
The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 195

Towards A UML Profile for Context-Awareness

Domain

Mohamed-Salah Benselim
1
 and Hassina Seridi-Bouchelaghem

2

1
Department of Management Science, University of “08 Mai 45”, Algeria
2
Department of Computer Science, University of Badji Mokhtar, Algeria

Abstract: Defining Unified Modelling Language (UML) profiles allows adaptation of the UML metamodel for specific

domain, area, platform, etc. Context awareness is one of particular domains that need to be well adapted when we use UML

language to model specific situations of users and applications. Therefore, it is necessary to create specific modelling

notations for this particular domain. In this paper, we present an extension of the UML notations as a profile used for context-

aware applications development in ubiquitous computing environment. The proposed UML context-aware profile is a package

of specific profiles that extend the standard notations of three UML diagrams chosen according to different views of a system

(use case diagram, sequence diagram and activity diagram). For each diagram, we propose UML extension mechanisms such

as stereotypes, constraints and tagged values that can model any contextual situation by an adequate graphic representation.

Each element of the context of use should be able to be represented by this UML profile. To demonstrate the feasibility of our

work, an example in medical field is shown by using StarUML software modelling platform. This work will complete the list of

extended notations (class diagram) presented in previous work in order to propose a more complete UML profile.

Keywords: Software engineering, ubiquitous computing, UML, profile, extension, context-aware, modelling, metamodelling.

Received February 10, 2014; accepted December 23, 2014

1. Introduction

Using modern information systems must take into

account several features of pervasive environment such

as user mobility, information heterogeneity and

systems distribution. These features can provide

precise indications concerning a contextual situation

and identify the context of use of this situation. We

note that in all our study, we take as reference the

definition of the concept of “context” cited in [7]. A

contextual situation is a part of the process of

executing a system by a user at one defined time. It is

to say that a user can be in different situations when

using a system because he is influenced by the change

of factors (or contextual elements) like: time, location,

used device, nearby persons, …, etc. So, each situation

is defined by a set of variable values of these elements

and that constitute the context of use of this situation.

For this, we use the term of “contextual situation” to

define the variable situation cases of the context of use.

In pervasive environment, a user can change, at any

time, one or more contextual elements. For example,

he changes his location from office to home or he

changes the device he used from cell phone to personal

computer. This user has transited from one contextual

situation to another contextual situation because of

changing the context of use. Here, the system (or

application) must be well adapted to provide relevant

information according to each situation. For covering

context changes, specific modelling notations are

needed in context-aware applications development. In

previous works, [4, 6], we proposed extended Unified

Modelling Language (UML) notations destined for

modelling the context of use with only one UML

diagram that is class diagram. These proposed

notations represent a part of an UML context-aware

profile that we present in this paper. Our proposal aims

to complete these works by providing new modelling

notations for UML diagrams (other than class diagram)

and that are regrouped in a profile especially for the

development of context-aware applications. This

profile is structured as a package of three profiles that

comprise extended notations of three UML diagrams

(use case, activity and sequence. The proposed UML

profile allows adaptation of the UML metamodel for

context awareness domain. This profile is defined by a

set of extensibility mechanisms such as stereotypes,

constraints and tagged values that are applied onto

different UML diagrams. These diagrams are chosen

according to different views of a system. The

functional view is represented by a use case diagram

and the static view is represented by a class diagram.

Also, the dynamic view can be represented by a

sequence diagram or by an activity diagram. That is to

say that use case diagram shows the system

functionalities and class diagram represents the system

structure. Dynamic sequencing of system tasks is

modelled by a sequence diagram or an activity

diagram. The remainder of this document is organized

as follows: section 2 summarizes several previous

works related to the same research area in order to

position our problematic. Section 3 presents an

196 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

overview of our study problematic, motivations and

goals to reach. In section 4, we expose details of the

proposed UML profile while showing extensibility

mechanisms for three UML diagrams: Use case,

activity and sequence. Section 5 shows implementation

of the used concepts in a chosen platform and a

running example is presented in section 6. Finally, in

section 7, we conclude this work and we present

perspectives for future research.

2. Related Works

In this section we present several previous works that

are related to our study. First, we list works that use the

notion of “profile” in different specific domains of

computing area. Then, we show the recent works that

introduce profiles in context awareness domain. At the

end, we try to position our study according to the listed

works. If we see the usage of UML as a modelling

language, there is a large number of works that are

proposing specific profiles for specific domains such

as for the description of software architecture [2], the

Web Ontology Language (OWL) ontologies [8],

multidimensional modelling in data warehouses [22],

business process modelling [20] and [16], software

product lines [33], aspect-oriented software

development [1], software architecture descriptions

[18], mobile systems [11], communicating systems

[32], real-time systems [10], object oriented expert

system [27], agent-oriented modelling [31], service-

oriented architecture [12], platform independent

modelling of service-oriented architecture [21],

description of dynamic software architecture [17],

developing airworthiness-compliant [34]. Other works

have investigated the domain of context-awareness in

different ways such as cited below. Hsu [15] proposed

“Web2.0MUML” Model Driven Architecture (MDA)

approach and UML profile for modelling “mashups”

(specific Web 2.0 technology). The Web2.0MUML

profile extends UML by using a profile mechanism for

Web 2.0 mashup modelling that presents the relevant

structural properties of Web 2.0 at the conceptual level.

In other study, Hsu [14] presented a UML profile for

modelling Web 2.0 based context-aware applications.

Also, Hsu developed a multi-layer context framework

that integrates Web 2.0 technologies into context-

aware system for supporting ubiquitous mobile

environment [13]. This framework includes context

sensor layer, context information layer, context service

layer, context representation layer, mobile device

layer, and context-aware mobile Web 2.0 application

layer. Fuentes et al. [9] proposed the use of aspect-

oriented modelling UML profile for designing

pervasive applications. This technique contributes to

the encapsulation of crosscutting concerns (context-

awareness) into well-localized modules. Korherr and

List [19] extend the UML 2 activity diagram to make

process goals and performance measures conceptually

visible. Also, they provide a mapping to Business

Process Execution Language (BPEL) to make the

measures available for execution and monitoring. The

work of [25] uses models to develop context-aware

web services. It proposes a metamodel that permits

modelling any contextual information and taking into

account the separation of aspects and the context in the

early stages of development. Van and Coninx [30]

presents a more detailed analysis describing how UML

and its light-weight extension mechanism (as profiles)

can be used to model both the dynamic and structural

aspects of context-sensitive user interfaces; and for

this, an approach has been presented to create context-

sensitive user interfaces using models expressed in

UML.

