter and its variants are listed in the literature. In this paper, we propose a

new data structure, Improved Streaming Quotient Filter (ISQF), to efficiently detect and remove duplicate data in a data

stream. ISQF intelligently stores the signatures of elements in a data stream, while using an eviction strategy to provide near

zero error rates. We show that ISQF achieves near optimal performance with fairly low memory requirements, making it an

ideal and efficient method for repeated data detection. It has a very low error rate. Empirically, we compared ISQF with some

existing methods (especially Steaming Quotient Filter (SQF)). The results show that our proposed method outperforms

theexisting methods in terms of memory usage and accuracy.We also discuss the parallel implementation of ISQF.

Keywords: Bloom filters, Computer Network, Data stream, Duplicate detection, False positive rates.

Received November 30, 2017; accepted July 21, 2019

https://doi.org/10.34028/iajit/17/5/10

1. Introduction

At present, in many areas there have been increasing

amounts in data, such as social network, information

retrieval, video surveillance, finance, energy industries,

and so on, data intensive computing method has

become a main research field of industry and research

community. Managing and processing such large

amounts of data is a challenging task, and duplication

or redundancy of data further exacerbates the difficulty

of the task, leading to a waste of valuable storage and

computing resources. Removing duplicate data from

such data sources can improve application perfomance.

This paper addresses the problem of detecting and

dleting duplicate data in a data stream environment to

mitigate the computational pressure of processing such

data sources. In the case that an element in the data

stream appears before, it is considered to be a duplicate

or a redundant element. The problem of removing such

elements is called repeated data removal problem.

In traditional query processing and data stream

management system [3], deleting duplicate elements is

an important operation. To this end, researchers have

proposed several classic algorithms [20], such as

aproximate frequency moments [1], element

classifiction [23], correlated aggregate queries [21],

etc., The real-time nature of the de-duplication problem

demands efficient in-memory algorithms, but

theinability to store the whole stream (possibly infnite)

makes exact duplicate detection infeasible in streaming

scenarios.Thus, in most cases, a fast method with

tolerable error rate is acceptable at the expense of

accuracy. In this paper, we propose a new efficient

approximation algorithm to solve the repeated data

detection problem in data streams.

In large telecommunication networks where Call

Data Records (CDR) aregenerated, errors in the CDR

generation mechanisms may result in repeated data

generation.To ensure computational efficiency, real

time periodic deletion of duplicate data should be

performed on a data set containing approximately 5

bilion multi-dimensional records before storing the

CDR into a permanent storage device. In this case, the

classic database access solution is extremely slow,

while the classic Bloom Filter [6] approach is extremly

resource intensive.

Network monitoring and accounting provide an

analysis of network users and their usage patterns,

which are widely used in recommender systems and

personalized web search. The classification of users

into new or existing ones and updating their

description information is an interesting application

fordeduplication. Deduplication in the click stream

also helps prevent fraud in the area of Web advertising

and prevents site publishers from gaining more profits

from the advertiser through fake clicks. The detection

of duplicate user IDentifier (ID), Internet Protocol (IP),

https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&searchtype=Quick&searchWord1=%7bData+stream%7d§ion1=FL&database=1&yearselect=%20yearrange%20&sort=yr
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&searchtype=Quick&searchWord1=%7bDuplicate+detection%7d§ion1=FL&database=1&yearselect=%20yearrange%20&sort=yr
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&searchtype=Quick&searchWord1=%7bFalse+positive+rates%7d§ion1=FL&database=1&yearselect=%20yearrange%20&sort=yr

770 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

etc., encourages to reduce such fraudulent activities.

Search engines regularly crawl web pages to update

their corpus of extracted Uniform Resource Locators

(URLs). Given a newly extracted URLs table, the

search engine must scan its archive database

todetermine whether the URL is already in the library.

If not, deposit it. With the exponential growth of web

pages, data deduplication becomes indispensable in

such scenarios.Imprecise duplicate detection may lead

to have identical URL in the library (False Negative,

(FN)), thereby reducing the search engine

performance, or may lead to a new page to be ignored

(False Positive, (FP)) making the corpus of stale.

As can be seen from the above examples, the actual

application has a strong need for repetitive data

deletion algorithms that can run in memory, work in

real time, and have low error rates.
In this paper, we propose an Improved Streaming

Quotient Filter (ISQF), which enhances the Streaming

Quotient Filter (SQF) structure. On top of this

structure, we propose a new algorithm for detecting

duplicate data in data streams. Then, we discuss the

implementation of ISQF on a parallel architecture. We

experimentally analyzed the performance of ISQF. The

obtained results show that the error rate of ISQF is

very low, and for large streams, the error rate is close

to zero, which makes the ISQF much better than the

existing methods. We also discuss the parameter

setting problem of the algorithm, and give the

empirical results on three large scale synthetic data

setsand weshow the efficiency of ISQF in terms of

convergence, low error rate, and memory

requirements.
The rest of this paper is organized as follows.

