
The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015 735

A Measurement of Similarity to Identify Identical

Code Clones

Mythili ShanmughaSundaram

and Sarala Subramani

Department of Information Technology, Bharathiar University, India

Abstract: Code clones are described as a part of the program which is completely or partially similar to the other portions. In

the earlier research the code clones have been detected using fingerprinting technique. The major challenge in our work was

to group the code clones based on similarity measure. The proposed system measures the similarity based on similarity

distance. The defined expression considers two parameters for calculating the similarity measure namely the similarity

distance and the population of the clone. Thereby the code clones are clustered and ranked on the basis of their similarity

measures. Indexing is used to interactively identify the clones which are caused due to inconsistent changes. As a result of this

work all the identical clusters for most similar and more similar categories are identified.

Keywords: Clone detection, software clones, fingerprinting, clustering, reuse.

Received May 11, 2013; accepted March 19, 2014; published online August 25, 2015

1. Introduction

Code clones are the duplicated segments of the
software which are produced by simple copy and paste
mechanism [11]. This unwarranted duplicated code
gives rise to many issues. For instance, if a user wants
to correct an error in a system with duplicated code, all
possible duplications of that specific error must be
corrected. Code duplication normally increases the size
of the code, thereby extending compile time and
expanding the size of the program. Code duplication
often indicates design problems in the software. During
duplication, errors in systematic renaming can lead to
unintended aliasing, resulting in latent bugs that crop
up much later and the effect of all of these will lead to
software aging. As a result even smaller design
changes [2] become cumbersome and increase the
complexity of the software.

Some clones are easy to detect, like clones with

similar variable and clones with similar comments.

Apart from that, there are many more delicate clones

and to find such types of clones, a perfect clone

detection technique is essential, which will prove more

useful in finding the obvious clones. In general, clones

may be described using the topology as described in

Table 1 [13, 14].

Table 1. Clone types.

Type 1 An exactly identical source code, with no changes at all.

Type 2
An exactly identical source code clone, but with indentation, comments or

identifier changes.

Type 3
A functionally identical clone, but with small changes made to the code to

tailor it to some new function.

Type 4

A functionally identical clone, developed possibly by the originator who is

unaware that already there exists a function that accomplishes essentially

the same function.

According to the survey various clone detection

techniques have been proposed to detect these types of

clones [4, 5, 6]. In this research the proposed technique
extracts the identical clones based on the similarity
factors. The higher level clones which were detected
from our previous work are considered as input. Based
on varying degrees of similarity, the clones are
clustered using the hierarchical clustering algorithm.
Then, they are rank-ordered by using the method of
indexing.

2. Motivation of Clone Detection

Many clone detection techniques have been previously
designed in order to identify similar clones. The earlier
work [9] has also identified the similar clones using the
fingerprinting technique. The idea of the technique was
to find the similarity using fingerprints. It maps a large
dataset of arbitrary length into a same bit sequence.
The message digest algorithm computes unique
fingerprints for every token at the method level, file
level and the directory level. The similarity between
the fingerprints is calculated using Locality Sensitive
Hashing. When the similarity value lies between the
threshold ranges 0.8≤ δ ≤ 1.0 the clones are most similar
and when it lies between the ranges 0.6≤ δ< 0.8 they are
more similar and the others are least similar. Under
each threshold value method level, file level and
directory level clones are identified. Finally, the clone
pairs and clone set are formed. As an extension to the
previous work, the motivation of this research is to find
the identical clones in each category based on two
parameters, statement similarity and the occurrence
similarity Further the identical clones are clustered and
ranked.

Hierarchical clustering [1, 8] is a set of clusters

organised as hierarchical trees. The trees are visualized

as dendrogram. Hierarchical clustering algorithm

assigns each code clone to a cluster, so that N code

736 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

clones will have N clusters. The similarities between

the clusters are the same as the similarities between the

code clones. This algorithm finds the closest pair of

clusters and merges them into a single cluster. It again

computes the distances between the new cluster and

the old clusters and repeats the steps until a single

cluster remains. It finally produces a set of nested

clusters organized as a hierarchical tree which can be

visualized as a dendrogram. The major advantage of

this clustering technique is that they do not assume any

particular number of clusters. The clusters which are

finally formed show a group of the code clones that are

similar and identical.

Ranking is a process by which the items are ranked

based on similarity factor. In our work since the

similarity measure is calculated, the clones are ranked

based on the similarity measure. After ranking,

indexing is done to facilitate the automatic detection of

clones. Given a clone, the rest of the clones can be

automatically identified.

