
780 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

A Novel Approach to Develop Dynamic Portable

Instructional Operating System for Minimal

Utilization

Siva Sankar Kanahasabapathy
1
, Jebarajan Thanganadar

2
, and Padmasuresh Lekshmikanthan

3

1
Department of Information Technology, Noorul Islam University, India

2
Department of Computer Science and Engineering, Rajalekshmi Engineering College, India

3
Department of Electrical and Electronics Engineering, Noorul Islam University, India

Abstract: Most well-known instructional Operating Systems (OSs) are complex, particularly if their companion software is

taken into account. It takes considerable time and effort to craft these systems and their complexity may introduce maintenance

and evolution problems. The purpose of this paper is to develop a mini OS which is open source and Linux based. This OS is

independent of hardware simulator and platform. It encompasses a simplified kernel occupying a low memory with minimal

resource consumption. It also, includes a dynamic boot loader which ignores the BIOS priority, takes itself to be as a highest

priority. It is designed to utilize low primary memory and minimal CPU utilization. This is developed mainly to satisfy the

minimal and basic requirements for a normal desktop user.

Keywords: OSs, kernel, boot loader, linux, portable, opensource.

Received July 23, 2012; accepted May 19, 2015; published online September 15, 2015

1. Introduction

In recent years the popularity of opensource Operating

Systems (OSs) has increased dramatically as the

computer users have discovered its many benefits.

Commercial OS from Windows and Mac meets a

severe competition with Linux OSs. Boot loader is a

small program running before OS is invoked. The

GRUB and LILO loaders have provided a strong

background for the Linux family. These loader

programs loads the kernel of the OS into the main

memory for execution. A row-canonical innovation

model is used in these bootstraps to locate their state

[1]. Opensource has entered every business and normal

activities of ordinary users. But when these OSs were

taken to systems of different configurations some

changes have to be produced [11, 14, 19]. This led to

the development of portable OSs. The boot sectors in

OSs are 512bytes long [19] and used to initiate the

boot process. The kernel functions a major role here

and designed to be the heart of these opensource OSs.

Kernel is a program that resides in the memory, takes

in user inputs, process those inputs and give out a

suitable output. OSs relies basically on the BIOS

priority [14]. It is true and continuing for the Linux

OSs too. Here, occurs a dependency for OSs even they

are well-built with much better performance. In this

paper, we have proposed a solution to overcome this

static boot process. The OS encompassed this dynamic

boot is light-weight and satisfy the minimal user

requirements.

2. Related Works

Ahmed and Sait [1] proposed a bootstrap algorithm

and applied modification to self-tuning control for

MIMO systems. Changes have to be induced for

systems of different configurations. This seems to be a

tedious process. In the same year, Rogers and

Schulwitz [15] developed an architecture for

distributed system to handle systems of various

configurations (MULTIBUS II system). To overcome

this Ke et al. [8] proposed portable OSs. Boot sectors

in OSs are vulnerable to boot sector virus attacks.

Tesauro et al. [18] from IBM T.J. of Watson Re-search

Center used a neural networks scheme on boot sectors

to prevent the attack of boot straps from boot-sector

viruses. During these development stages OSs awaited

for a code reuse and common framework. Scott and

Davidson [16] introduced portable Safe Virtual

Execution (SVE) framework, called Strata to target on

SPARC/Solaris, x86/Linux and MIPS/IRIX machines.

The data sets in this boot strap get corrupted easily. De

Lacerda et al. [4] proposed a bootstrap technique that

was implemented using genetic algorithms to detect

true errors in bootstrap data sets. This boot strap

techniques vary with the complexity of kernels in the

OSs. Perez and Vila [14] developed a Real-Time Linux

GPL (RT Linux) which is a small, deterministic, real-

time kernel that handles time-critical tasks and makes

use of Linux services in particular TCP/IP networking.

Minnich [12] from Los Alumos National Lab used an

own made bootstrap which reduced the risk of

locating, verifying and loading a new OS image

A Novel Approach to Develop Dynamic Portable Instructional Operating … 781

because here OS boots and the other OS systems work.