Section 2 gives a precise definition of the problem as

well as a background study of the existing structures

and methods. Section 3 gives a brief introduction to the

main comparison structure SQF of the structure ISQF

proposed in this paper. Section 4 gives a detailed

description of the structure ISQF and the

corresponding algorithm proposed in this paper for

repeated data detection in data streams, and analyzes

the performance of the algorithm. Section 5 presents

the implementation of ISQF on parallel architectures.

The experimental evaluation results of ISQF are given

in section 6. Section 7 finally concludes the paper.

2. Preliminaries and Related Work

2.1. Problem Definition

A data stream is a sequence of elements, S=e1, e2…eN,

the length of the data stream N may be infinite. We

assume that the stream elements are obtained

uniformly from a finite alphabet set Γ with cardinality

U, namely: |Γ|=U. Then, each element of the stream is

converted to a number using the hashing method or the

fingerprint generation method. The deduplication

problem can be described as: given a data stream S,

and a certain number of memory M, reporting whether

each element ei in S already appeared in e1, e2, … , ei−1

or not. Since storing all stream data is infeasible,

approximate deduplication algorithms are needed to

minimize the error.

2.2. Pairwise Independent Hash Functions

Here, we only briefly introduce the definition of

pairwise independent hash functions.

A family of functions H = {h|h(∙) → [1, w]} is

called the family of pairwise independent hash

functions if for two different hash keys xi, xj, and k, l ∈
[1, w],

Prh←H[h(xi) = 𝑘 ∧ h(xj) = 𝑙] = 1/𝑤2

Intuitively, in order to reduce the probability of hash

collisions, the hash functions used should be pairwise

independent when multiple hash functions are used.

For more details, please refer to [12].

2.3. Related Work

The Navie method for detecting duplicate data in a

data stream involves database and document query, or

pair-wise string comparison, which is extremely slow,

and disk access can corrupt the real-time nature of the

problem. The simple cache and buffer methods include

using stream elements to populate a fixed size buffer,

and to check the presence of each new element in the

buffer. When the buffer is full, a policy is used to

remove an element from the buffer to store the new

element. Several eviction strategies are discussed in

[20]. However, experiments show that the performance

of the buffer technology greatly depends on the

expulsion strategy adopted and the stream behavior.

The problem of bit shaving to address fraudulent

advertiser traffic was investigated in [29]. In [10, 11,

26], an approximate duplicate data detection method

for search engines and Web applications is proposed.

[2, 18] uses file level hashing in storage systems to

detect duplicates, but it suffers from low compression

rates. In [22], secure hash techniques for fixed size

data blocks are studied.

In order to solve the computational challenge of

detecting duplicate data in data streams, Bloom Filters

is commonly used in applications such as [7, 9, 14, 15,

25, 27, 31]. Bloom Filter provides a spatially efficient

probabilistic snapshot structure for the membership

queries in sets. A Bloom Filter is a bit vector

consisting of m components with the initial values set

to 0. The classic Bloom Filter method involves the

comparison of the k selected bits of the vector obtained

by the k hash functions to determine if the elements are

repeated. Inserting an element ei also involves setting

the k components of the Bloom Filter computed by the

k independent hash functions h1(ei),h2(ei),…,hk(ei).

Hoever, the memory and computational efficiency

(1)

Improved Streaming Quotient Filter: A Duplicate Detection Approach for Data Streams 771

achieved are at the expense of a small error rate.

Researchers have also proposed disk based Bloom

Filters, but the overall performance of the structure has

been declined.

In order to support the continuous insertion and

deletion of elements of the bloom filter structure, [18]

introduces counting Bloom Filters. This method

replaces the bits in the filter with a small counter,

which maintains the number of elements that hash to a

particular location. There are some other variants of

the bloom filter model which include compressed

Bloom Filter [28], spacecode Bloom Filters [25],

Decaying bloom filter [30], and spectral bloom filters

[12], etc.,

Bloom Filters has also been applied to network

related applications, such as heavy flows for stochastic

fair bluequeue management [19] to assist routing,

packet classification [4], state management of each

flow, and longest prefix matching [14]. [24]

Extendsbloomjoin for distributed joins to minimize the

network usage during database statistic query

execution. For multicore applications, a parallel

version of Bloom Filters has been proposed by [26].

An interesting Bloom Filter structure, Stable Bloom

Filter (SBF), proposed by [13] provides a guarantee

regarding the performance of the structure. It removes

elements from the structure continuously and provides

a constant upper bound on False Positive Rate (FPR)

and False Negative Rate (FNR). This stable

performance provides a powerful guarantee for the

real-time efficiency of deduplication applications.

However, SBF has a higher rate of false positive;

theoretically, it can achieve convergence only on

infinitely long streams. In order to overcome the

shortcomings of SBF, [16] prposed Reservoir

Sampling based Bloom Filter (RSBF), which is a new

combination of reservoir sampling technology with

Bloom Filter structure.

The problem of high FNR is primarily caused by the

deletion of a bit in the Bloom Filter that may cause the

logical deletion of more than one element, which

means, deleting all the elements that map to this bit.