Our study seeks to complete these works by

proposing an UML context-aware profile for the

development of context-aware applications. This

profile provides more concepts and notations expressed

in explicit way and designed for modelling contextual

information. The proposal in this paper is a

continuation of our previous works in the same field

research. Indeed, we introduced a new vision of MDA

approach to develop context-aware application in

ubiquitous information systems [5]; then we presented

an overview of modelling context with extended UML

in [3, 6]. In the last paper [4], we began to treat UML

diagrams with details and we focused on class diagram

notations. Our actual proposed profile has to facilitate

the development of context-aware applications because

it provides the main modelling tools needed for a

development process. In this paper, we present new

extended notations for three UML diagrams (use case

diagram, activity diagram and sequence diagram).

3. Motivations and Objectives

A model is an abstraction of a system that provides an

easier way for the development of complex

applications. Models are used to simplify the system

views modelling. MDA is an OMG approach [24] that

is based on model and model transformation. UML is

the most used language with different paradigms and

domains. UML is a standard object oriented modelling

language offered by the Object Management Group

(OMG) and it is used for modelling many aspects of

software systems [28, 29]. UML proposes general

notations that can be used for the system development

process in different areas and domains. In other words,

UML allows modelling all domains but with general

and standard concepts and notations. The particularity

“standard or general” of the UML language has to limit

its opportunities while working in particular domains

that need specialized notations. Seeing the works

presented in the previous section, we note that UML

has not specific notations for representing context

information. So, the standard UML concepts do not

support all aspects of the context of use in an adequate

Towards A UML Profile for Context-Awareness Domain 197

manner. Therefore, we decided to find a better solution

to represent the context with explicit and appropriate

notation and by creating a new UML profile especially

for context-awareness domain. Now, we try to explain

the statement of our problematic and answer the

following questions:

 Why we are obliged to extend UML for context-

awareness domain?

 Can UML be profiled to support context-aware

modelling?

 What we are going to really add to the existing

standard UML?

 How to implement the extended notations to build

an UML profile?

Information processing tasks, especially in the context-

awareness domain, are becoming more difficult and

complex. Ubiquitous computing is an emerging field

research in computing domain that assures information

processing independently of time, space, device, …,

etc. It permits to make available all needed information

everywhere and anywhere. Each application should be

able to adapt its services with the change of each

contextual situation and satisfy all users‟ specific

preferences. In ubiquitous computing, we must take

into account changing features of a system such as

user‟s mobility, information heterogeneity and systems

distribution. These features represent the context of use

of a situation and their common specificity is the

continuous changing because we are working in

ubiquitous environment and all of the system actors

and components can change in time and space. For

example, the modelling of “user” entity cannot be

limited as a static entity (as in class diagram) or as a

simple actor (as in use case diagram) such as in

standard UML, but it must be represented with an

appropriate notation that can show and can take in

charge the eventual mobility of this user. In this case,

we must think to consider specific features of each new

contextual situation such as the state of the user

(sitting, standing or walking), the nearby persons

(alone or with other persons), the available resources,

the used device and the existing networks. Here, we

note that standard UML does not propose explicit

notations to model contextual features, and thus, it

cannot be well used for the development of context-

aware applications in ubiquitous environment. UML is

a reference metamodel that can be extended or

customized to be adaptable to a particular domain such

as context-awareness domain. The extension process

consists on adding new notations to the existing ones

by creating extensibility mechanisms including

stereotypes, constraints and tagged values. These new

notations allow the customization of both syntax and

semantics of the standard UML elements. The union of

these extensibility mechanisms permits to construct a

profile that allows adaptation of the UML metamodel

to model context-aware application with appropriate

notations and concepts. The new notations will be able

to express specific concepts of particular domains.

Our goal is to expand the standard UML by

extending a part of its metaclasses in order to build an

UML context-aware profile more adapted for

modelling process in ubiquitous environment. The

proposed profile will contain stereotypes, constraints

and tagged values. Stereotypes permit to extend the

UML notations in order to create new model elements

and they define how an existing metaclass may be

extended in the profile. Constraints are associated to

stereotypes in order to make restrictions or conditions

on the corresponding metamodel elements. Tagged

values are considered as the values of stereotype

properties. When an extension mechanism is applied to

a model element of UML metamodel, a new element

notation (or concept) is derived from this model

element according to the requirements of the context-

awareness domain. For example, we can derive (or

extend) the UML metaclass “Object” to construct the

stereotype <<ContextObject>> that will permit to

model contextual entities (entities which are comprised

in a contextual situation) of an UML sequence

diagram. Also, we can use the stereotype to model

specific elements of our domain such as a

“ContextActor”. The “ContextActor” class is a

stereotype which can be derived from the standard

UML metaclass “Actor” by extension. This stereotype

is specialized in order to represent all nomad and

mobile users of the system such as (in health domain):

patient, doctor, nurse, pharmacist, student of medicine

faculty, professor of medicine faculty etc., Then,

constraints (restrictions or conditions) are attached to

each of obtained stereotypes in order to limit and to

guide the use of this new element according to the

specific characteristics of the system. The built of a

stereotype is completed by creating tagged values

(attributes of the stereotype). Each of these tagged

values is defined by specifying a property name and its

value in order to provide more opportunities for

modelling contextual information. After we do the

same operation to all specific characteristics (entities,

relationships, behaviour, etc.) of our particular domain,

we group all obtained concepts in a package which will

be the UML profile for the development of context-

aware applications in ubiquitous environment.

This profile is feasible by implementing its concepts

and notations with StarUML software modelling

platform. StarUML is an extensible platform which

supports UML language and provides excellent

extensibility, customizability and flexibility [26].

Stereotypes are defined in the document file of the

profile by using eXtended Markup Language (XML)

format. For each stereotype we indicate the name, a

short description and the base UML class. Constraints

are introduced by using the “Constraint Editor” of

StarUML menu System. For each constraint, we can

specify its body by using the natural language or using

198 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Object Constraint Language (OCL) [23]. The “Tagged

Value Editor” of StarUML menu System can be

personalized with needed properties and by specifying

these properties and their values with an XML

document. Then, the StarUML system menu is

customized by adding an entry option in order to

facilitate the use of the proposed profile from the

StarUML main menu. Each developer can use the

proposed concepts and notations by including the new

profile in the StarUML “profile manager editor”. This

operation will allow loading all the profile components

to be used by the application developer. In this section,

we aimed to motivate and to argue the need of a

specific UML profile in the ubiquitous computing

environment. To explain the problematic of this work,

we tried to answer three main questions (what?, why?

and how?) summarized as follows:

? Question 1: What?

 Answer 1: Creating specific UML profile for a

specific domain (context-awareness)

? Question 2: Why?