As netbooks and other portable devices evolved the

concept of light weight OSs was introduced. Dunkels

et al. [5] developed Contiki, a lightweight OS with

support for dynamic loading and replacement of

individual programs and services. Contiki is built

around an event-driven kernel. Guo et al. [7]

introduced the concept of network boot in which client

is loaded from the server from one of the virtual disks,

the client being loaded without any local memory. To

ensure the integrity of files in OS Gu and Ji [6]

proposed a secure bootstrap in which each time when

the kernel is booted, the integrity of files and code are

measured first, when these bootstraps were secured

developers aimed for a secure light weight kernel to

improve the efficiency of OSs. Nurnberger et al. [13]

proposed a secure micro kernel from scratch called

Ray keeping security features in mind. Lohr et al. [10]

introduced a secure boot process in which the loader

verified the integrity of the software before boot starts

and access the resources. Zhang and Shao [21]

implemented a boot loader module based on the new

high-security OS with internal networking structure

netOS-I.
Every works and researches maintained security and

improved the booting performance of OSs to a large
extent. All the research works focused only on a static
booting via BIOS priorities. But this may be a difficult
task for the users as they have to depend mostly on
BIOS priorities. So, we are proposing a light weight
OS embedded with a dynamic loader which would be
more convenient for the users to have an independent
work against this BIOS priority. The light weight OS is
developed to satisfy the minimal requirement for a
normal desktop user.

3. Design of Boot Loader

The proposed system presented in this paper is a
design of boot loader which can be divided into
different logical modules [12] they are boot loader,
temporary file system and initial ram disk.

3.1. Boot Loader

Boot loader program loads the kernel of the OS into
the main memory for execution [11]. The boot loader
must be of size 512bytes and should reside in the first
sector of the disk drive. The procedure of boot loader
[6] is as follows: Check the boot signature 0AA55h at
10,511

th
bytes of the first sector of boot disk. If boot

signature is present, it loads the code present in the
first sector (512bytes) to memory address 07c00h.
Next the code at 07c00h is executed. This code then
tries to find the available physical memory and divides
it into 64KB pages. After that, 2KB boot stack is
allocated at (A0000-512)h and stack pointer is setup.
Then space for Interrupt Vector Table (IVT) and BIOS
routines are reserved and kernel is loaded at 00600h.
The kernel that is to be loaded can be an EXE, BIN or
COM file. Search for this kernel file will be conducted

in the root directory (19
th
 sector of the boot disk). On

getting the file, it is allocated properly with all needed
segments and memory pointers. If the kernel is in BIN
or COM format it will have a single segment with all
Data Segment (DS), Code Segment (CS), Extra
Segment (ES), Stack Segment (SS) integrated. If the
kernel is in EXE format, it will have separate code,
data, extra and stack segments. In such cases, the exe
header will be ripped off and proper relocation factors
are added as needed. Virtually, boot loader follows two
stages of loader they are primary and secondary boot
loaders. After this, the loaded kernel is executed.

3.2. Stage 1 Boot Loader

The primary boot loader that resides in the MBR is a
512byte image containing both program code and a
small partition table. The first 446bytes are the primary
boot loader, which contains both executable code and
error message text. The next 64bytes are the partition
table, which contains a record for each of four
partitions (16bytes each).

The MBR ends with two bytes that are defined as
the magic number (0xAA55). The magic number
serves as a validation check of the MBR. Figure 1
shows the three logical section of a MBR. After BIOS
finishes initializing platform hardware devices [3], it
will load OSloader Bootstrap Measurement Module
(OSBMM) into host memory and then the
measurement code part of OSBMM will analyze the
measurement information to check the integrity of
MBR, boot sectors and OS Loaders. If the verifications
pass, OSBMM will load MBR into 0000H: 7C00H and
give controls to MBR to perform the normal bootstrap.
If the verification fails, it will read backup from hard
disk and recover the tampered files and code.

Figure 1. Logical sections of an MBR.

Normally, the problems with the MBR of a system

may prevent the system from booting. The MBR may

be affected by malicious code, become corrupted by

disk errors or being overwritten by other boot loaders

when experimenting with multiple OSs on a host. This

recipe describes one method of repairing the MBR

using the recovery console. The master boot record can

be taken as a backup and can restore it later.

The job of the primary boot loader is to find and

load the secondary boot loader (stage 2). It does this by

446Bytes

64Bytes

2Bytes

Master Boot Record

Partition 1

Partition 2

 Partition 3

Partition 4

 Partition Flag Start CHS Partition Byte End CHS Start LBA Size

Boot Loader

Partition Table

Magic Number

782 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

looking through the partition table for an active

partition.
When it finds an active partition, it scans the

remaining partitions in the table to ensure that they are
all inactive. When this is verified, the active partition’s
boot record is read from the device into RAM and
executed.

