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Abstract: The unprecedented development and popularization of the Internet, combined with the emergence of a variety of 

modern applications, such as search engines, online transactions, climate warning systems and so on, enables the worldwide 

storage of data to grow unprecedented. Efficient storage, management and processing of such huge amounts of data has 

become an important academic research topic. The detection and removal of duplicate and redundant data from such multi-

trillion data, while ensuring resource and computational efficiency, has constituted a challenging area of research.Because of 

the fact that all the data of potentially unbounded data streams can not be stored, and the need to delete duplicated data as 

accurately as possible, intelligent approximate duplicate data detection algorithms are urgently required. Many well-known 

methods based on the bitmap structure, Bloom Filter and its variants are listed in the literature. In this paper, we propose a 

new data structure, Improved Streaming Quotient Filter (ISQF), to efficiently detect and remove duplicate data in a data 

stream. ISQF intelligently stores the signatures of elements in a data stream, while using an eviction strategy to provide near 

zero error rates. We show that ISQF achieves near optimal performance with fairly low memory requirements, making it an 

ideal and efficient method for repeated data detection. It has a very low error rate. Empirically, we compared ISQF with some 

existing methods (especially Steaming Quotient Filter (SQF)). The results show that our proposed method outperforms 

theexisting methods in terms of memory usage and accuracy.We also discuss the parallel implementation of ISQF. 
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1. Introduction 

At present, in many areas there have been increasing 

amounts in data, such as social network, information 

retrieval, video surveillance, finance, energy industries, 

and so on, data intensive computing method has 

become a main research field of industry and research 

community. Managing and processing such large 

amounts of data is a challenging task, and duplication 

or redundancy of data further exacerbates the difficulty 

of the task, leading to a waste of valuable storage and 

computing resources. Removing duplicate data from 

such data sources can improve application perfomance. 

This paper addresses the problem of detecting and 

dleting duplicate data in a data stream environment to 

mitigate the computational pressure of processing such 

data sources. In the case that an element in the data 

stream appears before, it is considered to be a duplicate 

or a redundant element. The problem of removing such 

elements is called repeated data removal problem. 

In traditional query processing and data stream 

management system [3], deleting duplicate elements is 

an important operation. To this end, researchers have 

proposed several classic algorithms [20], such as 

aproximate frequency moments [1], element 

classifiction [23], correlated aggregate queries [21], 

etc., The real-time nature of the de-duplication problem 

demands efficient in-memory algorithms, but 

theinability to store the whole stream (possibly infnite) 

makes exact duplicate detection infeasible in streaming 

scenarios.Thus, in most cases, a fast method with 

tolerable error rate is acceptable at the expense of 

accuracy. In this paper, we propose a new efficient 

approximation algorithm to solve the repeated data 

detection problem in data streams. 

In large telecommunication networks where Call 

Data Records (CDR) aregenerated, errors in the CDR 

generation mechanisms may result in repeated data 

generation.To ensure computational efficiency, real 

time periodic deletion of duplicate data should be 

performed on a data set containing approximately 5 

bilion multi-dimensional records before storing the 

CDR into a permanent storage device. In this case, the 

classic database access solution is extremely slow, 

while the classic Bloom Filter [6] approach is extremly 

resource intensive. 

Network monitoring and accounting provide an 

analysis of network users and their usage patterns, 

which are widely used in recommender systems and 

personalized web search. The classification of users 

into new or existing ones and updating their 

description information is an interesting application 

fordeduplication. Deduplication in the click stream 

also helps prevent fraud in the area of Web advertising 

and prevents site publishers from gaining more profits 

from the advertiser through fake clicks. The detection 

of duplicate user IDentifier (ID), Internet Protocol (IP), 

https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&searchtype=Quick&searchWord1=%7bData+stream%7d&section1=FL&database=1&yearselect=%20yearrange%20&sort=yr
https://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&implicit=true&usageOrigin=recordpage&searchtype=Quick&searchWord1=%7bDuplicate+detection%7d&section1=FL&database=1&yearselect=%20yearrange%20&sort=yr
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etc., encourages to reduce such fraudulent activities. 

