
The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 223

An Approach for Identifying Failure-Prone State of

Computer System

Yun-Fei Jia and Renbiao Wu

Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, China

Abstract: Controlled experiment can help us to better understand the root origin and evolution of software aging. Detection

and/or quantification of software aging is an important research issue. The experimental observations may be obscure,

although it may implicate much useful information. In this paper, we first report the memory thrashing phenomenon observed

in our controlled experiment, and find the vibration frequency of available memory may be a potential indicator of aging. We

then characterize and measure the vibration frequency by using amplitude spectrum analysis. Accordingly, a metric is

proposed to measure the aging extent implicated in the vibration frequency by using power spectrum analysis. Finally, we

propose an approach for online aging detection based on sliding window Fourier transform. The metric is calculated for each

“window” to evaluate the severity of aging at a given time instant.

Keywords: Software aging, software maintenance, fourier analysis.

Received March 20, 2014; accepted February 10, 2015

1. Introduction

It is considered the root causes of software aging come

from residual defects in the software system [3]. For

example, when an application server executes

continuously long period of time, it may accumulates

many error conditions in the process space and/or

kernel space, such as memory leak, round off error,

unreleased file lock, etc. Consequently, the application

server will show lower performance gradually. In other

words, software aging results from degradation of

runtime environment. Hence, the subject investigated in

software aging refers to the whole computer system,

including operating system and all applications running

on it.

Software aging indicators are an important research

issue, because they can point out when the software

system ages, and how “old” the software system is.

Aging indicators can be extracted from resource usage

and/or performance indicator. For example, software

aging can be detected by monitoring the activity of

computer systems. When aging becomes more and

more serious, one and/or more resource variable may

become a bottleneck for performance of computer

system. This type of “risky condition” can be used to

forecast the onset of aging. Identifying the risky

condition before serious failure or crash is an issue of

paramount importance.

Empirical study can help us better understand the

root origin of software aging based on collected aging-

related data, such as available memory, swap space

usage, network throughout, response time, etc.

Nevertheless, if the data are incorrectly collected or the

collected data are not repeatable, the resulting analysis

may mis-validated. Usually, empirical studies includes

experimental researches and engineering researches.

In this paper, controlled experiment refers to those

experiments, in which, experimental conditions can be

specified by human, including configuration of subject

software and operating system, etc. Hence, the

experimental results can be repeatable, and the

resulting theory can lead engineering practice

reasonably.

Researchers have proposed many assumptions on

its mechanism, but the nature of software aging is not

completely studied and/or well understood because of

lack of massive controlled experiments. Although

several experimental studies are reported, they are not

the majority of software aging researches. So far, less

than twenty publications discussing experimental

studies on software aging can be found on major

software and reliability journals [3, 7, 10]. This

contrasts with the growing awareness and widely

accepted importance of experiment-based studies [1].

This is because software experiments are usually time-

consuming, workload-intensive and error-prone.

Due to lack of reported experimental studies on

software aging, rare metrics have been proposed to

measure this phenomenon [3, 7, 9]. Those metrics aim

to measure the aging rate or aging speed over a long

period of time, rather than detecting software aging

symptoms or quantifying the severity of software

aging at a given time instant.

This paper is intended to complement the

inspection-based studies. First, we report aging

phenomenon observed in our experiments. Second,

Frequency Fourier Analysis (FSA) is employed to

diagnose the aging symptoms at runtime. Finally, a

metric for estimating severity of aging is extracted

224 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

based on the deviation from healthy running state, and

an approach for online aging detection is proposed.

2. Related Studies

Software aging researches are aimed to counteract the

effect of aging. It can be divided into four questions:

What is the nature or root origin of software aging; how

to construct a mathematical model to describe the

evolution of software aging; how to measure software

aging; how to control software aging. The relationship

of those questions is depicted in Figure 1.

Software aging

and rejuvenation

Question1

Aging mechanism
1.Root origin

2.Factors affecting aging speed

3. Evolution of aging

Question4

Aging control
1.Online aging identification

2. general or application-specific

 rejuvenation techniques

Question3

Aging measurement
1.Aging identification

2. Severity of aging

Question2

Aging modelling
1. To describe evolution of aging

2. optimal rejuvenation schedule

Aging detection

Provide awareness

of aging

Provide control

model

D
y
n
am

ics o
f ag

in
g

P
ro

v
in

d
 ag

in
g
 co

n
tro

l o
b

jectiv
e

Figure 1. Questions of software aging.