Quotient filter [5] uses quotienting technology to

eliinate this problem, allowing Bloom Filter to be

“dletion-friendly”. However, it does not support data

stream queries.

In [17], SQF was proposed, which is an improved

version of quotient filter. Compared with the method

mentioned above, the accuracy is greatly improved, the

error rate is highly reduced, and only a small amount

of memory is used. Therefore, we use it as the main

comparison method with the one described in this

paper. In order to make a good contribution to our

approach, we will briefly introduce it in the next

section.

In this article, we propose the ISQF for

deduplication problems. Compared with existing

structures, it provides near zero error rates using a

small amount of memory. As far as we know, ISQF

provides the lowest error rate compared with the

previous methods, and the memory requirement is very

low. We also discussed how ISQF works on a parallel

architecture. We believe that using parallel and

distributed settings, ISQF can efficiently manage

petabytes of data with relatively low memory (on the

order of hundreds of gigabytes).

3. Streaming Quotient Filter

To better illustrate ISQF, in this section, we briefly

introduce SQF [17].

Dutta et al. [17] Assumes that each element of the

stream S is uniformly drawn from a finite universe Γ,

the cardinality of Γ is U and it is hashed to a p-bit

fingerprint using Rabin's method [21]. This assumption

is also applicable to our approach presented in this

paper. The fingerprint of the element is the input of the

SQF structure F. conceptually F = h(S) =
{h(e)|e ∈ S}, where h: Γ → {0,1, … , 2p − 1}.

SQF stores the signature formed by the input

element fingerprint in a hash table T, and the number

of rows in T is R=2q (q<p). In this method, the input

fingerprint of an element e, fe, is divided into its r

least-significant bits fe
r = fe mod 2r(remainder), and

its q=p-r most-significantbits fe
q

= ⌊fe/2r⌋ (quotient).

Each row of the hash table T is further divided into k

buckets, each storing the signature of an element. The

signature σe of an element e consists of fe
r′

 followed by

Oe. Among them, Oe is the number of 1 in fe
r, and fe

r′
 is

a number formed by selecting r′ bits from fe
r. fe

r′
 is

called a reduced remainder. Figure 1 describes the

structure of the SQF [17].

When the signature σe of a new element e in the

data stream arrives, SQF stores the signature σe in the

bucket of row fe
q
 in hash table T. Therefore, the

membership query of a data stream element e only

involved checking the presence of the signature of the

element e in the buckets of the corresponding row (row

fe
q
) of the hash table, which provides a concise and

efficient algorithm for the detection of duplicate data.

1e 2e 3e ……

r

1

r

1

2%er)remainder(

/2e)quotient(q

)(r '

stores

reduced

remainder
eO

……

k buckets

bucket

bits)r(logr
signature

'
count of 1s in r

buckets

stream

Hash Table (T)

...

...

...

...

…
…

q2

T[q][i]=signature(e)

Figure 1. The structure of SQF.

772 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

If two fingerprints, f and f ′, are mapped to the same

row of T, that is, there is the same quotient (f q = f ‘q),

as in [5], we call it a soft collision. Since each row of T

contains only k buckets, when more than k distinct

elements mapped to the same row of T, we call it a

hard collision, as in [17]. When a hard collision occurs,

the algorithm uniformly and randomly chooses an

element signature out of k stored signatures in the

buckets, and it removes the signature and stores the

new signature. For an example of using SQF, please

refer to the example in section 4.

When the hard collision occurs, 0after deleting the

signature, the same signature of the same element in

data flow appears again, because the same signature is

deleted earlier, the algorithm will not be able to detect

the later elements that are repeated, which caused a

large false negative existence, reduces the accuracy of

the algorithm. Simply increasing k to expand the

bucket number of each row of the hash table T to

reduce the number of missing reports will also

encounter a problem of a too large average lookup

length (k/2, which is discussed later in this article). The

above two questions are exactly the problems that

ISQF structure in this article should solve.

4. Improved Streaming Quotient Filter

ISQF）

4.1. Principle and Algorithm

In order to solve the two shortcomings of the SQF

proposed at the end of the last section, we propose

ISQF. Its structure is illustrated in Figure 2.

ISQF consists of m hash tables. Each hash table is

equivalent to a SQF. Every table contains 2q entries,

and each of them containing k buckets and each bucket

stores the signature of a data stream element. The hash

functions of this m hash tables are m pairwise

independent hash functions hi(·)→[0,2q−1],i=1,2…,m.

When the fingerprint fe of a new data stream

element e arrives, the algorithm first calculates fe
q

=
⌊fe/2r⌋，fe

r = fe mod 2r, Oe indicates the number of

bits set to 1 in fe
r. The r′(<r) bits are selected from the

fe
r by a function Ω：ℝr → ℝr′

, and the reduced

remainder fe
r′

 is formed by this r′ bit. The signature σe

of the element e is made up of fe
r′

 followed by Oe.

Then, iterate through the following operations on the m

hash tables: in the ith iteration, calculate the hash

function hi(fe
q

), check whether there is the same

signature with σe in the k buckets of the entry hi(fe
q

)

of the ith hash table Ti, if:

1. having the same signature, then the algorithm

reports that e is a repeating element and terminates

the iteration.