Search engines regularly crawl web pages to update 

their corpus of extracted Uniform Resource Locators 

(URLs). Given a newly extracted URLs table, the 

search engine must scan its archive database 

todetermine whether the URL is already in the library. 

If not, deposit it. With the exponential growth of web 

pages, data deduplication becomes indispensable in 

such scenarios.Imprecise duplicate detection may lead 

to have identical URL in the library (False Negative, 

(FN)), thereby reducing the search engine 

performance, or may lead to a new page to be ignored 

(False Positive, (FP)) making the corpus of stale. 

As can be seen from the above examples, the actual 

application has a strong need for repetitive data 

deletion algorithms that can run in memory, work in 

real time, and have low error rates. 
In this paper, we propose an Improved Streaming 

Quotient Filter (ISQF), which enhances the Streaming 

Quotient Filter (SQF) structure. On top of this 

structure, we propose a new algorithm for detecting 

duplicate data in data streams. Then, we discuss the 

implementation of ISQF on a parallel architecture. We 

experimentally analyzed the performance of ISQF. The 

obtained results show that the error rate of ISQF is 

very low, and for large streams, the error rate is close 

to zero, which makes the ISQF much better than the 

existing methods. We also discuss the parameter 

setting problem of the algorithm, and give the 

empirical results on three large scale synthetic data 

setsand weshow the efficiency of ISQF in terms of 

convergence, low error rate, and memory 

requirements. 
The rest of this paper is organized as follows. 

Section 2 gives a precise definition of the problem as 

well as a background study of the existing structures 

and methods. Section 3 gives a brief introduction to the 

main comparison structure SQF of the structure ISQF 

proposed in this paper. Section 4 gives a detailed 

description of the structure ISQF and the 

corresponding algorithm proposed in this paper for 

repeated data detection in data streams, and analyzes 

the performance of the algorithm. Section 5 presents 

the implementation of ISQF on parallel architectures. 

The experimental evaluation results of ISQF are given 

in section 6. Section 7 finally concludes the paper. 

2. Preliminaries and Related Work 

2.1. Problem Definition 

A data stream is a sequence of elements, S=e1, e2…eN, 

the length of the data stream N may be infinite. We 

assume that the stream elements are obtained 

uniformly from a finite alphabet set Γ with cardinality 

U, namely: |Γ|=U. Then, each element of the stream is 

converted to a number using the hashing method or the 

fingerprint generation method. The deduplication 

problem can be described as: given a data stream S, 

and a certain number of memory M, reporting whether 

each element ei in S already appeared in e1, e2, … , ei−1 

or not. Since storing all stream data is infeasible, 

approximate deduplication algorithms are needed to 

minimize the error. 

2.2. Pairwise Independent Hash Functions 

Here, we only briefly introduce the definition of 

pairwise independent hash functions. 

A family of functions H = {h|h(∙) → [1, w]} is 

called the family of pairwise independent hash 

functions if for two different hash keys xi, xj, and k, l ∈
[1, w], 

Prh←H[h(xi) = 𝑘 ∧ h(xj) = 𝑙] = 1/𝑤2 

Intuitively, in order to reduce the probability of hash 

collisions, the hash functions used should be pairwise 

independent when multiple hash functions are used. 

For more details, please refer to [12]. 

2.3. Related Work 

The Navie method for detecting duplicate data in a 

data stream involves database and document query, or 

pair-wise string comparison, which is extremely slow, 

and disk access can corrupt the real-time nature of the 

problem. The simple cache and buffer methods include 

using stream elements to populate a fixed size buffer, 

and to check the presence of each new element in the 

buffer. When the buffer is full, a policy is used to 

remove an element from the buffer to store the new 

element. Several eviction strategies are discussed in 

[20]. However, experiments show that the performance 

of the buffer technology greatly depends on the 

expulsion strategy adopted and the stream behavior. 

The problem of bit shaving to address fraudulent 

advertiser traffic was investigated in [29]. In [10, 11, 

26], an approximate duplicate data detection method 

for search engines and Web applications is proposed. 