3.3. Stage 2 Boot Loader

The second stage boot loader loads the compressed

kernel image into memory and the kernel then setups

the environment and starts to manage the resources,

and then the boot loader places the appropriate root

file-system image into memory. Once, the kernel and

the root file-system images are loaded into memory,

the boot loader holds the whole control of machine to

the kernel.

It does this by making the two-stage boot loader into

a three-stage boot loader. Stage 1 (MBR) boots a stage

1.5 boot loader that understands the particular file

system containing the Linux kernel image. Examples

include reiserfs_stage1_5 (to load from a reiser

journaling file system). When the stage 1.5 boot loader

is loaded and running, the stage 2 boot loader can be

loaded.

In stage 2, it will copy itself into SDRAM. In our

implementation, after the initialization in stage 1,

kernel of USB drive will be copied from flash to offset

0x0000, 0000 of memory. This is the real boot

program. It contains the user interface and the kernel

loader.

With stage 2 loaded, it can display a list of available

kernels defined in the boot menu. Normally, you can

select a kernel and even amend it with additional

kernel parameters. Here, by default it loads the live

USB automatically. Optionally, with the end user

interaction it can able to boot the remaining kernel

system. With the second-stage boot loader in memory,

the file system is consulted, and the default kernel

image and initrd image are loaded into memory. With

the images ready, the stage 2 boot loader invokes the

kernel image.

4. Operating System

The “kernel” of the opearating system doesn’t have to
be a Linux kernel; it can be a boot sector or a
COMBOOT file. Chain loading requires the boot
sector of the foreign OS to be stored in a file in the root
directory of the file system. Because neither Linux
kernel boot sector images, nor COMBOOT files have
reliable magic numbers, Syslinux will look at the file
extension.

4.1. SysLinux

Syslinux is the boot loader for the OS that is
developed. It is intended to simplify first-time
installation of Linux and for creation of rescue and

other special purpose boot disks. SysLinux eliminates
the need for distribution of raw boot floppy images.
SysLinux will alter the boot sector on the disk and
copy a file named ldlinux.sys into the root directory.
The extensions that are recognized can be described
below.

4.2. Kernel Compilation

Kernel is a nothing but a program that resides in the
memory, takes in user inputs, process those user inputs
and give out a suitable response. Kernel can be EXE,
BIN or COM file. To reduce the kernel size and have
more flexibility it is very important to have a detailed
knowledge of kernel modules at the time of kernel
compilation. Kernel compilation involves configuring
the kernel, building the kernel and installing the new
kernel.

4.3. Configuring the Kernel

Configuring the kernel means we are making the
kernel to suit to our hardware requirements.
Configuration makes use of ‘make menuconfig’ or
‘make xconfig’ commands. In order to have a default
configuration specified by the OS we can use ‘make
defconfig’ command.

4.4. Building the Kernel

Now, there is a need to check the dependency relations
between various modules using ‘make dep’ command.
Since, we are developing an OS from scratch there is a
need to use ‘make clean’ and ‘make proper’ commands
for deleting the temporary loaded object files and other
build. Finally, we can obtain a compressed kernel
using ‘make bzimage’ ie a vmlinux.

4.5. Installing the Kernel

In this process, we select the various modules for our
system and the necessary drivers for the system. For
selecting the required modules use ‘make module’
which prompts for the necessary modules to install and
use make modules_install to install the necessary
modules in the system.

4.6. Temporary File System

Temporary file system (tmpfs) is one of the ramdisk
technologies in Linux. A RAM disk is a portion of
RAM which is being used as if it were a disk drive.
Access time is much faster for a RAM disk than for a
real, physical disk. Thus, putting the files into memory
will increase the performance of computer. tmpfs
distinguishes itself from the Linux ramdisk device by
allocating memory dynamically and by allowing less-
used pages to be moved onto swap space. These
characteristics make tmpfs more flexible than RAMFS,
MFS and some older versions of ramfs. In this study,
tmpfs is adopted to create a RAM disk for storing the
memory running system during system boot process.