2. otherwise, σe is stored in an empty bucket of the

entry and continues iteration.

3. if the entry is full and no empty bucket exists, then

selects one of the k buckets uniformly and

randomly, deletes the existing signature, stores the

new signature, and continues the iteration. The

following example illustrates the above

implementation of the algorithm.

 Example: assuming that the fingerprint fe(p=8) of an

element e is (10011011)2, and r=4. Therefore,

q=p-r=4, each hash table of ISQF contains R=2q =
16 entries. Suppose there are m=3 hash tables in the

ISQF structure, and each entry in the hash table

contains k=1 bucket. Then, fe
q

= (1001)2, fe
r =

(1011)2. Let Ω be a simple function selecting r′ = 2

most-significant bits

.

.

.

...:h TableHash 1

:h 2

:h m

q2

1e 2e 3e ……

)(]][[h 11 esignatureif q

e

)(]][[h 22 esignatureif q

e

)(]][[h mm esignatureif q

e

...

...

...

rr

e

rq

e

2e%f

e/2f

)(r '

stores

reduced

remainder
eO

……

k buckets

bucket

bitsr)(logr

signature

'
count of 1s in r

buckets

stream

Figure 2. The structure of ISQF. of fe
r.

Thus, the reduced remainder fe
r′

 is (10)2, the

number of 1 in fe
r is Oe=3=(11)2, and the signature of

element e is σe=1011, generated by fe
r′

 followed by Oe.

Assume that h1(fe
q

) = h1(9) = 15, h2(fe
q

) = h2(9) =

23, h3(fe
q

) = h3(9) = 8, and the corresponding

entries of the three hash table in which are not full, for

the fifteenth entry of the first hash table (the entry

count from 0), the twenty-third entry of the second

hash table and the eighth entry of the third hash table,

the signature σe is stored in anempty bucket.

The following algorithm 1 describes the pseudo

code of ISQF.

Algorithm 1: ISQF(S)

Require: Stream(S), Number of bits in the fingerprint of

elements (p), the number of memory bits available (M), the bit

selection function (), the number of hash tables (m)

Ensure: Detecting duplicate and unique elements in S with low

error rates

Set parameters: the number of bits in the remainder (r(< p)),

the number of buckets in each entry of the hash table (k), and

the size of each bucket in bits (𝑠𝑏)

2: Calculating bits number of quotient, 𝑞 ← 𝑝 − 𝑟. Create m

hash tables, each with 𝑅 ← 2𝑞 entries

3: Every entry of the m hash tables is further divided into k

buckets, the size of each is 𝑠𝑏 bits. Initially, the m hash tables

are all empty

Improved Streaming Quotient Filter: A Duplicate Detection Approach for Data Streams 773

4: sp=1

5: e=Current element S[sp] of stream S

6: Result DISTINCT

7: Let 𝑓𝑒 is the p bits fingerprint of e

8: Calculate quotient of 𝑓𝑒, 𝑓𝑒
𝑞

← ⌊𝑓𝑒/2𝑟⌋
9: Calculate remainder of 𝑓𝑒, 𝑓𝑒

𝑟 ← 𝑓𝑒%2𝑟

10: 𝑂𝑒 ←number of one in 𝑓𝑒
𝑟

11: Select the 𝑟 ′(<r) bits positions using the function

12: The reduced remainder of e, 𝑓𝑒
𝑟 ′ ←the numbe

formed by the selected 𝑟 ′ bits

13: The signature 𝜎𝑒 of e is obtained by 𝑓𝑒
𝑟 ′ and 𝑂𝑒

14: i=1

15: Let 𝑇𝑖 be the ith table of the m hash tables

16: n=ℎ𝑖(𝑓𝑒
𝑞

)

17: j=1

18: Let 𝑏𝑗 is the jth bucket of entry n of T(𝑇𝑖[𝑛])

19: If Signature at 𝑏𝑗=𝜎𝑒, then Result=DUPLICATE and go to

21

20: If j<k, then j=j+1 and go to 18

21: If Result= DUPLICATE, then go to 23

22: If i<m, then i=i+1 and go to 15

23: If Result=DISTINCT, then i=1; otherwise, go to 30

24: Let 𝑇𝑖 be the ith table of the m hash tables

25: n=ℎ𝑖(𝑓𝑒
𝑞

)

26: Let 𝑏𝑒𝑚𝑝𝑡𝑦 be an empty bucket at the entry n of 𝑇𝑖(𝑇𝑖[𝑛])