[2, 18] uses file level hashing in storage systems to 

detect duplicates, but it suffers from low compression 

rates. In [22], secure hash techniques for fixed size 

data blocks are studied. 

In order to solve the computational challenge of 

detecting duplicate data in data streams, Bloom Filters 

is commonly used in applications such as [7, 9, 14, 15, 

25, 27, 31]. Bloom Filter provides a spatially efficient 

probabilistic snapshot structure for the membership 

queries in sets. A Bloom Filter is a bit vector 

consisting of m components with the initial values set 

to 0. The classic Bloom Filter method involves the 

comparison of the k selected bits of the vector obtained 

by the k hash functions to determine if the elements are 

repeated. Inserting an element ei also involves setting 

the k components of the Bloom Filter computed by the 

k independent hash functions h1(ei),h2(ei),…,hk(ei). 

Hoever, the memory and computational efficiency 

(1) 
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achieved are at the expense of a small error rate. 

Researchers have also proposed disk based Bloom 

Filters, but the overall performance of the structure has 

been declined. 

In order to support the continuous insertion and 

deletion of elements of the bloom filter structure, [18] 

introduces counting Bloom Filters. This method 

replaces the bits in the filter with a small counter, 

which maintains the number of elements that hash to a 

particular location. There are some other variants of 

the bloom filter model which include compressed 

Bloom Filter [28], spacecode Bloom Filters [25], 

Decaying bloom filter [30], and spectral bloom filters 

[12], etc., 

Bloom Filters has also been applied to network 

related applications, such as heavy flows for stochastic 

fair bluequeue management [19] to assist routing, 

packet classification [4], state management of each 

flow, and longest prefix matching [14]. [24] 

Extendsbloomjoin for distributed joins to minimize the 

network usage during database statistic query 

execution. For multicore applications, a parallel 

version of Bloom Filters has been proposed by [26]. 

An interesting Bloom Filter structure, Stable Bloom 

Filter (SBF), proposed by [13] provides a guarantee 

regarding the performance of the structure. It removes 

elements from the structure continuously and provides 

a constant upper bound on False Positive Rate (FPR) 

and False Negative Rate (FNR). This stable 

performance provides a powerful guarantee for the 

real-time efficiency of deduplication applications. 

However, SBF has a higher rate of false positive; 

theoretically, it can achieve convergence only on 

infinitely long streams. In order to overcome the 

shortcomings of SBF, [16] prposed Reservoir 

Sampling based Bloom Filter (RSBF), which is a new 

combination of reservoir sampling technology with 

Bloom Filter structure. 

The problem of high FNR is primarily caused by the 

deletion of a bit in the Bloom Filter that may cause the 

logical deletion of more than one element, which 

means, deleting all the elements that map to this bit. 

Quotient filter [5] uses quotienting technology to 

eliinate this problem, allowing Bloom Filter to be 

“dletion-friendly”. However, it does not support data 

stream queries. 

In [17], SQF was proposed, which is an improved 

version of quotient filter. Compared with the method 

mentioned above, the accuracy is greatly improved, the 

error rate is highly reduced, and only a small amount 

of memory is used. Therefore, we use it as the main 

comparison method with the one described in this 

paper. In order to make a good contribution to our 

approach, we will briefly introduce it in the next 

section. 

In this article, we propose the ISQF for 

deduplication problems. Compared with existing 

structures, it provides near zero error rates using a 

small amount of memory. As far as we know, ISQF 

provides the lowest error rate compared with the 

previous methods, and the memory requirement is very 

low. We also discussed how ISQF works on a parallel 

architecture. We believe that using parallel and 

distributed settings, ISQF can efficiently manage 

petabytes of data with relatively low memory (on the 

order of hundreds of gigabytes). 

3. Streaming Quotient Filter 

To better illustrate ISQF, in this section, we briefly 

introduce SQF [17]. 

Dutta et al. [17] Assumes that each element of the 

stream S is uniformly drawn from a finite universe Γ, 

the cardinality of Γ is U and it is hashed to a p-bit 

fingerprint using Rabin's method [21]. This assumption 

is also applicable to our approach presented in this 

paper. The fingerprint of the element is the input of the 

SQF structure F. conceptually F = h(S) =
{h(e)|e ∈ S}, where h: Γ → {0,1, … , 2p − 1}. 