The contribution of this research is the description

of generation of the similarity matrix used for

clustering. This research also describes the ranking of

the clones. Then, the interactive identification of

clones is also discussed. The research work is

organized in sections. In section 3 the related works

for similarity generation and clustering is presented. In

section 4 clone clustering system, details of the clone

matrix representation, and ranking of clones are

described. The quantitative evaluation of the approach

in reported in section 5 and conclusions is given in

section 6.

3. Related Works

The technique given in [15] is a method for detecting

similar code blocks and for quantifying their similarity.

It also detects the clone clusters for a set of code

blocks within a user-supplied similarity threshold. The

clones are further ranked and ordered based on the

similarity and this technique is implemented for clone-

detection in C programs. It is also suggested to

incorporate this technique in many existing clone-

detection tools to provide more flexibility in the

definitions of similar clones.

The method of approximate clone detection as in

[17] puts forward two techniques for detecting clusters

of approximate clones. The experiments show that the

proposed techniques accurately retrieve clusters of

approximate clones that originate from copy-paste

mechanism followed by independent modifications to

the copied fragments.

Incremental clone detection tool [10] called

ClemanX, represents code fragments as subtrees of

Abstract Syntax Trees (ASTs) measures their similarity

levels based on their characteristic vectors of structural

features. ClemanX solves the task of incrementally

detecting similar code. The empirical evaluation of the

tool on large-scale software projects shows the

usefulness and good performance of ClemanX.

Detecting near-miss clones [3, 12] employ a token-

based system and use lightweight mechanisms for

ensuring syntactic validity of potential clones. The

method of similarity between the codes is the same as

our method of calculating the similarity measure.

The tool CP-Miner as in [7] is proposed for

identifying copy-paste bugs in large systems. The code

sequences are transformed so that common

subsequence can be identified using data mining

techniques. CP-Miner fingerprints statements, although

the fingerprints do not preserve similarity. Compared

with other techniques, CP-Miner does not quantify the

degree of similarity that exists between potential

clones.

Real-time clone detection tool called SHINOBI [16]

is implemented, in order to detect code clones from

source code immediately by a real-time method. The

clone detection and ranking module searches for clones

with the search key, sent from the SHINOBI client

using the Suffix Array Index. The order of returned

clones is determined by ranking value. The ranking

value is the sum of two values: The ratio of files

committed at the same time and the ratio of files

opened or edited at the same period of time.

4. Research Mechanism

The architecture takes source code as input and

consists of four modules namely, extraction of higher

level clones, similarity measure generation for clone

pairs, clustering of identical clones and ranking as

shown in Figure 1.

Figure 1. Architecture for clone detection.

Similarity Measure Generation

for Clone Pairs
Source Code Higher Level Clones Clustering of Identical Clones Ranking

A Measurement of Similarity to Identify Identical Code Clones 737

4.1. Extraction of Higher Level Clones

In our previous work [9], any source code considered
to have clones was taken as input. This was then pre-
processed and tokenized to form tokens. Those tokens
were converted in to fingerprints by the message digest
algorithm. The above process is language independent.
The fingerprints obtained by MD5 were further
compared for similarity. Locality sensitive hashing was
used for calculating similarity. It hashes for vectors
such that the probability that two vectors having the
same hash value is strictly decreasing function of their
corresponding distance. In other words two vectors
having the smaller distance will have the higher
probability of having the same hash code. The final
output of above process was a set of clone pairs and a
clone set. The clone set thus formed consists of the list
of the code clones which belong to one of the three
categories. A clone in the clone set is any block of
code such as a method, file or directory whose
fingerprints are most similar, more similar or least
similar to the other block of code belonging to the
same category.

4.2. Similarity Measure Generation

Similar code clones are not always identical. In order
to find the identical clones the module in the proposed
architecture calculates a similarity measure using two
factors. The first factor of similarity measure in
Equation 3 is the similarity distance between two
clones and the second factor is the distance between
the numbers of occurrences of the clones.

)(1, 2) ((1 2) / 1, (1 2) / 2Similarity Distance S S S S S S S S= ∩ ∩

 ()P S No of Occurance of Clone in a Container=

The similarity distance is calculated by using the
Equation 1.The distance factor is an ordered pair. The
first part of an ordered pair (S1∩S2)/S1 is a fraction of
fingerprints in the first clone that is common to both
the clones and the second part of the ordered pair
(S1∩S2)/S2 is a fraction of fingerprints in the second
clone common to both the clones. P(S) in Equation 2 is
the population of a clone which gives the maximum
occurrence of a clone in a container. These two factors
when considered for calculating the distance, the
factors identify the matching clones that are not only
having the common statements but also the clones
which have occurred for the same number of times in a
method, file or directory. When the statement
similarity and the occurrence similarity are used to find
the distance, it can be assured that the identical clones
will be detected from a large set of similar clones. The

similarity measure is calculated using the formula.