27: If 𝑏𝑒𝑚𝑝𝑡𝑦 does not exist, i.e., there is no empty

bucket in 𝑇𝑖[n], then 𝑏𝑒𝑚𝑝𝑡𝑦 ←select a bucket uniformly and

randomly from 𝑇𝑖[𝑛]
28: Storing 𝜎𝑒 in bucket 𝑏𝑒𝑚𝑝𝑡𝑦

29: If i<m, then i=i+1 and go to 24

30: If sp< the length of stream S, then sp=sp+1 and go to 5;

otherwise, stop the algorithm and output Result

4.2. Analysis

The pervious section shows that ISQF uses m (>1)

hash tables to store the signatures of data stream

elements, which greatly reduces the false negative rate

compared with SQF. SQF has only one hash table,

each table entry has k buckets. When a hard collision

occurs, it randomly selects a signature to remove in

order to make a storage space for storing new

elements. When the same element in the stream arrives

again, SQF cannot detect that it is a repeating element

because it has been deleted from SQF, resulting in a

failure to report; while ISQF uses m (>1) hash tables to

store signatures, when one or more hash tables have a

hard collision and cannot detect duplicate elements, as

long as a hash table does not have a hard collision or it

occurs, but the deleted signature is not the duplicate

element signature, the ISQF can detects duplicate

elements and it will not be missed. Since there are

multiple hash tables, this is exactly a high probability

event.

Then why not extend the storage space of a hash

table of SQF directly to reduce the hard collision but

rather build multiple hash tables? This problem

involves the concept of the Average Search Length

(ASL) of data structure discipline. Suppose there are 8

hash tables in ISQF, each table entry has 120 buckets.

Then, with the same storage space, each table entry for

SQF can have 960 buckets. From the definition of

SQF, the signatures in SQF are uniformly distributed.

Thus, under the above conditions, the average search

length for finding a repeating element in SQF is

ASLSQF=480. Since ISQF's m hash functions are

pairwise independent hash functions, the signatures in

each table of ISQF are also uniformly distributed.

Then, under the above conditions, assume that 3 tables

in 8 hash tables still have signatures of repeating

elements, the average search length for finding a

repeating element in ISQF is ASLISQF=320. Which is

significantly lower compared with SQF. And, as the

number of hash tables m and the number of buckets k

in each table entry increases, this decrease in ASL

becomes more pronounced.

We now consider the memory space required by

ISQF. From [8] we can see, the number of memory bits

required for SQF is

M = k ∙ 2q ∙ (r′ + log r)

The meaning of k, q, r and r′ in the formula are the

same as above. Consider the examples in section 4.1,

we used p=8, q=4, r= 4, k=1, r′=2, M=64 bit [8]. That

is, it uses 8 bytes to store the signatures of 16 different

elements, which are very low memory requirements.

Considering that our ISQF just transforms a hash table

of SQF into m (>1), this memory demand is still low

and is supported by most systems.

5. Parallel Implementation

In this section, we describe the implementation of

ISQF on a parallel architecture. This enables ISQF to

efficiently handle deduplication of petabytes of data

using low memory space (hundreds of gigabytes).

Suppose that a parallel environment consists of P

processors, and the input stream is partitioned into

blocks of C elements. Each element in a block bi is

evenly assigned to the P processor, along with its

position pos in bi. Hence, each processor receives

α=C/P elements of block bi. Every hash table of the

stored signatures is evenly distributed over the P

processors, each node contains R/P contiguous entries

of each hash table (R is the length of each hash table).

Since there are m hash tables, each node contains a

total of m * R/P hash table entries, and each hash

table's entries are contiguous. Each node holds the hash

functions of the m hash tables to calculate the m hash

values of the inputed element's fingerprint. Each

processor runs two parallel threads, p1 and p2. This can

easily be extended to multiple threads.

For the C elements of block bi, each node NS

receives the element fingerprints esa, esa+1,…, e(s+1)α-1

s∈[0, P-1]. Suppose that the m hash tables are

Hd1
, Hd2

, … , Hdm
, respectively. The thread p1

s of the

node NS calculates the m hash values of the inputed

element fingerprint ek
s . According to the calculated

hash values, Ns passes ek
s , its corresponding hash value

(2)

774 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

and position pos to the node Nd1
, Nd2

, … , Ndm
 that

contain the corresponding entries of the hash tables.

The second thread p2
di of node Ndi

(i = 1,2, … , m)

calculates the signature of the ek
s and checks whether

the fragment Hdi
 of the hash table which it holds

contains the signature. As long as there is a thread

p2
di(i = 1,2, … , m) found in the local stored hash table

entries containing the signature, the algorithm reports

the corresponding element as a repeating element.

Otherwise, p2
di(i=1, 2,…, m) stores the signature in the

hash table Hdi
. However, if the membership query is

the same as before, the accuracy of the algorithm may

be reduced. For example, considering the case of m=1,

C=P=3, the elements of a block to be {u, v, v*},

wherev= v*, v* arrives after v, and v has never

appeared before in the stream. Therefore, v should be

reported as distinct element, and v* should be reported

as repeating element. However, if the node N3 stores a

fragment that v and v* mapped to the hash table T, and

N3 handles v* before v, then the algorithm will report

that v*is the distinct element, and v is the repeating

element.