SQF stores the signature formed by the input 

element fingerprint in a hash table T, and the number 

of rows in T is R=2q (q<p). In this method, the input 

fingerprint of an element e, fe, is divided into its r 

least-significant bits fe
r = fe mod 2r(remainder), and 

its q=p-r most-significantbits fe
q

= ⌊fe/2r⌋ (quotient). 

Each row of the hash table T is further divided into k 

buckets, each storing the signature of an element. The 

signature σe of an element e consists of fe
r′

 followed by 

Oe. Among them, Oe is the number of 1 in fe
r, and fe

r′
 is 

a number formed by selecting r′ bits from fe
r. fe

r′
 is 

called a reduced remainder. Figure 1 describes the 

structure of the SQF [17]. 

When the signature σe of a new element e in the 

data stream arrives, SQF stores the signature σe in the 

bucket of row fe
q
 in hash table T. Therefore, the 

membership query of a data stream element e only 

involved checking the presence of the signature of the 

element e in the buckets of the corresponding row (row 

fe
q
) of the hash table, which provides a concise and 

efficient algorithm for the detection of duplicate data. 

1e 2e 3e ……

r

1

r

1

2%er)remainder(

/2e)quotient(q





)(r '

stores

reduced

remainder
eO

……

k buckets

bucket

bits)r(logr
signature

' 
count of 1s in r

buckets

stream

Hash Table (T)

...

...

...

...

…
…

q2

T[q][i]=signature(e)

 

Figure 1. The structure of SQF. 
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If two fingerprints, f and f ′, are mapped to the same 

row of T, that is, there is the same quotient (f q = f ‘q), 

as in [5], we call it a soft collision. Since each row of T 

contains only k buckets, when more than k distinct 

elements mapped to the same row of T, we call it a 

hard collision, as in [17]. When a hard collision occurs, 

the algorithm uniformly and randomly chooses an 

element signature out of k stored signatures in the 

buckets, and it removes the signature and stores the 

new signature. For an example of using SQF, please 

refer to the example in section 4. 

When the hard collision occurs, 0after deleting the 

signature, the same signature of the same element in 

data flow appears again, because the same signature is 

deleted earlier, the algorithm will not be able to detect 

the later elements that are repeated, which caused a 

large false negative existence, reduces the accuracy of 

the algorithm. Simply increasing k to expand the 

bucket number of each row of the hash table T to 

reduce the number of missing reports will also 

encounter a problem of a too large average lookup 

length (k/2, which is discussed later in this article). The 

above two questions are exactly the problems that 

ISQF structure in this article should solve. 

4. Improved Streaming Quotient Filter 

ISQF） 

4.1. Principle and Algorithm 

In order to solve the two shortcomings of the SQF 

proposed at the end of the last section, we propose 

ISQF. Its structure is illustrated in Figure 2. 

ISQF consists of m hash tables. Each hash table is 

equivalent to a SQF. Every table contains 2q entries, 

and each of them containing k buckets and each bucket 

stores the signature of a data stream element. The hash 

functions of this m hash tables are m pairwise 

independent hash functions hi(·)→[0,2q−1],i=1,2…,m.  

When the fingerprint fe of a new data stream 

element e arrives, the algorithm first calculates fe
q

=
⌊fe/2r⌋，fe

r = fe mod 2r, Oe indicates the number of 

bits set to 1 in fe
r. The r′(<r) bits are selected from the 

fe
r by a function Ω：ℝr → ℝr′

, and the reduced 

remainder fe
r′

 is formed by this r′ bit. The signature σe 

of the element e is made up of fe
r′

 followed by Oe. 

Then, iterate through the following operations on the m 

hash tables: in the ith iteration, calculate the hash 

function hi(fe
q

), check whether there is the same 

signature with σe in the k buckets of the entry hi(fe
q

) 

of the ith hash table Ti, if:  

1. having the same signature, then the algorithm 

reports that e is a repeating element and terminates 

the iteration. 