A Novel Approach to Develop Dynamic Portable Instructional Operating … 783

tmpfs is supported by the Linux kernel from version
2.4 and we are using the kernel version 2.6 [2].

4.7. Initial Ram Disk

Initrd, the initial ramdisk, is a temporary file system
commonly used in the boot process of the Linux based
kernel. It is typically used for making preparations
before the real root file system can be mounted [20].
Initrd provides the capability to load a RAM disk by
the boot loader. This RAM disk can then be mounted
as the root file system and programs can be executed.
Next a new root file system can be mounted from a
different device. The previous root (from initrd) is then
moved to a directory and can be subsequently
unmounted [9]. Linux based OS is booted from a
external USB drive and initrd makes preparations for
shifting to real root file system resides in a USB drive.

In order to, shift to real root file system resides in a

RAM disk which is created with tmpfs, initrd need to

be customized to perform some tasks as follows:

• Create a tmpfs_based RAM disk.

• Release the USB memory running system which

stores in the USB flash disk to a tmpfs_based RAM

disk.

• Shift to the USB running system which resides in a

tmpfs based RAM disk.

Normally, kernel loads along with their modules and it
is shown in the Figure 2. It describes the initiation of
different stages of boot loader and the OS loading
stages. In the next chapter, we concluded the result.

Figure 2. Process involved in booting of live-USB.

5. Conclusions

The role of boot loader is significant in the world of

OSs. While taking the existing OSs into account, they

are usually static in nature. They could load the OSs

only when the BIOS priority is provided for the device

that contains the required OSs. A serious disadvantage

here is when two or more OSs reside on various

storage devices we can’t achieve the OSs to load until

the high priority is given to the storage device that

contains the OSs. This threat was overcome by the

implementation of a dynamic boot loader. The

dynamic boot loader displays a menu listing live USB

OS and the list of existing OSs installed. In case of

normal OSs, consume more secondary, primary

memories and much CPU resource. This was greatly

reduced in this light-weight OS and could satisfy all

the minimal requirement of a normal desktop user.

References

[1] Ahmed M. and Sait N., “State-Space Adaptive

Control through a Modified Bootstrap Algorithm

for Parameter and State Estimation,” IEEE

Proceedings D, Control Theory and

Applications, vol. 136, no. 5, pp. 215-224, 1989.

[2] Albazaz D., “Design Mini-Operating System for

Mobile Phone,” the International Arab Journal

of Information Technology, vol. 9, no.1, pp. 56-

65, 2012.

[3] Bovet D. and Cesati M., Understanding the Linux

Kernel, O’Reilly press, 2005.

[4] De Lacerda E., de Carvalho A., and Ludermir T.,

“A Study of Cross-validation and Bootstrap as

Objective Functions for Genetic Algorithms,” in

Proceedings of the 7
th
 Brazilian Symposium on

Neural Networks, Pernambuco, Brazil, pp. 118-

123, 2002.

[5] Dunkels A., Gronvall B., and Voigt T., “Contiki-

A Lightweight and Flexible Operating System for

Tiny Networked Sensors,” in Proceedings of the

29
th
 Annual IEEE International Conference on

Local Computer Networks, FL, USA, pp. 455-

462, 2004.

[6] Gu J. and Ji W., “A Secure Bootstrap based on

Trusted Computing,” in Proceedings of

International Conference on New Trends in

Information and Service Science, Beijing, China,

pp. 502-504, 2009.

[7] Guo G., Zhang Y., Zhou Y., and Yang L.,

“Performance Modeling and Analysis of the

Booting Process in a Transparent Computing

Environment,” in Proceedings of the 2
nd

International Conference on Future Generation

Communication and Networking, Hainan Island,

China, pp. 83-88, 2008.

[8] Ke P., Gang Z., and Fu-jiang L., “Design of Boot

Loader with Multiple Communication Port,” in

Proceedings of the 2
nd
 International Conference

on Computer Science and Software Engineering,

Hubei, China, pp. 169-175, 2008.

[9] Liu J., “The Design of Booting Program Based

on ARM Linux Embedded System [J],” Control

and Automation Publication Group, vol. 22, no.

2, pp. 123-125, 2006.

[10] Lohr H., Sadeghi A., and Winandy M., “Patterns

for Secure Boot and Secure Storage in Computer

Systems,” in Proceedings of International

Conference on Availability, Reliability and

Security, Krakow, Poland, pp. 569-573, 2010.