From Figure 1 we can see that, aging mechanism

study make us aware of the root origin of aging, the

factors affecting aging speed, and the evolution of

aging. Aging modelling tend to describe the evolution

of aging by a mathematical model with some

assumptions. Further, the mathematical model is solved

to obtain optimal rejuvenation schedule. In addition,

aging modelling can provide a precise control model

for aging control studies. Moreover, aging control need

quantified relationship between the overhead and

benefit of rejuvenation. This can be answered by aging

measurement studies. In addition, aging measurement

studies can provision aging indicators which are

meaningful for aging mechanism studies.

Model-based studies are the majority of software

aging research. With the rich mathematical tools,

model-based studies can provide useful hints for

engineering practice. Nevertheless, the disadvantages

of model-based studies are also obvious. Usually,

model-based studies make some assumptions on the

nature or root origin of software aging. These

assumptions can hardly be validated by engineering

practice. In fact, the aging process is much more

complicated than what a mathematically tractable

model may describe. In [4], a three-state stochastic

model describe the aging process, with intention of

obtain the optimal rejuvenation time. This model was

extended and studied in detail by many researchers to

answer similar question [6, 11].

Aforementioned questions 1, 3 and 4 in Figure 1

may fall into the category of inspection-based studies.

These studies focus on practical software system, in

which the data of interest are generated, collected and

analyzed, with the purpose of forecasting possible

incoming aging, understanding the mechanism of

software aging, and/or quantitative evaluation of aging

effect. The rationale behind inspection-based studies is

that aging phenomenon is significantly related to

available resources of computer system [3, 7, 10].

Shereshevsky et al. [9] monitors the Hölder exponent

(a measure of the local rate of fractality) of the system

parameters and find that system crashes are often

preceded by the second abrupt increase in this

measure. Vaidyanathan and Trivedi [10], a reward

function is defined based on the rate of resource

consumption, to estimate time to exhaustion for each

resource. A metric “estimated time to exhaustion” is

proposed to predict the approximate time of system

resource depletion. A comprehensive evaluation

function is proposed in [5] to measure the mean aging

speed of the apache server. The proposed metric

abstracts seven important resource usage parameters

of system into two primary components via Principal

Component Analysis (PCA) method. The two primary

components are then combined to a hybrid metrics,

namely the z-metric to represent the average aging

speed along the runtime of the system.

Software metrics play a major role in estimating the

quality of software [8]. The motivation of this paper

lies in the fact that, metrics or measurements of

software aging are rarely reported. Further, those

metrics proposed in previous literatures only represent

the mean aging speed over a relatively long time.

Nevertheless, when the subject software becomes aged

is not clearly stated. Moreover, how to detect aging

and estimate its severity is not well studied. This paper

is aimed to answer above questions based on

observations in controlled experiments.

3. Datasets

The aging phenomenon discussed in this paper is

shown in Figure 2, which is reported but not in-depth

discussed in our previous study [5]. The data

collection process in [5] can be described as follows:

three workstations are used as clients to generate

artificial requests to a web server (Apache httpd2.0).

All four workstations are connected with a LAN. The

system activity of the server is collected periodically.

In order to expedite aging, we first test the capacity of

web server under experimental environment. Then the

three clients generate artificial requests slightly higher

than the capacity to the web server. Finally, we collect

many parameters by using a usage collection tools,

which is running on the tested server. The objects or

parameters collected on the workstations include those

that describe the state of the operating system

An Approach for Identifying Failure-Prone State of Computer System 225

resources, state of the processes running, information

on the /tmp file system, availability and usage of

network related resources, and information on terminal

and disk I/O activity. Dozens of such parameters were

collected at regular intervals (5 mins) for more than 400

hours.

Figure 2 shows the available physical memory

(denoted by availablememory) of our subject software

system under test. It should be noted that, our research

focuses on the whole software system, i.e., including

operating system and subject software. The available

memory refers to that operating system can use as

computing resources. The rationale behind this

proposal lies in the fact that, the performance

degradation refers to that of the whole computer

system.

0 50 100 150 200 250 300 350 400 450
500

1000

1500

2000

2500

3000

3500

Time (hour)

a
va

il
a
b

le
m

e
m

o
ry

(K
B

)

Figure 2. availablememory observed in our experiment.

From Figure 2 we can see that, the availablememory

fluctuates with time from the very beginning, not

showing obvious increasing or decreasing trend. This is

because we apply too much requests on the web server,

i.e., the web server is overloaded all the time. Usually,

Apache httpd will spawn more child processes to

handle the requests waiting in the request queue.