 Answer 2: Standard UML does not propose (in

explicit way) modelling tools of the context of use

? Question 3: How?

 Answer 3: By extending the existing UML elements

to support context modelling.

Our proposal will provide several benefits of use such

as: Augmenting software productivity, optimizing

development effort, minimizing time and decreasing

costs. This is able to make the context-aware

application development easier and more efficient.

Briefly, the main goal of this study is the creation of

specific notations to model specific information, and

thus, the creation of a specific UML profile for a

specific domain (context-aware computing).

4. UML Context-Aware Profile

In this section, we expose details of the proposed UML

context-aware profile by showing its structure and

components. These details concern the description of

the profile package, creating stereotypes, creating

constraints and creating tagged values; and this, for

three UML diagrams (use case, activity and sequence).

It is necessary to note (gray colour) in Figure 1 and in

Table 1, that extended notations of UML class diagram

have already been represented in previous work [4];

and thus, they will not appear in this paper. Also, we

note that we are going to respect concept alias used in

that work because it is a continuation of the same

project.

4.1. UML Context-Aware Profile Package

The context of use can be represented by specific UML

notation. Thus, we have to extend the unified

modelling language by adding new elements that can

represent the contextual characteristics in appropriate

form. Each of these characteristics must be represented

by an adequate notation of UML language. For this, we

propose a standard UML extension as a profile that

contains stereotypes, tagged values and constraints. A

stereotype permits to define a new meaning of an

existing UML metamodel element. Tagged values are

always attached to a stereotype and their role is to

indicate attributes of the created stereotype.

Constraints define the restrictions of semantics for

each added new element. Our proposed profile is a

structure diagram which describes lightweight

extension mechanism to the UML language by

defining custom stereotypes, tagged values and

constraints. This profile can be represented by a

package of other profiles that extend UML metamodel

as shown in Figure 1. At this stage of the survey we

chose three UML diagrams (use case, sequence and

activity) that represent the main tools of an application

development (analysis, design, and implementation).

New UML diagrams notations are obtained by

extending the existing elements of UML metamodel.

Figure 1. Architecture of the proposed profile package.

The UML context-aware profile package is

composed of four major profile packages: ClassUML

[4], UsecaseUML, SequenceUML and ActivityUML.

Each package is inherited from the common UML

metaclass „package‟ and will comprise extended

notations of the correspondent diagram as shown in

Table 1.

Table 1. Description of included profiles of the proposed profile.

Profile Name
Reference

Metamodel

Metamodel

Element

(Metaclass)

Description

ClassUML

Profile

UML

Metamodel
„Package‟

Extends UML class diagram

notations to support context-aware

modeling

Usecase UML

Profile

UML

Metamodel
„Package‟

Extends UML use case diagram

notations to support context-aware

modeling

SequenceUML

Profile

UML

Metamodel
„Package‟

Extends UML sequence diagram

notations to support context-aware

modeling

ActivityUML

Profile

UML

Metamodel
„Package‟

Extends UML activity diagram

notations to support context-aware

modeling

In Table 2, we list the main UML metamodel

elements that will be extended and studied in this

paper.

Towards A UML Profile for Context-Awareness Domain 199

Table 2. UML diagrams and correspondent extension mechanisms.

UML Diagram Name Stereotypes
Metamodel Element

(Metaclass)

Use Case Diagram

ContextActor Actor

ContextUseCase Use case

ContextDependency
Relationships (use,

extend, include)

sequence Diagram

ContextObject Object

ContextLifeLine LifeLine

ContextMessage Message

Activity Diagram

ContextActivity Activity

ContextTransition Transition

Proposed UML extension enables an appropriate

use of the domain specific notation in place of the

standard UML concepts. System entities which have

specific properties and constraints that cannot be

represented with standard UML notations have to be

modelled with the proposed stereotypes. The specific

characteristics (limits, conditions, mean, semantics, ...)

will be taken in charge in stereotypes by attached

constraints and tagged values. Below, we are going to

describe the three profile packages and we expose the

main proposed concepts and notations to respectively

three UML diagrams (use case, activity and sequence).

It is necessary to note that, in MDA architecture,

defining a UML profile means that standard UML will

be extended at the metamodel level M2. Thus,

proposed extensions are done at metamodel level M2

and then diagram notations (at model level M1) are

built to be conform to these metamodel concepts.

In use case diagram, existing UML notations will be

extended in order to obtain new notations that will be

more adapted to model specific situations and

scenarios in context-aware domain. The stereotype

<<ContextActor>> is obtained from the standard UML

metaclass “Actor” by customizing its syntax and

semantics. This customization permits to limit the field

of use of “Actor” concept to be used in modelling

specific users and entities such as nomad users,

travellers, distributed systems, mobile devices, etc. In

this part of our proposed profile, we extend the main

metaclasses of standard UML use case diagram to

create new modelling concepts as stereotypes. Here,

metaclasses “Actor”, “UseCase” and “Dependency”

are respectively extended by the stereotypes

<<ContextActor>>, <<ContextUseCase>> and

<<ContextDependency>> as shown in Figure 2. The

difference between old and new concepts is that we

attach to new ones (stereotypes) constraints and tagged

values. Constraints are used to specify limits and

restrictions according to particular specifications of the

context of use. Tagged values show the new properties

(attributes) of each stereotype.

Generally, all UML concepts can be stereotyped to

be adequate with particular domain or platform.

Standard UML diagram concepts have to be extended

in order to create specific notations (as stereotypes) for

the development of context-aware applications in

ubiquitous environment.

Figure 2. Package of use case diagram profile.

In UML activity diagram, two main metaclasses

(“Activity” and “Transition”) are extended by two

stereotypes (<<ContextActivity>> and

<<ContextTransition>>) as shown in Figure 3. In

ubiquitous environment and mobile systems, tasks (or

activities) perform and execute contextual actions that

are influenced by a changing context of use (mobility

of users, used devices, heterogeneity of information

sources and system distribution). Such activities cannot

be represented by standard UML notation because each

of them can have several variable forms according to

incurred variations of the context of use. Thus, we

have to use the proposed stereotypes to model

contextual activities.

Figure 3. Package of activity diagram profile.

UML sequence diagram allows representing the

successive interactions of a use case (or a scenario) in

chronological order. It illustrates objects interactions

by showing sent and received messages between these

objects. Because objects are instances of classes and

because we operate in context-awareness domain (for

which we have proposed the use of contextual classes

such as <<ContextClass>> stereotypes), thus we are

obliged to work with <<ContextObject>> concepts as

instances of <<ContextClass>> stereotypes.