To solve this problem, each bucket in the hash table

should contain an additional field which is the position

in the block of the stored element in the bucket,

represented by the variable pos. Consider the example

of single hash table, where the node Nd receives the

fingerprint ek
s and checks the presence of ek

s 's signature

in the local hash table. If the signature does not exist,

Nd stores it in a bucket B and sets the pos field to

posek
s . Thus, when a subsequent fingerprint E=ek

s

arrives, the Nd checks the pos field of the bucket B. If

posE > Bpos, then E is located behind ek
s in the stream,

so Nd correctly informs that the element corresponding

to E is the repeating element. If posE < Bpos,

indicateing that E is before ek
s in the stream, but it is

processed after ek
s . Therefore, Nd notifies the element

corresponding to ek
s as the repeating element and

updates Bpos to posE. After the entire block has been

processed, the element of the signature stored in the

bucket is reported as the distinct element. Then, the

next fingerprint block of elements is processed.

For the above example, now we assume that N3

handles v* first. Because its signature is not in the hash

table T, N3 stores the signature in the bucket B and sets

Bpos=3, resulting from that it is the third element in the

block. When v is processed later, the signature of v is

found in T, since the same element v* is first

processed. Now, N3 checks the pos field of B, because

posv=2˂ Bpos, so N3 correctly infers that v comes

before v* in the stream. Therefore, N3 informs that the

third element is duplicated and updates Bpos to 2. After

the elements in the block are processed, the algorithm

notifies that the second element is the unique element.

6. Experiment

In this section, we experimentally evaluate the

performance of ISQF by comparing it with the state of

art methods. SBF, RSBF and SQF are the three most

advanced structures in this field. Using three synthetic

data sets, we compared the error rates of our proposed

ISQF structure and the three structures mentioned

above.

The synthetic data sets are generated using uniform

distribution. In order to capture a wide variety of

stream scenarios, the percentage of unique elements in

each synthetic data set is different.

First we discuss the settings for the parameters r, r′,

k, and m. Then, using these settings, based on the

changes in the following scenarios, we conduct

experiments to capture variations of error rates of

various methods:

 Number of input records.

 Percentage of different elements.

 Memory requirements.

6.1. Setting of Parameters

Fan et al. [18] Shows that for a single hash table, the

optimal settings for the parameters r, r′, and k are r=2,

k=4, r′=r/2=1. In this paper, we use these settings. In

the following section, we discuss the impact of the

parameter m setting on algorithmic error rates. Table 1

and Figure 3 describes the change in the error rate of

the algorithm on the third synthetic data set as the

parameter m changes:

Table 1. The impact of m values on algorithmic error rates.

m Error rate(%)

1 0.0035

2 0.0021

3 0.0013

4 0.00029

5 0.00021

6 0.00007

7 0.00006

8 0.00001

As can be seen from Table 1 and Figure 3, with the

increasing of m value, the error rate of the algorithm is

significantly decreased and the accuracy is greatly

increased. By adjusting the value of m, the memory

size is regulated accordingly, this paper demonstrates

the error rate of the algorithm using different memory

space sizes on three synthetic datasets.

Improved Streaming Quotient Filter: A Duplicate Detection Approach for Data Streams 775

0 1 2 3 4 5 6 7 8 m

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

Error rate(%)

Figure 3. The Impact of M values on algorithmic error rates.

6.2. Synthetic Datasets

In this part, we demonstrate the performance of

Improved ISQF using three large data sets generated

by uniformly distributed random data. To simulate the

real stream scenes, we use a different percentage of the

unique elements in the three synthetic data sets. Table

2 indicates the performance of ISQF and other

algorithms using different memory sizes on the data

sets.

Table 2. Performance comparisons on composite data sets.

Datasets

(%Distinct)
Memory

Error rate (%)

SBF RSBF SQF ISQF

1 billion

(15%)

64MB
128MB

512MB

2.92
1.26

0.13

4.29
1.61

0.14

0.0042
0.0006

0.0001

0.0018
0.00027

0.00002

695 million

(60%)

128MB

256MB
512MB

4.31

2.09
0.82

6.73

2.77
0.92

0.003

0.001
0.0003

0.0019

0.00012
0.00004

100 million

(90%)

32MB

64MB

128MB

4.13

2.05

0.64

6.04

3.17

1.12

0.0032

0.0007

0.0001

0.0021

0.00029

0.00001

It can be seen from Table 2, for a data set containing

1 billion records with 15% unique elements, using

64MB memory, ISQF achieves a 0.0018% error rate,

while the current state-of-the-art approach, SQF, has a

0.0042% error rate. As a result, ISQF achieves a

performance improvement of nearly 24 ×.

For a data set containing 695 million records with

60% unique elements, using 256MB memory, ISQF

achieves a 0.00012% error rate, while SQF has a

0.001% error rate. As a result, ISQF achieves a

performance improvement of nearly 10×.

The third synthetic data set contain 100 million

records, with 90% unique elements (as shown in Table

2). It can be seen from Table 2, on the third data set,

ISQF has a similar performance to the above analysis.

When allocating 128MB memory, the error rate of

ISQF is 0.00001%, while the error rate of SQF is

0.0001%, the error rate of SBF is 0.64%, and the error

rate of RSBF is 1.12%. Therefore, ISQF is far superior

to SQF, SBF and RSBF.