 ()
2 2

1 2 (1 2)Similarity Measure S S P P= − + −

4.3. Clustering of Identical Clones

Normally the clones are clustered on the basis of the
similarity measure. The advantage of this technique is

to find the similarity measure only when the
considered clone pair contains same fingerprints that
are common to both. By doing this the number of
candidate clones for clustering is reduced. Hierarchical
clustering technique is used for clustering the clones,
considers each of the candidate clones as a cluster and
computes the similarity matrix. Consider a clone set
with clones {m1, m2, m6, m7, m9, m10, m12}, then the
similarity matrix has to be calculated for the above
clones.

As a first step, Figure 2 shows each clone as a
individual cluster. Next the similarity matrix is
generated for every pair. Each value in the similarity
matrix is a similarity measure between the pair of
clones. The similarity measure between the same
clones will be ‘0’ and the similarity measure between
the points smij will be same as smji.

Figure 2. Clones as individual clusters.

Table 2 indicates the similarity measure between the
clone pairs. This is repeated for every clone pair in the
clone set. The next step is to merge the clusters with
closest similarity distance. If the similarity measure
between the clones of the pair (m7, m10) is very close
then merge the clusters of m7 and m10 and update the
similarity matrix as in Figure 3 and Table 3. Finally a
dendrogram is generated to display the clusters of
identical clones.

Table 2. Similarity matrix before merging.

 M1 M2 M6 M7 M9 M10 M12

M1 0 sm12 sm16 sm17 sm19 sm110 sm112

M2 0 sm26 sm27 sm29 sm210 sm212

M6 0 sm67 sm69 sm610 sm612

M7 0 sm79 sm710 sm712

M9 0 sm910 sm912

M10 0 sm1012

M12 0

Figure 3. Clones as merged clusters.

Table 3. Similarity matrix after merging.

 M1 M2 M6 M7 M9 M10 M12

M1 0 sm12 sm16 sm17 sm19 sm110 sm112

M2 0 sm26 sm27 sm29 sm210 sm212

M6 0 sm67 sm69 sm610 sm612

M7 0 sm79 sm710 sm712

M9 0 sm910 sm912

M10 0 sm1012

M12 0

4.4. Ranking

The main aim of the clone detection technique is to
provide the clone list in an ordered format. In this work

M12

M9 M1 M6 M2

M7 M10

M1

M2

M12

M10 M7

M6

M9

(1)

(2)

(3)

738 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

the similar clones and the identical clones have been
identified. Hierarchical clustering technique has also
clustered the clones to show their identity. Since, the
identity is based on the similarity measure the clones
can also rank-ordered on the basis of this measure. The
clones which are present in the same cluster are given
the same rank. The method of indexing enables us to
group all the clones based on the rank. The grouped
clones along with their indexes are then stored in a
database. Finally for a given clone, the method finds
out and interactively lists all the other clones which are
identical to it.

5. Experiments and Results

The source code given to our pervious system [9] has

identified and extracted higher level clones at the

method level, file level and the directory level. The

output of the previous research [9] has identified 53

out of 181 methods, 90 out of 129 files, and 2 out of 3

directories as clones. The above clones have been

identified as most similar clones for the threshold

range 0.9-1.0. The next step is to detect the identical

clones from same set of 53, 90 and 2 clones and then

group them into clusters. Seven out of 53 clones for a

threshold of 0.9-1 are considered for the study. The

similarity distance and the similarity measures are

calculated and Table 4 gives the similarity matrix for

the considered clones. After finding the similarity

measures hierarchical clustering is applied. Here the

main aim of clustering is to group the clones with

smaller distance, so the clustering process is limited to

a distance<=0.2.

Table 4. Similarity matrix with similarity measures.

Simila Methods M1 M2 M6 M7 M9 M10 M12

M1 0 0.2 0.72 0.4 0.28 0.36 0.36

M2 0.2 0 0.28 0.28 0.22 0.66 0.27

M6 0.72 0.28 0 0.22 0.56 0.96 0.4

M7 0.4 0.28 0.22 0 0.21 0.70 0.23

M9 0.28 0.22 0.56 0.21 0 0.47 0.07

M10 0.36 0.66 0.96 0.70 0.47 0 0

M12 0.36 0.27 0.4 0.23 0.07 0 0

The process of clustering is given in Tables 5, 6, 7
and 8. The result of the clustering algorithm is a group
of identical clusters represented as a cluster diagram
and dendrogram as in Figures 4 and 5 respectively.