Figure 4 shows how UML metaclasses (“Object”,

“LifeLine” and “Message”) are extended by new

stereotypes (respectively <<ContextObject>>,

<<ContextLifeLine>> and <<ContextMessage>>). The

created stereotypes provide new meaning and well

defined semantics to the existing UML metaclasses by

specifying the exact goal to which they will be used.

New stereotypes are able to model any object that

varies with the context of use of a changing situation.

200 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Object varying characteristics are taken in charge by

constraints and tagged values that are attached to the

corresponding object stereotype <<ContextObject>>.

This will permit customization of the use of UML

standard sequence diagram notation in the specific

context-aware domain. Also, it will permit, precise and

explicit modelling way of contextual factors that are

continuously changing.

Figure 4. Package of sequence diagram profile.

4.2. UML Context-Aware Profile Stereotypes

The main standard UML metaclasses (“Actor”,

“UseCase”, “Transition”, “Activity”, “Object”, etc.,)

are extended in order to create stereotypes that model

the different views of a system. These stereotypes

define how existing metaclasses may be extended as a

part of the proposed profile. A short description of

proposed stereotypes is shown in Table 3. For

example, in use case diagrams, the <<ContextActor>>

stereotype will be used to model entities (such as users,

systems, hardware, software, etc.,) that present

contextual constraints and that have changing

properties. <<ContextUseCase>> is a stereotype that

represents the needed functions (composed by

contextual actions and varying tasks in time and space)

of a system. <<ContextDependency>> shows a

specific relationship that relates two

<<ContextUseCase>> stereotypes. To appropriately

model a nomad user with use case diagram, we need a

specific notation that represents explicitly the

particular properties of this nomad user such as the

user‟s state (sitting, standing, sleeping, walking,

travelling, etc.,), the actual location (home, office,

hotel, airport, etc.,), the used device (PC, laptop,

mobile, PDA, etc.,), the nearby persons, the available

resources, existing networks, etc. These properties will

be considered by inserting them as attached tagged

values (attributes) to the stereotype

<<ContextActor>>.

When the stereotype is applied to a model element,

an instance of this stereotype is associated to an

instance of the corresponding metaclass. This

stereotype will be specialized in several instances of

users according to the variation of attached tagged

values. In our example, we can model a nomad user as

shown in Figure 5.

Table 3. Description of the proposed UML stereotypes.

UML

Diagram

Name

Stereotype
UML Construct

(Metaclass)
Description

Use Case

Diagram

ContextActor Actor
Represents roles that are played by nomad

users or other mobile systems and subjects

ContextUseCase UseCase
Specifies a set of contextual actions or

tasks that are performed by a system

ContextDependency Dependency

Is a relationship which indicates that a

model element needs another model

element (ContextActor or

ContextUseCase)

Activity

Diagram

ContextActivity Activity

Is a set of contextual actions (or methods)

corresponding to operations on

ContextClass

ContextTransition Transition

Indicates the transition from the end of a

ContextActivity to the beginning of another

ContextActivity

Sequence

Diagram

ContextObject Object

Represents an individual participant

(ContextObject or its instance) in the

Interaction

ContextLifeLine LifeLine

Is associated to a ContextObject and

represents the period of life (as a line) for

which this ContextObject can participate

in the interaction

ContextMessage Message

Defines a particular communication

between two ContextLifelines

corresponding to two interaction

ContextObjects.

Figure 5. Example of modelling a specific user with proposed

notations.

4.3. UML Context-Aware Profile Constraints

UML diagram constraints are defined by clear

conditions and restrictions that are specified to limit

and to determine how proposed stereotypes

(<<ContextActor>>, <<ContextUseCase>>,

<<ContextObject>>, <<ContextActivity>>,

<<ContextTransition>>, etc.,) are used in modelling

process. These constraints show the main differences

between proposed stereotypes and existing concepts of

standard UML. Generally, they can be expressed or

written by several ways and tools such as:

 Natural languages (English, French, etc.,).

 Programming languages (Java, etc.,).

 Mathematical Notations (AND, OR, +, =, etc.,).

 Graphical diagrams (UML diagrams, etc.,).

 OCL language.

Below we try to describe the proposed constraints with

three representation kinds (natural language, UML

class diagram and OCL language).

Firstly, these constraints are described in Table 4 by

using natural language (English). Secondly, we can use

UML class diagram to express these proposed

constraints such as illustrated in Figures 6, 7 and 8 that

Towards A UML Profile for Context-Awareness Domain 201

concern respectively use case diagram, activity

diagram and sequence diagram.

Table 4. Description of the proposed UML constraints with natural

language.

UML

Diagram

Name

Stereotype Description of Attached Constraints

Use Case

Diagram

ContextActor

It must be extended from the UML metaclass "Actor"

It must be related to ContextUseCase by ContextDependency

relationship

ContextUseCase

It must be extended from the UML metaclass "UseCase"

It must be related to another ContextUseCase by

ContextDependency relationship

ContextDependency

It must be extended from the UML metaclass "Dependency"

It relates two ContextUseCase

It shows the kind of existing dependence (use, extend or

include) between related ContextUseCase

Activity

Diagram

ContextActivity

It must be extended from the UML metaclass "Activity"

It must be related to another ContextActivity by

ContextTransition relationship

ContextTransition

Is a relationship that relates two ContextActivity

Two attributes must not have the same name

Two operations must not have the same name

Sequence

Diagram

ContextObject

It must be extended from the UML metaclass "Object"

It can interact with another ContextObject by

ContextMessage

ContextLifeLine

It must be extended from the UML metaclass "LifeLine"

It supports the points (where and when) of receiving and

sending ContextMessage

ContextMessage

It must be extended from the UML metaclass "Message"

It must start from a ContextLifeLine (of a source

ContextObject) to arrive to another ContextLifeLine (of a

target ContextObject)

Thus, in Figure 6, we present the proposed use case

diagram constraints by specifying the type of

relationships between stereotypes and by fixing

corresponding multiplicities. By applying these

constraints, we fix the number of

<<ContextUseCase>> instances that can be related by

one <<ContextDependency>> instance (use, include or

extend) to „2‟ and we authorize that a same

<<ContextActor>> instance can trigger one or more

<<ContextUseCase>> instances.

Figure 6. Representation of use case diagram constraints.

In Figure 7 we present an activity diagram constraint

that shows the type of relationship that must exist

between the stereotypes <<ContextActivity>> and

<<ContextTransition>> and corresponding

multiplicities. Indeed, each <<ContextTransition>>

instance can relate exactly two <<ContextActivity>>

instances.

Figure 7. Representation of activity diagram constraints.