7. Conclusions

In a stream scenario, taking into account numerous

data from various applications, real-time deduplication

in memory poses a challenging problem. In this paper,

we proposed a new algorithm based on ISQF structure,

which solves the mentioned problem. Compared to the

previous methods, ISQF provides improved error rates

with simple hash table structure and bit operations. In

fact, ISQF achieves nearly the optimal error rates. In

some data flow scenarios, the error rate of the proposed

algorithm is close to zero.

We also provide a basic parallel framework

implementation of ISQF to meet the need of distributed

applications. Experimental results show that ISQF is

much better than contrast method, and ISQF exhibits

near optimal error rate. In the field of repeated data

detection, ISQF is a very powerful, attractive and

memory efficient architecture.

Further research and empirical analysis on data flow

with conceptual drift, as well as a complete

architecture design and implementation of ISQF, are

our future research directions.

Acknowledgements

This work is supported by National Key Research and

Development Project (Grant No. 2016YFB0801204

and 2016YFB0801503).

References

[1] Alon N., Matias Y., and Szegedy M., “The Space

Complexity of Approximating the Frequency

Moments,” in Proceedings of 28th Annual ACM

Symposium on Theory of Computing, Philadelpia,

pp. 20-29, 1996.

[2] Babcock B., Babu S., Datar M., Motwani R., and

Widom J., “Models and Issues in Data Stream

Systems,” in Proceedings of the 21st ACM

SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, Madison, pp. 1-

16, 2002.

[3] Babcock B., Datar M., and Motwani R., “Load

Shedding for Aggregation Queries over Data

Streams,” in Proceedings of 20th International

Conference on Data Engineering, Boston, pp.

350-361, 2004.

[4] Baboescu F. and Varghese G., “Scalable Packet

Classification,” in Proceedings of Applications,

Technologies, Architectures, and Protocols for

Computers Communications, San Diego, pp. 199-

210, 2001.

[5] Bender M., Farach-Colton M., Johnson R.,

Kraner R., Kuszmaul B., Medjedovic D., Montes

P., Shetty P., Spillane R., and Zadok E., “Don't

Thrash: How to Cache Your Hash on Ash,” in

Proceedings of Ceedings of the VLDB Endoment,

Istanbul, pp. 1627-1637, 2012.

776 The International Arab Journal of Information Technology, Vol. 17, No. 5, September 2020

[6] Bloom B., “Space/Time Trade-offs in Hash

Coding with Allowable Errors,” Communications

of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[7] Broder A. and Mitzenmacher M., “Network

Applications of Bloom Filters: A Survey,”

Internet Mathematics, vol. 1, no. 4, pp. 485-509,

2004.

[8] Borg M., Runeson P., Johansson J., and Mäntylä

M., “A Replicated Study on Duplicate Detection:

Using Apache Lucene to Search Among Android

Defects,” in Proceedings of 8th International

Symposium on Empirical Software Engineering

and Measurement, Torino, pp. 1-4, 2014.

[9] Chen Y., Kumar A., and Xu J., “A New Design

of Bloom Filter for Packet Inspection Speedup,”

in Proceedings of 50th Annual IEEE Global

Telecommunications Conference, GLOBECOM,

Washington, pp. 1-5, 2007.

[10] Chowdhury A., Frieder O., Grossman D., and

McCabe M., “Collection Statistics for Fast

Duplicate Document Detection,” ACM

Transactions on Information Systems, vol. 20, no.

2, pp. 171-191, 2002.

[11] Conrad J., Guo X., and Schriber C., “Online

Duplicate Document Detection: Signature

Reliability in A Dynamic Retrieval

Environment,” in Proceedings of the 12th

International Conference on Information and

knowledge Management, New Orleans, pp. 443-

452, 2003.

[12] Cormode G. and Muthukrishnan S., “An

Improved Data Stream Summary: The Count Min

Sketch and Its Applications,” Journal of

Algorithms, vol. 55, no. 1, pp. 58-75, 2005.

[13] Deng F. and Rafiei D., “Approximately

Detecting Duplicates for Streaming Data Using

Stable Bloom Filters,” in Proceedings of the

ACM SIGMOD International Conference on

Managment of Data, Chicago, pp. 25-36, 2006.

[14] Dharmapurikar S., Krishnamurthy P., and Taylor

D., “Longest Prefix Matching Using Bloom

Filters,” IEEE/ACM Transactions on Networking,

vol. 14, no. 2, pp. 397-409, 2006.

[15] Dharmapurikar S., Krishnamurthy P., Sproull T.,

and Lockwood J., “Deep Packet Inspection Using

Parallel Bloom Filters,” IEEE Micro, vol. 24, no.

1, pp. 52-61, 2004.

[16] Dutta S., Bhattacherjee S., and Narang A.,

“Twards “Intelligent Compression” in Streams:

A Biased Reservoir Sampling Based Bloom

Filter Approach,” in Proceedings of the 15th

Interntional Conference on Extending Database

Technology, Berlin, pp. 228-238, 2012.