Table 5. Hierarchical clustering step 1.

Similar Methods M1 M2 M6 M7 M9 M10 M12

M1 0

M2 0.2 0

M6 0.72 0.28 0

M7 0.4 0.28 0.22 0

M9 0.28 0.22 0.56 0.21 0

M10 0.36 0.66 0.96 0.70 0.47 0

M12 0.36 0.27 0.4 0.23 0.07 0 0

Table 6. Hierarchical clustering step 2.

Similar Methods M1 M2 M6 M7 M9 M10/M12

M1 0

M2 0.2 0

M6 0.72 0.28 0

M7 0.4 0.28 0.22 0

M9 0.28 0.22 0.56 0.21 0

M10/M12 0.36 0.27 0.4 0.23 0.07 0

Table 7. Hierarchical clustering step 3.

Similar Methods M1 M2 M6 M7 M9/M10/M12

M1 0

M2 0.2 0

M6 0.72 0.28 0

M7 0.4 0.28 0.22 0

M9/M10/M12 0.28 0.22 0.4 0.21 0

Table 8. Hierarchical clustering step 4.

Similar Methods M1/M2 M6 M7 M9/M10/M12

M1/M2 0

M6 0.28 0

M7 0.28 0.22 0

M9/M10/M12 0.22 0.4 0.21 0

The results show that m10, m12 and m9 are identical

and m1, m2 are identical to each other, whereas the
other clones m6 and m7 with a greater distance are not
identical and they are in separate clusters. Given a
similar clone our system efficiently lists out all its
identical clones. Identical clones are given the rank,
based on their existing cluster and it is shown in Table
9. The ranked clones are indexed and stored in a
database as shown in Table 10. The method of
indexing helps in interactive identification of clones. If
an inconsistent change is made to the software which
results in a clone, then all the other clones that belong
to the same index are listed out interactively.

Table 9. Clones with ranks.

Clones M1 M2 M6 M7 M9 M10 M12

Rank 2 2 3 4 1 1 1

Table 10. Clones with index.

Index Clones

1 M12, M10, M9

2 M1,M2

3 M6

4 M7

Table 11 shows the result of the identical clusters

extracted from the sample java system considered for
the study. It shows the list of identical clusters for the
most Similar (ES) and the More Similar (MS)
categories. For the threshold value 0.9-1.00 in most
similar category out of 53 clones, 14 identical clusters
are generated each having the identical clones.
Similarly for a threshold of 0.75-0.8 out of 43 clones,
16 identical clusters are generated for the more similar
category. The results also show the identical clones for
methods, files and directories under different threshold
values.

Figure 4. Cluster of identical clones.

• M2

• M1

• M7

• M6

• M9

• M10

• M12

1

2

3

4

A Measurement of Similarity to Identify Identical Code Clones 739

Figure 5. Dendrogram for identical clones.

Table 11. Identical clusters for methods, files and directories.

6. Conclusions

The proposed architecture takes the simple clones and

clusters the clones based on the similarity measure.

The similarity measure takes two factors for

consideration, the similarity distance and the

population of clone. These two factors are calculated

for all the clones in the clone set. The resultant is a

cluster which groups the identical clones from a set of

similar clones. The identical clones are ranked based

on the cluster. The ranked clones are finally indexed to

automatically list the identical clones. The research can

be further extended to find the structural similarity. It

can also be used to find the clones in other data

structures.

References

[1] Abbas O., “Comparisons Between Data
Clustering Algorithms,” the International Arab
Journal of Information Technology, vol. 5, no. 3,
pp. 320-325, 2008.

[2] Barbour L., Khomh F., and Zou Y., “Late
Propagation in Software Clones,” in Proceedings
of the 27

th
 IEEE International Conference on

Software Maintenance, Williamsburg, USA, pp.
273-282, 2011.

[3] Cordy R., Dean R., and Synytskyy N., “Practical
Language-Independent Detection Of Near-Miss
Clones,” in Proceedings of the 14

th
 IBM Centre

for Advanced Studies Conference, pp 1-12, 2004.
[4] Gode N. and Koschke R., “Studying Clone

Evolution using Incremental Clone Detection,”
Journal of Software: Evolution and Process, vol.
25, no. 2, pp. 165-192, 2013.

[5] Hemel A., Kalleberg K., Vermaas R., and
Dolstra., “Finding Software License Violations
Through Binary Code Clone Detection,” in
Proceedings of the 8

th
 Working Conference on

Mining Software Repositories, New York, pp.
63-72, 2011.