Sequence diagram constraints are shown in Figure

8. Proposed sequence diagram stereotypes are

constrained by defined conditions that limit their use in

the context-awareness domain. These constraints show

how proposed stereotypes are associated and fix the

number of corresponding instances to be used in Model

level (M1). Indeed, each <<ContextObject>> instance

must have only one <<ContextLifeLine>> instance and

each <<ContextMessage>> instance must be related to

exactly two <<ContextLifeLine>> instances because

one message represent the interaction between two

objects by joining their corresponding life lines.

Figure 8. Representation of sequence diagram constraints.

Thirdly, as an example of expressing constraints

with OCL, we take the case of two specific constraints

which can be attached to all proposed stereotypes.

These constraints forbid that two attributes or two

operations have the same name in the same stereotype.

When applied, for example, on the

<<ContextTransition>> stereotype, the body of these

constraints can be written with OCL language as

follows:

Context ContextTransition inv:

Attributes -> forAll(Attr1,Attr2 |

Attr1<>Attr2 implies

Attr1.NameOfAttribute<> Attr2.NameOfAttribute)

Context ContextTransition inv :

operations -> forAll(Op1,Op2 | Op1<>Op2 implies

Op1.NameOfOperation<> Op2.NameOfOperation)

4.4. UML Context-aware Profile Tagged

Values

UML diagrams tagged values define the properties (or

attributes) of the proposed stereotypes for the

corresponding diagram. Tagged values permit to

differentiate the proposed stereotypes

(<<ContextActor>>, <<ContextUseCase>>,

<<ContextLifeLine>>, <<ContextActivity>>,

<<ContextTransition>>, <<ContextObject>>, etc.,)

from the existing UML metaclasses (respectively

“Actor”, “UseCase”, “LifeLine”, “Activity”,

“Transition”, “Object”, etc.,). Each tagged value is

defined by a property definition (attribute name) and

its possible values. Proposed tagged values will

provide predefined values of specific and contextual

characteristics (or properties) that cannot be modelled

with standard UML notations. For example, when we

apply the tagged value “State_of_user” to the

stereotype <<ContextActor>>, we include predefined

values such as “walking”, “sitting”, “standing” and

202 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

“traveling” that can be used to model many changing

situations of the user‟s state while executing an

application. In activity diagram, applying the tagged

value “Context_Of_Guard” on <<ContextTransition>>

stereotype means that the guard (or condition) of the

proposed transition will not have the same effect as in

standard UML because this tagged values will have

many results according to its predefined values (“day”,

“night”, “indoor” or “outdoor”).

Table 5. Description of the proposed UML tagged values.

UML

Diagram

Name

Applied to

(Stereotype)
Property Definition Value Definition

Use Case

Diagram

ContextActor

Actor_Type
“Human”, “Software”,

“Hardware”

State_Of_User
“Walking”, “Sitting”,

“Standing”, “Traveling”

Actual_Location “Home”, “Office”, “Hotel”

Spoken_Language “Arabic”, “French”, “English

Used_Money “Dollar”, “Euro”, “Dinar”

Used_Device
“PC”, “Laptop”, “Mobile”,

“PDA”

ContextUseCase
Usecase_Type “Local”, “Distant”

Usecase_ sharing “Alone”, “Common”

Activity

Diagram

ContextActivity
Activity_Visibility “Public”, “Private”, “Protected”

Type_Of_Sensor “Hardware”, “Software”, “Both”

ContextTransition

Context_Of_Guard
“Day”, “Night”, “Indoor”,

“Outdoor”

Is_Periodic
“True”, “False”

Sequence

Diagram

ContextObject

Object_Nature “Internal”, “External”

Object_Type “Permanent”, “Temporary”

Object_Role “Creator”, Destructor”

ContextMessage

Message_Quality “High”, “Medium”, “Low”

Is_Recursive “True”, “False”

Is_Synchrone “True”, “False”

Is_Asynchrone “True”, “False”

As an example, we suppose that we have a

transition between two activities “patient” and

“pharmacy” and this transition has a guard

(pharmacy.IsOpen) that verifies if the pharmacy is

open or not. Here, we see that obtained results with

UML standard notations will be general and imprecise

because it do not take into account that the opening

time of pharmacies vary from day to night. But, this

problem will find a solution by using the new notations

of the proposed UML profile because it distinguishes

between day and night (as tagged values) before

returning the opening time results of pharmacies. In

Table 5, we specify some examples of tagged values

that are applied to the proposed stereotypes.

5. Implementation

As mentioned above, this work is a part of a global

project that aims to construct a complete UML profile

intended to context-aware application development.

therefore, the implementation of concepts began when

we developed the first extended notations of UML

standard elements; and it was necessary to create the

real file of UML profile (even for a part of diagrams)

in order to be able to continue our work. For this, we

note that major headlines of this implementation were

exposed in our previous work [4] which focuses on

extended notations of just one UML diagram (class

diagram). However, we present, here, a short review of

this implementation by showing an overview of how

the three packages (UsecaseUML profile,

SequenceUML profile and ActivityUML profiles) are

created. For this, we give examples of implementing

new concepts (creating profile files, creating

stereotypes, creating constraints and creating tagged

values) that compose these packages. Also, we note

that we used StarUML software modelling platform

because it is an extensible platform which supports

UML language and provides excellent extensibility,

customizability and flexibility [26]. In the first

example, we show how the <<ContextObject>>

stereotype is created by using XML (eXtended Markup

Language) format as follows:

 <STEREOTYPE>

 <NAME>ContextObject</NAME>

 <DESCRIPTION>stereotype extended from

UML metaclass ‘Object’ </DESCRIPTION>

 <BASECLASSES>

 <BASECLASS>UMLObject</BASECLASS>

 </BASECLASSES>
 </STEREOTYPE>

Figure 9. Adding constraints with the StarUML constraint editor.

Figure 9 shows how proposed constraints can be

introduced by using the “Constraint Editor” of

StarUML menu System; and we see how constraints

are defined by its name and its body. Figure 10

illustrates the tagged value editor of StarUML in which

some proposed tagged values are displayed with

default values. These tagged values offer multiple

predefined values that will be modified (or adapted)

according to the current situation of a user or

application.

Figure 10. Specifying tagged values with the StarUML tagged

value editor.

Towards A UML Profile for Context-Awareness Domain 203

After creating all proposed extensibility

mechanisms, we can extend the StarUML menu system

by adding new menu items related to them. This will

make easy the use of the proposed profile and will

make available all new concepts to develop

applications in context-awareness domain. At the end

of this section, we recapitulate, in Table 7 (Appendix

A), some examples of how to concretely create a

profile and its extensibility mechanisms (stereotypes,

constraints and tagged values).