[17] Dutta S., Narang A., and Bera S., “Streaming

Quotient Filter: A Near Optimal Approximate

Duplicate Detection Approach for Data Streams,”

Proceedings of the VLDB Endowment, vol. 6, no.

8, pp. 589-600, 2013.

[18] Fan L., Cao P., Almeida J., and Broder A.,

“Summary Cache: A Scalable Wide-Area Web

Cache Sharing Protocol,” Computer

Communiction Review, vol. 28, no. 4, pp. 254-

265, 1998.

[19] Feng W., Kandlur D., Saha D., and Shin K.,

“Stochastic Fair Blue: A Queue Management

Algorithm for Enforcing Fairness,” in

Proceedings of 20th Annual Joint Conference of

the IEEE Computer and Communications

Societies, Anchorage, pp. 1520-1529, 2001.

[20] Garcia-Molina H., Ullman J., and Widom J.,

Database System Implementation, Prentice Hall,

2000.

[21] Gehrke J., Korn F., and Srivastava D., “On

Computing Correlated Aggregates over

Continual Data Streams,” in Proceedings of ACM

SIGMOD International Conference on

Management of Dta, Santa Barbara, pp. 13-24,

2001.

[22] Golab L., DeHaan D., Demaine E., Lpez-Ortiz

A., and Munro J., “Identifying Frequent Items in

Sliding Windows over On-Line Packet Streams,”

in Proceedings of the 3rd ACM SIGCOMM

Coference on Internet Measurement, Miami

Beach, pp. 173-178, 2003.

[23] Gupta P. and McKeown N., “Packet

Classification on Multiple Fields,” in

Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for

Computer Communication, NY, pp. 147-160,

1999.

[24] Køien G., “A Brief Survey of Nonces and Nonce

Usage,” in Proceedings of the 9th International

Conference on Emerging Security Information,

Systems and Technologies, Iaria Xps Press, pp.

85-91, 2015.

[25] Kumar A., Xu J., Wang J., Spatschek O., and Li

L., “Space-Code Bloom Filter for Efficient

PerFlow Traffic Measurement,” in Proceedings

of IEEE INFOCOM Conference on Computer

Communications 20 th Annual Joint Conference of

the IEEE Computer and Communications

Socities, Hongkong, pp. 1762-1773, 2004.

[26] Lee D. and Hull J., “Duplicate Detection for

Symbolically Compressed Documents,” in

Prceedings of 5th International Conference on

Document Analysis and Recognition, Banglore,

pp. 305-308, 1999.

[27] Little M., Shrivastava S., and Speirs N., “Using

Bloom Filters to Speed-up Name Lookup in

Ditributed Systems,” Computer Journal, vol. 45,

no. 6, pp. 645-652, 2002.

[28] Mitzenmacher M., “Compressed Bloom Filters,”

IEEE/ACM Transactions on Networking, vol. 10,

no. 5, pp. 604-612, 2002.

[29] Reiter M., Anupam V., and Mayer A., “Detecting

Hit Shaving in Click-Through Payment

https://dl.acm.org/toc/ton/2006/14/2
https://www.researchgate.net/journal/0743-166X_Proceedings-IEEE_INFOCOM

Improved Streaming Quotient Filter: A Duplicate Detection Approach for Data Streams 777

Schemes,” in Proceedings of the 3rd Conference

on USENIX Workshop on Electronic Commerce,

Boston, pp. 155-166, 1998.

[30] Shen H. and Zhang Y., “Improved Approximate

Detection of Duplicates for Data Streams over

Sliding Windows,” Journal of Computer Science

and Technology, vol. 23, no. 6, pp. 973-987,

2008.

[31] Song H., Dharmapurikar S., Turner J., and

Lockwood J., “Fast Hash Table Lookup Using

Extended Bloom Filter: An Aid to Network

Processing,” in Proceedings of the ACM

SIGCOMM Conference on Applications,

Technologies, Achitectures, and Protocols for

Computer Comunication, Philadelphia, pp. 181-

192, 2005.

Shiwei Che is currently a Ph.D.

candidate in the Department of

Computer Science and Technology,

Harbin Engineering University. He

received his M.E. degree in 2010

from the Department of Computer

Science and Technology of Xinjiang

University, Xinjiang, China. His main research

interests include social networks and community

detection.

Wu Yang received a Ph.D. degree

in Computer System Architecture

Specialty of Computer Science and

Technology School from Harbin

Institute of Technology. He is

currently a professor and doctoral

supervisor of Harbin Engineering

University. His main research

interests include wireless sensor network, peer-to-peer

network and information security. He is a member of

ACM and senior member of CCF.

Wei Wang received a Ph.D. degree

in Computer System Architecture

Specialty of Computer Science and

Technology School from Harbin

Institute of Technology. He is

currently an professor in Harbin

Engineering University. His main

research interests include social networks and

community detection.

https://dl.acm.org/doi/proceedings/10.5555/1267147
https://dl.acm.org/doi/proceedings/10.5555/1267147