[11] Miedlar M., Bauer S., Powers P., “The Portable

Operating System,” in Proceedings of National

Aerospace and Electronics Conference, Ohio,

USA, pp. 693-698, 1995.

Linux

User-Space

Power-Up/ Reset

Operation

System Start Up BIOS/ Boot Monitor

Master Boot Record

Boot Strap Loader

Stage 1 Boot Loader

Stage 1 Boot Loader

Kernel

Init

784 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

[12] Minnich R., “Give Your Bootstrap the Boot:

using the Operating System to Boot the

Operating System,” in Proceedings of

International Conference on Cluster Computing,

California, USA, pp. 439-448, 2004.

[13] Nurnberger S., Feller T., and Huss S., “Ray-A

Secure Micro Kernel Architecture” in

Proceedings of the 8
th
 Annual International

Conference on Privacy, Security and Trust,

Ottawa, Canada, pp. 3-6, 2010.

[14] Perez S. and Vila J., “Building Distributed

Embedded Systems with RTLinux-GPL,” in

Proceedings of Conference on Emerging

Technologies and Factory Automation, Lisbon,

Portugal pp. 161-168, 2003.

[15] Rogers S. and Schulwitz L., “Reconfiguration

Architecture for Distributed Processing,” in

Proceedings of the 34
th
 International Conference

on Intellectual Leverage, Digest of Papers, CA,

USA, pp. 545-551, 1989.

[16] Scott K. and Davidson J., “Safe Virtual

Execution using Software Dynamic Translation,”

in Proceedings of the 18
th
 Annual Computer

Security Applications Conference, Nevada, USA,

pp. 209-218, 2002.

[17] Stein L., “Stupid File Systems Are Better,”

available at: https://www.usenix.org/legacy/

event/hotos05/final_papers/full_papers/stein/stein

.pdf, last visited 2012.

[18] Tesauro G., Kephart J., and Sorkin G., “Neural

Networks for Computer Virus Recognition,”

IEEE expert, vol. 11, no. 4, pp. 5-6, 1996.

[19] Wikipedia, “initrd,” available at: http://en.

wikipedia.org/wiki/Initrd, last visited 2012.

[20] Wikipedia, “TMPFS,” available at: http://en.

wikipedia. Org/wiki/TMPFS.

[21] Zhang J. and Shao F., “A Bootloader Module is

Designed and Implemented based on a New

Computer Architecture,” in Proceedings of the

2
nd
 International Conference on Future

Networks, Hainan, China, pp. 424-427, 2010.

Siva Sankar Kanahasabapathy
obtained his doctorate from M S

University. Currently, he is an

Assistant Professor in Department of

Information Technology, Noorul

Islam University, India. He is well

known for his contributions to the

field in both research and education contributing over

26 research articles in Journal and Conferences. He

also, served in many committees as Convener, Chair

and Advisory member for various external agencies.

Currently, his research is focused on system software

and embedded systems.

Jebarajan Thanganadar obtained

his doctorate from MS University.

Currently, he is a Professor and

Head in Department of Computer

Science and Engineering,

Rajalekshmi Engineering College,

India. He is well known for his

contributions to the field in both research and

education contributing over 67 research articles in

Journal and Conferences. He is the editorial member

and also served as reviewer for various reputed

journals. He has been a life member of the Computer

Society of India. He also, served in many committees

as Convener, Chair and Advisory member for various

external agencies. Currently, his research is focused on

networking and image processing.

Padmasuresh Lekshmikanthan
obtained his doctorate from MS

University and Dr. MGR University,

respectively. He is presently

working as a Professor and Head in

Department of Electrical and

Electronics Engineering, Noorul

Islam University, India. he is well known for his

contributions to the field in both research and

education contributing over 50 research articles in

journal and conferences. He is the editorial member of

International Journal of Advanced Electrical and

Computer Engineering and also served as reviewer for

various reputed journals. He has been a life member of

the Indian Society for Technical Education. He also

served in many committees as Convener, Chair and

Advisory member for various external agencies.

Currently, his research is focused on artificial

intelligence, power electronics, evolutionary

algorithms, image processing and control systems.

	1-7272
	2-7242
	3-7159
	4-5658
	5-7044
	6-7149
	Translation Rules for English to Hindi Machine Translation System: Homoeopathy Domain

	7-7072