Hence, too much physical memory is occupied by the

child processes. In addition, if the workload of a server

is too much, the network throughout will greatly

increase consequently. Linux OS will allocate more

physical memory as buffer or cache to improve the

performance of web server.

In Figure 2, the vibratory curve tell us that the

physical memory of computer system is nearly used up.

Hence, Linux OS will use the swap space as memory to

store data. The vibratory signal illustrate the page

swapping mechanism between swap space and physical

memory.

However, the vibration frequency in Figure 2 is

decreasing gradually except for a period of abnormally

increase at about 200
th
 hour. More specifically,

availablememory shows an obviously higher vibration

frequency in the first 100 hour than that from 100
th
 hour

to about 280
th
 hour. The vibration frequency becomes

slightly even from 280
th
 hour to the last.

As aforementioned, when the physical memory is

nearly used up, Linux will swap out some out-of-date

pages to disk, which will be swapped in while they are

used again. Hence, the peaks in Figure 2 refers to the

value of availablememory just as some pages are

swapped out, and the valleys refer to that just as some

pages are swapped in. Because a set of pages cannot

be used or processed by CPU until they are swapped

in, the swapping period, i.e., time from each peak to

the next closest valley, can be employed as an

indicator of performance. Thus, the obvious flattening

trend of vibration frequency shown in Figure 2 drives

us to extract a metric to represent the performance

level of whole computer system.

4. Our Approach

4.1. FFT-Based Fault Diagnosis

Vibratory signals in engineering practice have been

reported widely. These vibratory signals are usually

obscure although it implicates much useful

information. Frequency Fourier analysis can disclose

the detailed information implicated in vibratory

signals. In fact, frequency Fourier analysis has been

widely employed to detect/diagnose the faults of

machines [2].

For example, we can take the following steps to

diagnose whether a machine is broken. First, a set of

parameters of the machine are defined to describe the

health of that machine. The vibratory signals of those

parameters are collected when the machine is working

in healthy state. Accordingly, the frequency spectrum

of those signals should be calculated, which is used as

“health indicator”. Second, the frequency spectrum of

those signals at specific time instant will be calculated,

and will be compared against the health indicator.

Finally, the deviation from the health indicator will be

captured and used as a metric to indicate whether the

machine is broken. For example, a nut wearing can

introduce much low frequency signal into the

vibratory signal of machine.

Inspired by the fault detection method used in

mechanical system, we make a qualitatively analysis

of Figure 2 based on Fourier analysis. First, we divide

the curve in Figure 2 into ten parts. Each part

represents the working state at that time. Then, we

calculate the amplitude spectrum of each part of curve,

and define the amplitude spectrum of the first part as

healthy state. That is to say, we assume that the

computer be not aged when it is restarted. Finally, we

found the amplitude of low frequency part increases

with each part of curve. That is an important sign of

aging.

4.2. Amplitude Spectrum Based Aging

Detection

In its narrowest sense, the Discrete-Time Fourier

Transform (DTFT) of a time series is a decomposition

of the series into a sum of sinusoidal components. The

coefficients of which is the discrete Fourier transform

226 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

of the series. Given a discrete set of real or complex

numbers: (),x n n Z ， the DTFT of x(n) is usually

written as:

 1
-1 2 ()

0

() ()
N =

-i π v / N n

n=

X v = N x n e

Where υ=0, 1, …, N-1.

If the sampling interval is T, the frequency measured

in hertz is v/NT. The power spectrum refers to the

square of amplitude of each sine or cosine signals, as

accounts for the weight of various-frequency signals. A

Fast Fourier Transform (FFT) is an efficient algorithm

to compute the discrete Fourier transform. This

algorithm requires the number of time series be power

of 2. Adoption of the number of data employed in the

FFT is a trade-off between robustness and sensitivity,

i.e., the larger the number of data employed, the result

is more immune from outliers and the result is more

insensitive. In our case we use 512 data, which can

eliminate the effect of outliers at about 200
th
 hour

shown in Figure 2. In our experiments, the sampling

interval is 300 seconds, and the N=512, so the range of

frequency is 0 to 0.00333 hertz.