6. Running Example

6.1. The System Description and Requirements

To demonstrate the ability of use of the proposed

concepts and notations, we consider a system described

by a simple example in which a same user tries to

access to the same application “drug manager” in

different situations (according to time, location, state

of the user, nearby persons, available resources). This

user can be a patient, a doctor, a nurse, a teacher, a

student. Several distant services are provided by this

application such as: A complete list of drugs, to buy

drugs, how to consume drugs, consulting a doctor,

needs a nurse etc. In this example as shown in Figure

11, we suppose that a patient is traveling from his

country (A) to another country (B). During his travel,

he wants to use the “drug manager” application that

offers him needed information about his own drugs.

From this short description, we can remark that our

system is characterized by three main locations:

starting location, arrival location and the way between

them. When moving from a location to another one,

several features are changing and a new situation is

defined according to each context of use. We note that

this situation may be influenced by several factors and

constraints as follows [5]:

 Constraints related to the user himself (Identity,

Self-Profile, Behavior, Preferences, etc.,).

 Constraints related to the application (Software,

Hardware, Networks, interaction mode, etc.,) .

 Constraints related to the environment (Time,

Location, Weather, Nearby persons, Surrounding

objects, Available resources, etc.,).

Figure 11. Example of different contextual situations.

Each of these context constraints must be

represented by an adequate notation of UML language.

The continuous changes identify new contextual

situations, but the user must not worry about these

changes because the designed application must be

context-aware and must be adapted to support

ubiquitous factors (anywhere and everywhere). Also,

we note the take in charge of regional parameters

changes (language, money, networks etc.).

Table 6. Description of contextual elements for three different
situations (inspired from [4]).

Contextual Elements

Contextual

Situation 01

(Country A)

Contextual

Situation 02

(Border A-B)

Contextual

Situation 03

(Country B)

User Patient Patient Patient

State of User Sitting, sleeping Walking, moving Sitting, sleeping

Location Home, hospital Border office Pharmacy, hotel

Language Arabic, French
Arabic, French

English
English, French

Used Device PC, PDA PDA, mobile PDA, mobile

Time Day Day Night

Used Money Euro Euro, Dollar Dollar

Existing Network Internet, LAN Internet Internet

Nearby Persons Doctor, nurse, parent Friend, parent
Doctor, friend,

pharmacist

Available Resources
Phone, Webcam,

printer, smart TV
Phone, Fax Fax, printer

Surrounding Objects Medical devices Car, bus Table, chair

In our example as shown Table 6, we distinguish

three contextual situations in which the user (as a

patient) can be. Each situation is characterized by

various instances (or values) of contextual elements

that define the context of use related to this situation.

In this case, we can consider several scenarios for our

system because many elements of this system are

continually changing (a long combination of contextual

elements can be made to obtain scenarios). To model

this example, we are going to draw UML diagrams

corresponding to each of the development process

steps. These diagrams will take into account all

contextual information by using new concepts and

notations of the proposed UML profile. After the

implementation process (writing XML profile files and

extending StarUML menu), our profile and its

notations became available to be used.

Firstly, we lunch the profile manager of StarUML

platform (Model > Profile > “profile manager”) and we

get the list of available profiles such as: C# Profile,

C++ Profile, EJB Profile, JAVA Profile and UML

Context-Aware Profile. UML Standard Profile is

included as default profile as shown in Figure 12.

Figure 12. List of available profiles displayed by the StarUML

profile manager.

204 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Here, we choose the needed profile (in our case:

UML Context-Aware Profile) and we click on the

appropriate button “Include”. This operation will load

all related notations (stereotypes, constraints and

tagged values) of the chosen profile; and at this time,

this profile is completely ready to be used.

Figure 13 illustrates the “profile manager” after

including UML Context-Aware Profile. Then, we

choose the needed diagram from StarUML “model

explorer” in order to load respective components of

this diagram (including new proposed notations).

Finally, we construct our diagrams by using new UML

notations provided by the proposed UML context-

aware profile.

Figure 13. Including UML Context-Aware profile by using the

StarUML profile manager.

6.2. Building UML Diagrams by using the

UML Context-Aware Profile

Here, we expose UML diagrams that use new notations

of the proposed UML profile. According to the

example description, we can draw a use case diagram

as shown in Figure 14 that shows how nomad and

mobile actors are represented with <<ContextActor>>

stereotype. This stereotype is specific to actors that are

moving and that have changing features. In our

example, actors such as “Patient”, “Doctor” and

“Pharmacist” can be represented by the stereotype

<<ContextActor>> because their situation

characteristics (state, time, location, device, etc.,) are

continually in change. Also, we use two use cases “To

consult” and “To buy drugs” stereotyped

<<ContextUseCase>> because they offer several

opportunities (by using attached constraints and tagged

values) to represent contextual information of the use

case in a clear way.

Figure 14. Use case diagram using notations of the proposed

profile.

In Figure 15, we report (with short modification) a

class diagram that uses extended notations cited in [4]

for more understanding of the example.

Figure 15. Class diagram using notations of the proposed profile.

Stereotypes will represent specific classes and

specific associations of our example. The use of each

class stereotyped <<ContextClass>> is restricted by

specific conditions as “constraints” and they have

appropriate attributes as “tagged values” according to

the context of use. Associations between classes are

stereotyped <<ContextAssociation>> to be able to

relate the contextual classes stereotyped

<<ContextClass>>.

In Figure 16, we present a sequence diagram of our

example. The main notations of this diagram are

stereotypes issued from the proposed UML profile.

Objects such as “patient”, “drug” and “doctor” are

stereotyped <<ContextObject>> and have their

appropriate life lines as <<ContextLifeLine>>

stereotypes. Each of these specific objects can send or

receive contextual messages considered as

<<ContextMessage>> stereotypes that can be

synchronous message (by applying „Is_Synchrone‟

tagged value) or asynchronous message (by applying

„Is_Asynchrone‟ tagged value).

Figure 16. Sequence diagram with notations of the proposed

profile.

Towards A UML Profile for Context-Awareness Domain 205

Figure 17 presents an activity diagram in which we

use new notations of the proposed UML profile to

model a scenario of the example. <<ContextActivity>>

stereotypes are used to model the contextual actions

that correspond to operations (or methods) of a

<<ContextActor>>. The progression process from an

activity to another is guaranteed by a transition

stereotyped <<ContextTransition>> that can be

restricted by using proposed tagged values according

to the context of use of this transition.

Figure 17. Activity diagram using notations of the proposed profile.