2. otherwise, σe is stored in an empty bucket of the 

entry and continues iteration. 

3. if the entry is full and no empty bucket exists, then 

selects one of the k buckets uniformly and 

randomly, deletes the existing signature, stores the 

new signature, and continues the iteration. The 

following example illustrates the above 

implementation of the algorithm. 

 Example: assuming that the fingerprint fe(p=8) of an 

element e is (10011011)2, and r=4. Therefore, 

q=p-r=4, each hash table of ISQF contains R=2q =
16 entries. Suppose there are m=3 hash tables in the 

ISQF structure, and each entry in the hash table 

contains k=1 bucket. Then, fe
q

= (1001)2, fe
r =

(1011)2. Let Ω be a simple function selecting r′ = 2 

most-significant bits  

.
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Figure 2. The structure of ISQF. of fe
r. 

Thus, the reduced remainder fe
r′

 is (10)2, the 

number of 1 in fe
r is Oe=3=(11)2, and the signature of 

element e is σe=1011, generated by fe
r′

 followed by Oe. 

Assume that h1(fe
q

) = h1(9) = 15, h2(fe
q

) = h2(9) =

23, h3(fe
q

) = h3(9) = 8, and the corresponding 

entries of the three hash table in which are not full, for 

the fifteenth entry of the first hash table (the entry 

count from 0), the twenty-third entry of the second 

hash table and the eighth entry of the third hash table, 

the signature σe is stored in anempty bucket. 

The following algorithm 1 describes the pseudo 

code of ISQF. 

Algorithm 1: ISQF(S) 

Require: Stream(S), Number of bits in the fingerprint of 

elements (p), the number of memory bits available (M), the bit 

selection function ( ), the number of hash tables (m) 

Ensure: Detecting duplicate and unique elements in S with low 

error rates 

Set parameters: the number of bits in the remainder (r(< p)), 

the number of buckets in each entry of the hash table (k), and 

the size of each bucket in bits (𝑠𝑏) 

2: Calculating bits number of quotient, 𝑞 ← 𝑝 − 𝑟. Create m 

hash tables, each with 𝑅 ← 2𝑞 entries 

3:  Every entry of the m hash tables is further divided into k 

buckets, the size of each is 𝑠𝑏 bits. Initially, the m hash tables 

are all empty 
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4:  sp=1 

5:  e=Current element S[sp] of stream S 

6:  Result DISTINCT 

7:  Let 𝑓𝑒 is the p bits fingerprint of e 

8:  Calculate quotient of 𝑓𝑒, 𝑓𝑒
𝑞

← ⌊𝑓𝑒/2𝑟⌋ 
9:  Calculate remainder of 𝑓𝑒, 𝑓𝑒

𝑟 ← 𝑓𝑒%2𝑟 

10:  𝑂𝑒 ←number of one in 𝑓𝑒
𝑟 

11:  Select the 𝑟 ′(<r) bits positions using the function  

12:  The reduced remainder of e, 𝑓𝑒
𝑟 ′ ←the numbe 

formed by the selected 𝑟 ′ bits 

13:  The signature 𝜎𝑒 of e is obtained by 𝑓𝑒
𝑟 ′ and 𝑂𝑒 

14:  i=1 

15:  Let 𝑇𝑖  be the ith table of the m hash tables 

16:  n=ℎ𝑖(𝑓𝑒
𝑞

) 

17:  j=1 

18:  Let 𝑏𝑗 is the jth bucket of entry n of T(𝑇𝑖[𝑛]) 

19:  If Signature at 𝑏𝑗=𝜎𝑒, then Result=DUPLICATE and go to 

21 

20:  If j<k, then j=j+1 and go to 18 

21:  If Result= DUPLICATE, then go to 23 

22:  If i<m, then i=i+1 and go to 15 

23:  If Result=DISTINCT, then i=1; otherwise, go to 30 

24:  Let 𝑇𝑖  be the ith table of the m hash tables 

25:  n=ℎ𝑖(𝑓𝑒
𝑞

) 