The experiences of mechanical fault diagnosis tell us

that, the distribution of amplitude spectrum in low

frequency part, intermediate-frequency part and high

frequency part, may implicate fault symptom. Because

Fourier Transform is an even and periodical function,

half frequency range, i.e., 0 to 0.00166 hertz can

implicate most of information. Accordingly, the

frequency range is divided into four sections: 0-

frequency signal (0 hertz), low frequency signal

(6.5×10-6 to 5.53×10-4), intermediate-frequency

signals (5.53×10-4 to 1.10677×10-3) and high

frequency signals (1.10677×10-3 to 1.6 to 10-3), in

which 0-frequency signal represents the mean of

original data in time domain.

In order to analyze the variation of amplitude

spectrum with time, we equally divide our collected

time series of availablememory into ten sections to

make an off-line analysis. For example, section 1

corresponds to the data from very beginning to the 42
th

hour, section 3 corresponds to the data from the 85
th

hour to 127
th
 hour. The last 139 data are discarded.

Then we transform the original signal in time

domain to frequency domain to illustrate their

amplitude spectrum distribution. Due to limited space

of this paper, we only list the transformed results in

sections 1, 2 and 10, which are corresponding to

Figures 3, 4 and 5. In each figure, the upper subfigure

represents availablememory signal in time domain. The

bottom subfigure represents that in frequency domain.

Take Figure 3 as an example, the upper subfigure

shows the availablememory from the very beginning to

42
th
 hour observed in our experiment. Corresponding to

the upper subfigure in Figure 3, the bottom subfigure

shows the amplitude distribution with respect to

frequency.

45 50 55 60 65 70 75 80 85
2.48

2.5

2.52

2.54

2.56

x 10
5

Time (hour)

a
va

il
a
b

le
m

e
m

o
ry

 (
K

B
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
-3

0

0.5

1

1.5

2
x 10

9

Frequency(Hz)

A
m

p
li
tu

d
e

Figure 3. Amplitude spectrums in section 1.

90 95 100 105 110 115 120 125
2.48

2.5

2.52

2.54

2.56

x 10
5

Time (hour)

a
va

il
a
b

le
m

e
m

o
ry

 (
K

B
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
-3

0

0.5

1

1.5

2
x 10

9

Frequency(Hz)

A
m

p
li
tu

d
e

Figure 4. Amplitude spectrums in section 2.

385 390 395 400 405 410 415 420 425
2.48

2.5

2.52

2.54

2.56

x 10
5

Time (hour)

a
va

il
a
b

le
m

e
m

o
ry

 (
K

B
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
-3

0

0.5

1

1.5

2
x 10

9

Frequency(Hz)

A
m

p
li
tu

d
e

Figure 5. Amplitude spectrums in section 10.

Amplitude spectrum denotes the “amplitude

distribution” with respect to frequency. In principle,

the amplitude in low frequency part represents the

“flattening degree” of a curve. More specifically, if the

low-frequency amplitude is higher, the curve in time

domain is flatter.

In comparison with the Figures 3 and 4 shows an

increasing trend in its low frequency signals, i.e., the

amplitude of low-frequency signal is increasing. This

trend continues to grow in section four to section ten.

Due to limited space of this paper, only section ten is

listed, which is shown in Figure 5. From Figure 5, we

(1)

An Approach for Identifying Failure-Prone State of Computer System 227

can see that, the amplitude of low frequency signals

increases furthermore, and that of intermediate-

frequency signals and high frequency signals decrease

obviously. This trend illustrate that the computer will

spend more time to swap a set of pages from swap

space to physical memory and vice versa. This

phenomenon can be interpreted as the decrease of

activity level.

5. Online Aging Measurement

5.1 Aging Metric

We follow the fault diagnosis steps mentioned above to

measure the effect of aging. In software aging studies,

the initial state of computer system can be treated as

healthy. This is to say, when the computer is started,

there is no error conditions result from aging-related

bugs. In this paper, the amplitude spectrum of section 1,

which is shown in the bottom subfigure in Figure 3, can

be defined as healthy state of our subject web server.

From the subfigure in Figure 3, we can see the even

distribution of amplitude spectrum with respect to

frequency. Hence, the increasing trend of amplitude of

low frequency signals mentioned above, can be used to

represent how much the state of subject software

deviates from healthy state.