7. Conclusions and Future Works

Ubiquitous computing is an emerging field research in

computing domain that assures information processing

independently of time, space, device, …, etc. In

Ubiquitous computing environment, we must consider

changing contextual features of a system such as user‟s

mobility, information heterogeneity and systems

distribution. In this paper, we proposed an UML

context-aware profile to model contextual information

in ubiquitous environment. The proposed profile is

destined for context-awareness domain and provides

specific notations for three UML diagrams (use case,

activity and sequence). This profile is a package of

new notations such as stereotypes, constraints and

tagged values and that are extended from existing

UML elements. These new notations will complete the

list of standard UML notations by modelling explicitly

and appropriately all contextual situations of context-

awareness domain. Proposed notations have been

implemented by using StarUML software modelling

platform and have been tested on a running example in

the health field (drugs). As perspective, we hope

implementing this profile with “Eclipse” platform

which contains an extensible plug-in system to

customize the environment and that provides more

persistent modelling tools. Also, we hope using this

UML context-aware profile to the contextual

adaptation and personalization for ubiquitous

information systems.

References

[1] Aldawud O., Elrad T., and Bader A., “UML

Profile for Aspect-Oriented Software

Development,” The 3
rd

 International Workshop

on Aspect Oriented Modelling, Boston, pp. 1-16,

2003.

[2] Amirat A. and Oussalah M., “Towards an UML

Profile for the Description of Software

Architecture,” in Proceeding of International

Conference on Applied Informatics, Bordj

BouAreridj, pp. 226-232, 2009.

[3] Benselim M. and Seridi-Bouchelaghem H.,

Networked Digital Technologies, Springer-

Verlag, 2012.

[4] Benselim M. and Seridi-Bouchelaghem H.,

“Extending UML Class Diagram Notation for the

Development of Context-aware Applications,”

Journal of Emerging Technologies in Web

Intelligence, vol. 5, no. 1, pp. 35-44, 2013.

[5] Benselim M. and Seridi-Bouchelaghem H.,

“Development of Context-Aware Applications in

Ubiquitous Information Systems,” in Proceeding

of the 13
th
 International Conference on

Enterprise Information Systems, Beijing, pp.

223-228, 2011.

[6] Benselim M. and Seridi-Bouchelaghem H.,

“Modelling Context with Extended UML,” in

Proceeding of 2
nd

 World Conference On

Information Technology, Antalya, pp. 566-571,

2012.

[7] Dey A., Abowd G., and Salber D., “A

Conceptual Framework and a Toolkit for

Supporting the Rapid Prototyping of Context-

Aware Applications,” Journal of Human-

Computer Interaction, vol. 16, no. 2, pp. 97-166,

2001.

[8] Djurić D., Gašević D., Devedžić V., and

Damjanović V., “A UML Profile for OWL

Ontologies,” in Proceeding of the Workshop on

Model Driven Architecture: Foundations and

Applications, Linköping, pp. 204-219, 2004.

[9] Fuentes L., Gamez N., and Sanchez P., “Aspect-

Oriented Executable UML Models for Context-

Aware Pervasive Applications,” in Proceeding of

5
th
 International Workshop on Model-based

Methodologies for Pervasive and Embedded

Software, Budapest, pp. 34-43, 2008.

[10] Gherbi A. and Khendek F., “UML Profiles for

Real-Time Systems and their Applications,” in

Journal of Object Technology, vol. 5, no. 4, pp.

149-169, 2006.

[11] Grassi V., Mirandola R., and Sabetta A., «UML»

2004-The Unified Modeling Language. Modeling

Languages and Applications, Springer-Verlag,

2004.

[12] Heckel R., Lohmann M., and Th¨one S.,

“Towards a UML Profile for Service-Oriented

206 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

Architectures,” in Proceeding of Workshop on

Model Driven Architecture: Foundations and

Applications, Netherlands, pp. 1-132, 2003.

[13] Hsu I., “An Architecture of Mobile Web 2.0

Context-aware Applications in Ubiquitous Web,”

Journal of Software, vol. 6, no. 4, pp. 705-715,

2011.

[14] Hsu I., “Extending UML to Model Web 2.0-

Based Context-Aware Applications,” Journal of

Software, vol. 42, no. 10, pp. 1211-1227, 2012.

[15] Hsu I., “Visual Modelling for Web 2.0

Applications Using Model Driven Architecture

Approach,” Journal of Simulation Modelling

Practice and Theory, vol. 31, pp. 63-76, 2013.

[16] Johnston S., Rational UML Profile for Business

Modeling, Rational software, 2004.

[17] Kacem M. and Milady M., “Towards a UML

Profile for the Description of Dynamic Software

Architectures,” in Proceeding of Conference on

Component-Oriented Enterprise Applications,

Augsburg, pp. 25-39, 2005.

[18] Kandé M. and Strohmeier A., “Towards a UML

Profile for Software Architecture Descriptions,”

in Proceeding of the 3
rd

 International Conference

on the Unified Modeling Language: Advancing

the Standard, York, pp. 513-527, 2000.

[19] Korherr B. and List B., Extending the UML 2

Activity Diagram with Business Process Goals

and Performance Measures and the Mapping to

BPEL, Springer-Verlag, 2006.

[20] List B. and Korherr B., A UML 2 Profile for

Business Process Modelling, Springer-Verlag,

2005.

[21] López-Sanz M., Acuña C., Cuesta C., and

Marcos E., UML Profile for the Platform

Independent Modelling of Service-Oriented

Architectures, Springer-Verlag, 2007.

[22] Luján-Mora S., Trujillo J., and Song I., “A UML

Profile for Multidimensional Modelling in Data

Warehouses,” Data and Knowledge Engineering

journal, vol. 59, no. 3, pp. 725-769, 2006.

[23] Object Constraint Language (OCL, OMG): OCL

2.0 Specification Version 2.0,

http://www.omg.org/cgi-bin/doc?ptc/2005-06-06,

Last Visited 2005.

[24] Object Management Group (OMG): MDA Guide

Version 1.0.1, http://www.omg.org/docs/omg/03-

06-01, Last Visited 2003.

[25] Seridi H., Bouacha I., and Benselim M.,

“Development of Context-Aware Web Services

Using the MDA Approach,” International

Journal of Web Science, vol. 1, no. 3, pp. 224-

241, 2012.

[26] StarUML 5.0 developer guide, StarUML 5.0 user

guide, http://staruml.sourceforge.net/docs/user-

guide(en)/toc.html, Last Visited 2014.

[27] Touzi A. and BenMessaoud M., “New Approach

for Conception and Implementation of Object

Oriented Expert System Using UML,” The

International Arab Journal of Information

Technology, vol. 6, no. 1, pp. 99-106, 2009.

[28] Unified Modelling Language (UML, OMG):

UML Infrastructure version 2.0,

http://www.omg.org/cgi-bin/doc?ptc/04-10-14,

Last Visited 2004

[29] Unified Modelling Language (UML, OMG):

UML Superstructure version 2.0,

http://www.omg.org/cgi-bin/doc?formal/05-07-

04, Last Visited 2005.