26:  Let 𝑏𝑒𝑚𝑝𝑡𝑦 be an empty bucket at the entry n of 𝑇𝑖(𝑇𝑖[𝑛]) 

27:  If 𝑏𝑒𝑚𝑝𝑡𝑦 does not exist, i.e., there is no empty 

bucket in 𝑇𝑖[n], then 𝑏𝑒𝑚𝑝𝑡𝑦 ←select a bucket uniformly and 

randomly from 𝑇𝑖[𝑛] 
28:  Storing 𝜎𝑒 in bucket 𝑏𝑒𝑚𝑝𝑡𝑦 

29:  If i<m, then i=i+1 and go to 24 

30:  If sp< the length of stream S, then sp=sp+1 and go to 5; 

otherwise, stop the algorithm and output Result 

4.2. Analysis 

The pervious section shows that ISQF uses m (>1) 

hash tables to store the signatures of data stream 

elements, which greatly reduces the false negative rate 

compared with SQF. SQF has only one hash table, 

each table entry has k buckets. When a hard collision 

occurs, it randomly selects a signature to remove in 

order to make a storage space for storing new 

elements. When the same element in the stream arrives 

again, SQF cannot detect that it is a repeating element 

because it has been deleted from SQF, resulting in a 

failure to report; while ISQF uses m (>1) hash tables to 

store signatures, when one or more hash tables have a 

hard collision and cannot detect duplicate elements, as 

long as a hash table does not have a hard collision or it 

occurs, but the deleted signature is not the duplicate 

element signature, the ISQF can detects duplicate 

elements and it will not be missed. Since there are 

multiple hash tables, this is exactly a high probability 

event. 

Then why not extend the storage space of a hash 

table of SQF directly to reduce the hard collision but 

rather build multiple hash tables? This problem 

involves the concept of the Average Search Length 

(ASL) of data structure discipline. Suppose there are 8 

hash tables in ISQF, each table entry has 120 buckets. 

Then, with the same storage space, each table entry for 

SQF can have 960 buckets. From the definition of 

SQF, the signatures in SQF are uniformly distributed. 

Thus, under the above conditions, the average search 

length for finding a repeating element in SQF is 

ASLSQF=480. Since ISQF's m hash functions are 

pairwise independent hash functions, the signatures in 

each table of ISQF are also uniformly distributed. 

Then, under the above conditions, assume that 3 tables 

in 8 hash tables still have signatures of repeating 

elements, the average search length for finding a 

repeating element in ISQF is ASLISQF=320. Which is 

significantly lower compared with SQF. And, as the 

number of hash tables m and the number of buckets k 

in each table entry increases, this decrease in ASL 

becomes more pronounced. 

We now consider the memory space required by 

ISQF. From [8] we can see, the number of memory bits 

required for SQF is 

M = k ∙ 2q ∙ (r′ + log r)  

The meaning of k, q, r and r′ in the formula are the 

same as above. Consider the examples in section 4.1, 

we used p=8, q=4, r= 4, k=1, r′=2, M=64 bit [8]. That 

is, it uses 8 bytes to store the signatures of 16 different 

elements, which are very low memory requirements. 

Considering that our ISQF just transforms a hash table 

of SQF into m (>1), this memory demand is still low 

and is supported by most systems. 

5. Parallel Implementation 

In this section, we describe the implementation of 

ISQF on a parallel architecture. This enables ISQF to 

efficiently handle deduplication of petabytes of data 

using low memory space (hundreds of gigabytes). 

Suppose that a parallel environment consists of P 

processors, and the input stream is partitioned into 

blocks of C elements. Each element in a block bi is 

evenly assigned to the P processor, along with its 

position pos in bi. Hence, each processor receives 

α=C/P elements of block bi. Every hash table of the 

stored signatures is evenly distributed over the P 

processors, each node contains R/P contiguous entries 

of each hash table (R is the length of each hash table). 

Since there are m hash tables, each node contains a 

total of m * R/P hash table entries, and each hash 

table's entries are contiguous. Each node holds the hash 

functions of the m hash tables to calculate the m hash 

values of the inputed element's fingerprint. Each 

processor runs two parallel threads, p1 and p2. This can 

easily be extended to multiple threads. 