According to Plancherel theorem, sum of power of

time-domain signals is equal to that of frequency-

domain signals, which is formulated as follows:

-1 1

2 2

0 0

1N N -

n k

n= k =

x = X
N

Above equation tells us that, if the signals in time

domain fluctuate around a constant, the sum of power

of it will be a constant. Considering there is no obvious

trend with time shown in Figure. 2, we employ power

spectrum to measure the aging symptom. In this

subsection, we propose a simply yet efficient metric to

measure the identified symptom. For purpose of aging

symptom identification, we designate the proportion of

Power of Low Frequency Signal (PLFS) over Power of

All Frequency Signals (PAFS) as a metric of software

aging, which can be written as:

 ()

()

v low frequency

v all frequency

x v

PLFS / PAFS =
x v

It should be noted that the 0-frequency signal, i.e., the

first item in Equation 1 is excluded in the metric,

because 0-frequency signal represents the mean of

original data in time domain. We designate the sum of

PLFS and all frequency signals as PAFS.

As expressed in Equation 2, and recall that the

amplitude of our data is nearly constant, we can

determine the PAFS is nearly a constant. Then, we can

use only PLFS as our aging indicator.

It should be noted that, the metric of aging refers to

the current aging extent in any time instant. The

calculation of this metric need a set of data in time

domain. In engineering practice, we need detect the

aging symptom as possibly quick as. Thus, an online

analysis approach should be proposed accordingly.

5.2. Slidingwindow Based Aging Detection

As mentioned above, based on the observed increasing

trend of power of low-frequency signals, we can

estimate the severity of software aging. For online

aging detection purpose, we employ slidingwindow

Fourier Transform to estimate the severity of software

aging at real time [2].

Accordingly, we propose a slidingwindow

monitoring approach to indicate the change of aging

pattern online. It can be described as follows:

 Step 1. Define sampling frequency f, size of sliding

window s and movement steps n;

 Step 2. Calculation of i*f/s;

 Step 3. Divide the signals into low frequency,

intermediate-frequency and high-frequency

sections, equipartition is a simple method.

 Step 4. Calculate PLFS in w1;

 Step 5. Move the window n steps forward;

 Step 6. Calculate PLFS in wi;

In which, sampling frequency f refers to the collection

interval in time domain in experiments. wi refers to i
th

window. s refers to the size of window. In principle,

larger w may make our algorithm more insensitive

from outliers. That is to say, larger s can decrease

false alarm rate. Rather, too large s can make the aging

symptom obscure, and injure the aging detection

performance of our algorithm. In summary, adoption

of w is a trade-off between sensitivity and false alarm

rate.

In principle, the smaller the symbol n is, the faster

our approach can detect possible aging symptom.

Nevertheless, too small n will result in too much

computation workload. For an extreme example, when

the n is set to 1, and interval of data collection is two

minutes; if the computation of our approach cost more

than two minutes, then, there are several new data will

not be calculated by our approach. Consequently, too

small value of n will delay aging detection. Also, too

large value of n will still delay aging detection. Thus,

the optimal value of n should be determined by

computation time of our algorithm. That is to say, the

optimal result should be that, when the PLFS of

current windows is calculated, our data collection

agent just collect n data. In summary, the value of n

should be determined by the following expression:

 computation time of our approach
n =

interval of datacollection

The metric PLFS can be treated as a metric to identify

aging. In our case, w is set to 256, and n is set to 1.

Because the computation of our approach will cost no

(2)

(3)

(4)

228 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

more than interval of data collection (five minutes).

Finally, the calculated PLFS in each sliding window is

shown in Figure 6.

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (hour)

P
L

F
S

/P
A

F
S

Figure 6. PLFS/PAFS of availablememory.

From Figure 6 we can see that, the resulting first

point of our approach lies in about 21
th
 hour. This

corresponds to the fact that the size of window is 256

and interval of data collection is five minutes. From the

very beginning to about 150
th
 hour, PLFS increase

sharply, showing an approximately monotonous

property. Because the PLFS depicted in Figure 6 means

swapping rate with time. Swapping rate describes how

fast the pages are swapped from/to disk to/from

physical memory. This is heavily correlated with

performance of whole computer system. This metric

can easily be applied for online aging diagnostic. By

selecting different size of the sliding window, our

approach provides a flexible trade-off between

sensitivity of detection and robustness against outliers

of the performance data. More specifically, the larger

the size of window is employed, the calculated metric is

more immune from outliers.

6. Conclusions

In this paper, we carry out controlled experiment to

study software aging phenomenon in an overloaded

web server. Based on the experimental observations,

discrete Fourier analysis is employed to characterize

the aging symptom. We found that the low frequency

signal shows an increasing trend. This means the

computer system cost more time to swap pages. This is

an indicator of software aging, which is not reported by

previous studies. Accordingly, a metric is proposed to

evaluate the severity of aging. Moreover, we propose

an approach for online aging measurement based on

slidingwindow Fourier transform. The contribution of

this paper can be summarized as follows:

 A metric is proposed to evaluate severity of aging.