[30] Van J. and Coninx K., “Using UML 2.0 and

Profiles for Modelling Context Sensitive User

Interfaces,” in Proceeding of the International

Workshop on Model Driven Development of

Advanced User Interfaces, Jamaica, pp. 1-4,

2005.

[31] Wagner G., “A UML Profile for Agent-Oriented

Modelling,” in Proceeding of the 3
rd

International Workshop on Agent-Oriented

Software Engineering, Bologna, pp. 1-18, 2002.

[32] Werner C., Kraatz S., and Hogrefe D., “A UML

Profile for Communicating Systems,” in

Proceeding of the 5
th
 Workshop on System

Analysis and Modelling, Kaiserslautern, pp. 81-

90, 2006.

[33] Ziadi T. and Jézéquel J., Towards a UML

Profile for Software Product Lines, Springer-

Verlag, 2004.

[34] Zoughbi G., Briand L., and Labiche Y., A UML

Profile Developing Airworthiness-Compliant,

Springer-Verlag, 2007.

http://www.omg.org/cgi-bin/doc?ptc/2005-06-06
http://www.omg.org/docs/omg/03-06-01
http://www.omg.org/docs/omg/03-06-01
http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
http://staruml.sourceforge.net/docs/user-guide(en)/toc.html
http://www.omg.org/cgi-bin/doc?ptc/04-10-14
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04

Towards A UML Profile for Context-Awareness Domain 207

Mohamed-Salah Benselimis PhD

student atthe Department of

Management Science, university of

“08 Mai 45”, Guelma, Algeria. He

received his Master‟s in software

engineering at Guelma University in

2009. He is a member of TWSI team

at LabSTIC laboratory.His research interests include

information systems,ubiquitous computing, model

driven engineeringand context-awareness domain.

Hassina Seridi-Bouchelaghem

received her PhD in computer

science from the University of

Annaba (Algeria). She is currently

working as a Professor at the

Computer Science Department of

Annaba University and she is a

teacher and a researcher at the

LabGED laboratory. Her research focuses include:

Information systems, Contextual Modeling,

Knowledge Engineering, Semantic Web, Social

Networks, and Virtual Communities.

Appendix

Table 7. Examples (extracts) of creating the proposed UML context-aware profile.

Part of Profile File
Example of Expression

(Use Case Diagram)

Example of Expression

(Activity Diagram)

Example of Expression

(Sequence Diagram)

File Header

<?xml version="1.0" encoding="UTF-8" ?>

<PROFILE version="1.0">

<HEADER>

<NAME>UsecaseUMLContextAware</NAME>

<DISPLAYNAME>Usecase UML Context-Aware profile

</DISPLAYNAME>

<DESCRIPTION>Use case UML Profile for Context-Awareness

Domain</DESCRIPTION>

<AUTOINCLUDE>false</AUTOINCLUDE>

</HEADER>

<?xml version="1.0" encoding="UTF-8" ?>

<PROFILE version="1.0">

<HEADER>

<NAME>ActivityUMLContextAware</NAME>

<DISPLAYNAME>Activity UML Context-Aware

profile </DISPLAYNAME>

<DESCRIPTION>Activity UML Profile for Context-

Awareness Domain</DESCRIPTION>

<AUTOINCLUDE>false</AUTOINCLUDE>

</HEADER>

<?xml version="1.0" encoding="UTF-8" ?>

<PROFILE version="1.0">

<HEADER>

<NAME>SequenceUMLContextAware</NAME>

<DISPLAYNAME>Sequence UML Context-Aware

profile </DISPLAYNAME>

<DESCRIPTION>Sequence UML Profile for

Context-Awareness Domain</DESCRIPTION>

<AUTOINCLUDE>false</AUTOINCLUDE>

</HEADER>

Stereotypes

 <STEREOTYPE>

<NAME>ContextActor</NAME>

<DESCRIPTION>stereotype extended from UML metaclass

„Actor‟ </DESCRIPTION>

 <BASECLASSES>

<BASECLASS>UMLActor</BASECLASS>

 </BASECLASSES>

</STEREOTYPE>

 <STEREOTYPE>

<NAME>ContextActivity</NAME>

<DESCRIPTION>stereotype extended from UML

metaclass „Activity‟ </DESCRIPTION>

 <BASECLASSES>

<BASECLASS>UMLActivity</BASECLASS>

 </BASECLASSES>

</STEREOTYPE>

 <STEREOTYPE>

<NAME>ContextObject</NAME>

<DESCRIPTION>stereotype extended from UML

metaclass „Object‟ </DESCRIPTION>

 <BASECLASSES>

<BASECLASS>UMLObject</BASECLASS>

 </BASECLASSES>

</STEREOTYPE>

Constraints

Context ContextActor inv:

Attributes -> forAll(Attr1,Attr2 | Attr1<>Attr2 implies

Attr1.NameOfAttribute<> Attr2.NameOfAttribute)

Context ContextTransition inv: Transition ->forAll (Tr|

self.Activity -> includesAll(Tr.Activity))

Context ContextMessage inv:

Operation -> forAll(Op1,Op2 | Op1<>Op2 implies

Op1.NameOfAttribute<> Op2.NameOfAttribute)

Tagged Values

<TAGDEFINITION>

<NAME>Used_Device</NAME>

<TAGTYPE>Enumeration</TAGTYPE>

<DEFAULTDATAVALUE>PDA

</DEFAULTDATAVALUE>

<LITERALS><LITERAL>PDA</LITERAL>

 <LITERAL>PC</LITERAL>

 <LITERAL>LAPTOP</LITERAL>

 <LITERAL>MOBILE</LITERAL>

</LITERALS>

</TAGDEFINITION>

<TAGDEFINITION>

<NAME>Context_of_Guard</NAME>

<TAGTYPE>Enumeration</TAGTYPE>

<DEFAULTDATAVALUE>DAY

</DEFAULTDATAVALUE>

<LITERALS><LITERAL>DAY</LITERAL>

 <LITERAL>NIGHT</LITERAL>

 <LITERAL>INDOOR</LITERAL>

 <LITERAL>OUTDOOR</LITERAL>

</LITERALS>

</TAGDEFINITION>

<TAGDEFINITION>

<NAME>Is_Synchrone</NAME>

<TAGTYPE>Enumeration</TAGTYPE>

<DEFAULTDATAVALUE>FALSE

</DEFAULTDATAVALUE>

<LITERALS><LITERAL>FALSE</LITERAL>

 <LITERAL>TRUE</LITERAL>

</LITERALS>

</TAGDEFINITION>