For the C elements of block bi, each node NS 

receives the element fingerprints esa, esa+1,…, e(s+1)α-1 

s∈[0, P-1]. Suppose that the m hash tables are 

Hd1
, Hd2

, … , Hdm
, respectively. The thread p1

s  of the 

node NS calculates the m hash values of the inputed 

element fingerprint ek
s . According to the calculated 

hash values, Ns passes ek
s , its corresponding hash value 

(2) 
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and position pos to the node Nd1
, Nd2

, … , Ndm
 that 

contain the corresponding entries of the hash tables. 

The second thread p2
di of node Ndi

(i = 1,2, … , m) 

calculates the signature of the ek
s  and checks whether 

the fragment Hdi
 of the hash table which it holds 

contains the signature. As long as there is a thread 

p2
di(i = 1,2, … , m) found in the local stored hash table 

entries containing the signature, the algorithm reports 

the corresponding element as a repeating element. 

Otherwise, p2
di(i=1, 2,…, m) stores the signature in the 

hash table Hdi
. However, if the membership query is 

the same as before, the accuracy of the algorithm may 

be reduced. For example, considering the case of m=1, 

C=P=3, the elements of a block to be {u, v, v*}, 

wherev= v*, v* arrives after v, and v has never 

appeared before in the stream. Therefore, v should be 

reported as distinct element, and v* should be reported 

as repeating element. However, if the node N3 stores a 

fragment that v and v* mapped to the hash table T, and 

N3 handles v* before v, then the algorithm will report 

that v*is the distinct element, and v is the repeating 

element. 

To solve this problem, each bucket in the hash table 

should contain an additional field which is the position 

in the block of the stored element in the bucket, 

represented by the variable pos. Consider the example 

of single hash table, where the node Nd receives the 

fingerprint ek
s  and checks the presence of ek

s 's signature 

in the local hash table. If the signature does not exist, 

Nd stores it in a bucket B and sets the pos field to 

posek
s . Thus, when a subsequent fingerprint E=ek

s  

arrives, the Nd checks the pos field of the bucket B. If 

posE > Bpos, then E is located behind ek
s  in the stream, 

so Nd correctly informs that the element corresponding 

to E is the repeating element. If posE < Bpos, 

indicateing that E is before ek
s  in the stream, but it is 

processed after ek
s . Therefore, Nd notifies the element 

corresponding to ek
s  as the repeating element and 

updates Bpos to posE. After the entire block has been 

processed, the element of the signature stored in the 

bucket is reported as the distinct element. Then, the 

next fingerprint block of elements is processed. 

For the above example, now we assume that N3 

handles v* first. Because its signature is not in the hash 

table T, N3 stores the signature in the bucket B and sets 

Bpos=3, resulting from that it is the third element in the 

block. When v is processed later, the signature of v is 

found in T, since the same element v* is first 

processed. Now, N3 checks the pos field of B, because 

posv=2˂ Bpos, so N3 correctly infers that v comes 

before v* in the stream. Therefore, N3 informs that the 

third element is duplicated and updates Bpos to 2. After 

the elements in the block are processed, the algorithm 

notifies that the second element is the unique element. 

6. Experiment 

In this section, we experimentally evaluate the 

performance of ISQF by comparing it with the state of 

art methods. SBF, RSBF and SQF are the three most 

advanced structures in this field. Using three synthetic 

data sets, we compared the error rates of our proposed 

ISQF structure and the three structures mentioned 

above. 

The synthetic data sets are generated using uniform 

distribution. In order to capture a wide variety of 

stream scenarios, the percentage of unique elements in 

each synthetic data set is different. 

First we discuss the settings for the parameters r, r′, 

k, and m. Then, using these settings, based on the 

changes in the following scenarios, we conduct 

experiments to capture variations of error rates of 

various methods: 

 Number of input records. 

 Percentage of different elements. 

 Memory requirements. 