[6] Koschke R., “Large‐Scale Inter‐System Clone
Detection using Suffix Trees and Hashing,”
Journal of Software: Evolution and Process, vol.
26, no. 8, pp. 747-769, 2013.

[7] Li Z., Shan L., Myagmar S., and Zhou Y., “CP-
Miner: Finding Copy-Paste and Related Bugs in
Large-Scale Software Code,” IEEE Transactions
on Software Engineering, vol. 32, no. 3, pp 176-
192, 2006.

[8] Miyamoto S. and Terami A., “Constrained
Agglomerative Hierarchical Clustering
Algorithms with Penalties,” in Proceedings of
IEEE International Conference on Fuzzy
Systems, Taipei, China, pp. 422-427, 2011.

[9] Mythili S., Sarala S., “Enhanced Technique to
Identify Higher Level Clones in Software,” in
Proceedings of the 2

nd
International Conference

on Soft Computing and Problem Solving,” pp.
1175-1182, 2012.

[10] Nguyen T., Nguyen H., Al-Kofahi J., Pham N.,
and Nguyen T., “Scalable And Incremental Clone
Detection for Evolving Software,” in
Proceedings of International Conference on
Software Maintenance, Edmonton, pp 491-494,
2009.

[11] Roy C. and Cordy J., “A Survey on Software
Clone Detection Research,” available at:
http://maveric0.uwaterloo.ca/~migod/846/papers/
roy-CloningSurveyTechReport.pdf, last visited
2007.

[12] Roy C. and Cordy J., “NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty Printing and Code
Normalization,” in Proceedings of the 16

th

International Conference on Program
Comprehension, Amsterdam, pp. 172-181, 2008.

[13] Roy C., Cordy J., and Koschke R., “Comparison
and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative
Approach,” Journal Science of Computer
Programming, vol. 74, no. 7, pp. 470-495, 2009.

[14] Schwarz N., Lungu M., and Robbes R., “On How
Often Code is Cloned Across Repositories,” in
Proceedings of the in Proceedings of the 34

th

International Conference on Software
Engineering, pp. 1289-1292, 2012.

[15] Smith R. and Horwitz S., “Detecting and
Measuring Similarity in Code Clones,” available
at: http:// research.cs.wisc.edu/ wpis/
papers/codeClonesWorkshop09.pdf, last visited
2009.

[16] Yamashina T., Uwano H., Fushida K., Kamei Y.,
Nagura M., Kawaguchi S., Iida H., “SHINOBI:
A Real-Time Code Clone Detection Tool For
Software Maintenance,” in Proceedings of the
16

th
 Working Conference on Reverse

Engineering, Lille, French, pp 313-314, 2009.
[17] Yoshioka S., Yoshida N., Fushida K., and Iida

H., “Scalable Detection of Semantic Clones
Based on Two-Stage Clustering,” available at:

Threshold Value

Methods Files Directory

Clone

Sets

Identical

Clusters

Clone

Sets

Identical

Clusters

Clone

Sets

Identical

Clusters

ES MS ES MS ES MS ES MS ES MS ES MS ES MS

0.8-0.85 0.6–0.7 57 57 25 23 110 0 26 0 2 0 1 0

0.85-0.9 0.7-0.75 54 42 22 19 99 3 18 2 2 0 1 0

0.9-1.00 0.75-0.8 53 43 14 16 90 3 12 1 2 0 1 0

M2 M12 M10 M9 M7 M6 M1

740 The International Arab Journal of Information Technology, Vol. 12, No. 6A, 2015

http://sdlab.naist.jp/pman3/pman3.cgi?DOWNL
OAD=50, last visited 2011.

Mythili ShanmughaSundaram

is a

PhD Research Scholar in Bharathiar

University, India. She is graduated

with MCA, MPhil degree in

computer science. She has published

and presented papers in various

Journals and Conferences. Her areas

of interest include software engineering and software

testing.

Sarala Subramani is a Assistant

Professor, Department of

Information Technology at

Bharathiar University. She

completed her PhD in object

oriented software testing, Anna

University, Chennai. She joined as a

Junior Research Fellow in the Department of

Computer Science and Engineering, Anna University

in December 2001. She completed her B.Sc Physics in

Quiad-E-Millath Women’s College, affiliated to

Madras University, Chennai and M.C.A in Computer

Applications from Madras University, Chennai. She

has a teaching and research experience of 9 years and

has presented papers in various National and

International Conferences. Her areas of interest include

software testing, software engineering, object oriented

programming concepts, data structures and compiler

design.