 An online aging detection approach is proposed to

detect possible aging.

 The methods in the field of signal processing is

introduced to software aging study. This means the

rich achievements in the field of signal processing

can be employed to study the evolution of software

aging.

Acknowledgments

This work is supported by the national key technology

R and D program (Grant No. 2011BAH24B12) and

the fundamental research funds for the central

universities (Grant No. 3122013P006).

References

[1] Cai K., “Software Reliability Experimentation

and Control,” Journal of Computer Science and

Technology, vol. 21, no. 5, pp. 697-707, 2006.

[2] Gertler J., Fault Detection and Diagnosis in

Engineering Systems, Marcel Dekker, 1998.

[3] Grottke M., Li L., Vaidyanathan K., and Trivedi

K., “Analysis of Software Aging in a Web

Server,” IEEE Transaction on Reliability, vol.

55, no. 3, pp. 411-420, 2006.

[4] Huang Y., Kintala C., Kolettis N., and Fulton

N., “Software Rejuvenation: Analysis, Module

and Applications,” in Proceeding of the 25
th

IEEE International Symposium on Fault-

Tolerant Computing, California, pp. 381-390,

1995

[5] Jia Y., Chen X., Zhao L., and Cai K., “On the

Relationship Between Software Aging and

Related Parameters,” in Proceeding of The 8
th

International Conference on Quality Software,

Oxford, pp. 241-246, 2008.

[6] Liang Y., Yang H., Fu J., Tan C., Liu A., and

Zhu S., “The Effect of Real-valued Negative

Selection Algorithm on Web Server Aging

Detection,” Journal of Sofware, vol. 7, no. 4, pp.

849-855, 2012.

[7] Matias R., Barbetta P., Trivedi K., and Filho P.,

“Accelerated Degradation Tests Applied to

Software Aging Experiments,” IEEE

Transaction on Reliability, vol. 59, no. 1, pp.

102-114, 2009.

[8] Misra S. and Cafer F.,“Estimating Quality of

JavaScript,” The International Arab Journal of

Information Technology, vol. 9, no. 6, pp. 535-

543, 2012.

[9] Shereshevsky M., Crowell J., Cukic B.,

Gandikota V., and Liu Y., “Software Aging and

Multifractality of Memory Resources,” in

Proceeding of the 2003 International

Conference on Dependable Systems and

Networks, San Francisco, pp.721-730, 2003.

[10] Vaidyanathan A. and Trivedi K., “A

Comprehensive Model for Software

Rejuvenation,” IEEE Transaction on

Dependable and Secure Computing, vol. 2, no.

2, pp. 124-137, 2005.

[11] Zhao J., Wang Y., Ning G., Trivedi K., Matias

R., and Cai K., “A Comprehensive Approach to

Optimal Software Rejuvenation,” Performance

Evaluation, vol. 70, no. 11, pp. 917-933, 2013.

http://202.112.134.140:8080/opac/openlink.php?title=Fault+detection+and+diagnosis+in+engineering+systems+%2F
http://202.112.134.140:8080/opac/openlink.php?title=Fault+detection+and+diagnosis+in+engineering+systems+%2F
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Matias,%20R..QT.&searchWithin=p_Author_Ids:37540780900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Barbetta,%20P.A..QT.&searchWithin=p_Author_Ids:37680597900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Trivedi,%20K.S..QT.&searchWithin=p_Author_Ids:37273190200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Filho,%20P.J.F..QT.&searchWithin=p_Author_Ids:37679456700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Filho,%20P.J.F..QT.&searchWithin=p_Author_Ids:37679456700&newsearch=true

An Approach for Identifying Failure-Prone State of Computer System 229

Yun-Fei Jia is currently a lecturer in

the School of Electronical and

Information Engineering at Civil

Aviation University of China. He

received a B.E. (2001) and a M.S.

(2004) degrees from HeBei

University of Technology, and

completed a PhD in software testing at BeiHang

University in 2010. His research interests include

software testing, software reliability modelling, cloud

computing and software measurement.

Ren-Biao Wu was born in Wuhan,

China, in 1966. He received a M.S.

(1991) from Northwestern

Polytechnical University, and

completed phD in signal processing

at Xidian University. Currently, he is

a professor at Civil Aviation

University of China. His interests are signal processing

and image processing.