6.1. Setting of Parameters 

Fan et al. [18] Shows that for a single hash table, the 

optimal settings for the parameters r, r′, and k are r=2, 

k=4, r′=r/2=1. In this paper, we use these settings. In 

the following section, we discuss the impact of the 

parameter m setting on algorithmic error rates. Table 1 

and Figure 3 describes the change in the error rate of 

the algorithm on the third synthetic data set as the 

parameter m changes: 

Table 1. The impact of m values on algorithmic error rates. 

m Error rate(%) 

1 0.0035 

2 0.0021 

3 0.0013 

4 0.00029 

5 0.00021 

6 0.00007 

7 0.00006 

8 0.00001 

As can be seen from Table 1 and Figure 3, with the 

increasing of m value, the error rate of the algorithm is 

significantly decreased and the accuracy is greatly 

increased. By adjusting the value of m, the memory 

size is regulated accordingly, this paper demonstrates 

the error rate of the algorithm using different memory 

space sizes on three synthetic datasets. 
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Figure 3. The Impact of M values on algorithmic error rates. 

6.2. Synthetic Datasets 

In this part, we demonstrate the performance of 

Improved ISQF using three large data sets generated 

by uniformly distributed random data. To simulate the 

real stream scenes, we use a different percentage of the 

unique elements in the three synthetic data sets. Table 

2 indicates the performance of ISQF and other 

algorithms using different memory sizes on the data 

sets. 

Table 2. Performance comparisons on composite data sets. 

Datasets 

(%Distinct) 
Memory 

Error rate (%) 

SBF RSBF SQF ISQF 

1 billion 

(15%) 

64MB 
128MB 

512MB 

2.92 
1.26 

0.13 

4.29 
1.61 

0.14 

0.0042 
0.0006 

0.0001 

0.0018 
0.00027 

0.00002 

695 million 

(60%) 

128MB 

256MB 
512MB 

4.31 

2.09 
0.82 

6.73 

2.77 
0.92 

0.003 

0.001 
0.0003 

0.0019 

0.00012 
0.00004 

100 million 

(90%) 

32MB 

64MB 

128MB 

4.13 

2.05 

0.64 

6.04 

3.17 

1.12 

0.0032 

0.0007 

0.0001 

0.0021 

0.00029 

0.00001 

It can be seen from Table 2, for a data set containing 

1 billion records with 15% unique elements, using 

64MB memory, ISQF achieves a 0.0018% error rate, 

while the current state-of-the-art approach, SQF, has a 

0.0042% error rate. As a result, ISQF achieves a 

performance improvement of nearly 24 ×. 

For a data set containing 695 million records with 

60% unique elements, using 256MB memory, ISQF 

achieves a 0.00012% error rate, while SQF has a 

0.001% error rate. As a result, ISQF achieves a 

performance improvement of nearly 10×. 

The third synthetic data set contain 100 million 

records, with 90% unique elements (as shown in Table 

2). It can be seen from Table 2, on the third data set, 

ISQF has a similar performance to the above analysis. 

When allocating 128MB memory, the error rate of 

ISQF is 0.00001%, while the error rate of SQF is 

0.0001%, the error rate of SBF is 0.64%, and the error 

rate of RSBF is 1.12%. Therefore, ISQF is far superior 

to SQF, SBF and RSBF. 

7. Conclusions 

In a stream scenario, taking into account numerous 

data from various applications, real-time deduplication 

in memory poses a challenging problem. In this paper, 

we proposed a new algorithm based on ISQF structure, 

which solves the mentioned problem. Compared to the 

previous methods, ISQF provides improved error rates 

with simple hash table structure and bit operations. In 

fact, ISQF achieves nearly the optimal error rates. In 

some data flow scenarios, the error rate of the proposed 

algorithm is close to zero. 

We also provide a basic parallel framework 

implementation of ISQF to meet the need of distributed 

applications. Experimental results show that ISQF is 

much better than contrast method, and ISQF exhibits 

near optimal error rate. In the field of repeated data 

detection, ISQF is a very powerful, attractive and 

memory efficient architecture. 

Further research and empirical analysis on data flow 

with conceptual drift, as well as a complete 

architecture design and implementation of ISQF, are 

our future research directions. 
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