
The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017                                                                     223 

An Approach for Identifying Failure-Prone State of 

Computer System 

Yun-Fei Jia and Renbiao Wu 

Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, China 

Abstract: Controlled experiment can help us to better understand the root origin and evolution of software aging. Detection 

and/or quantification of software aging is an important research issue. The experimental observations may be obscure, 

although it may implicate much useful information. In this paper, we first report the memory thrashing phenomenon observed 

in our controlled experiment, and find the vibration frequency of available memory may be a potential indicator of aging. We 

then characterize and measure the vibration frequency by using amplitude spectrum analysis. Accordingly, a metric is 

proposed to measure the aging extent implicated in the vibration frequency by using power spectrum analysis. Finally, we 

propose an approach for online aging detection based on sliding window Fourier transform. The metric is calculated for each 

“window” to evaluate the severity of aging at a given time instant.  
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1. Introduction 

It is considered the root causes of software aging come 

from residual defects in the software system [3]. For 

example, when an application server executes 

continuously long period of time, it may accumulates 

many error conditions in the process space and/or 

kernel space, such as memory leak, round off error, 

unreleased file lock, etc. Consequently, the application 

server will show lower performance gradually. In other 

words, software aging results from degradation of 

runtime environment. Hence, the subject investigated in 

software aging refers to the whole computer system, 

including operating system and all applications running 

on it.  

Software aging indicators are an important research 

issue, because they can point out when the software 

system ages, and how “old” the software system is. 

Aging indicators can be extracted from resource usage 

and/or performance indicator. For example, software 

aging can be detected by monitoring the activity of 

computer systems. When aging becomes more and 

more serious, one and/or more resource variable may 

become a bottleneck for performance of computer 

system. This type of “risky condition” can be used to 

forecast the onset of aging. Identifying the risky 

condition before serious failure or crash is an issue of 

paramount importance. 

Empirical study can help us better understand the 

root origin of software aging based on collected aging-

related data, such as available memory, swap space 

usage, network throughout, response time, etc. 

Nevertheless, if the data are incorrectly collected or the 

collected data are not repeatable, the resulting analysis 

may mis-validated. Usually, empirical studies includes  

 

experimental researches and engineering researches. 

In this paper, controlled experiment refers to those 

experiments, in which, experimental conditions can be 

specified by human, including configuration of subject 

software and operating system, etc. Hence, the  

experimental results can be repeatable, and the 

resulting theory can lead engineering practice 

reasonably

Researchers have proposed many assumptions on 

its mechanism, but the nature of software aging is not 

completely studied and/or well understood because of 

lack of massive controlled experiments. Although 

several experimental studies are reported, they are not 

the majority of software aging researches. So far, less 

than twenty publications discussing experimental 

studies on software aging can be found on major 

software and reliability journals [3, 7, 10]. This 

contrasts with the growing awareness and widely 

accepted importance of experiment-based studies [1]. 

This is because software experiments are usually time-

consuming, workload-intensive and error-prone.  

Due to lack of reported experimental studies on 

software aging, rare metrics have been proposed to 

measure this phenomenon [3, 7, 9]. Those metrics aim 

to measure the aging rate or aging speed over a long 

period of time, rather than detecting software aging 

symptoms or quantifying the severity of software 

aging at a given time instant.  

This paper is intended to complement the 

inspection-based studies. First, we report aging 

phenomenon observed in our experiments. Second, 

Frequency Fourier Analysis (FSA) is employed to 

diagnose the aging symptoms at runtime. Finally, a 

metric for estimating severity of aging is extracted 
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based on the deviation from healthy running state, and 

an approach for online aging detection is proposed. 

2. Related Studies 

Software aging researches are aimed to counteract the 

effect of aging. It can be divided into four questions: 

What is the nature or root origin of software aging; how 

to construct a mathematical model to describe the 

evolution of software aging; how to measure software 

aging; how to control software aging. The relationship 

of those questions is depicted in Figure 1. 
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Figure 1. Questions of software aging. 

From Figure 1 we can see that, aging mechanism 

study make us aware of the root origin of aging, the 

factors affecting aging speed, and the evolution of 

aging. Aging modelling tend to describe the evolution 

of aging by a mathematical model with some 

assumptions. Further, the mathematical model is solved 

to obtain optimal rejuvenation schedule. In addition, 

aging modelling can provide a precise control model 

for aging control studies. Moreover, aging control need 

quantified relationship between the overhead and 

benefit of rejuvenation. This can be answered by aging 

measurement studies. In addition, aging measurement 

studies can provision aging indicators which are 

meaningful for aging mechanism studies. 

Model-based studies are the majority of software 

aging research. With the rich mathematical tools, 

model-based studies can provide useful hints for 

engineering practice. Nevertheless, the disadvantages 

of model-based studies are also obvious. Usually, 

model-based studies make some assumptions on the 

nature or root origin of software aging. These 

assumptions can hardly be validated by engineering 

practice. In fact, the aging process is much more 

complicated than what a mathematically tractable 

model may describe. In [4], a three-state stochastic 

model describe the aging process, with intention of 

obtain the optimal rejuvenation time. This model was 

extended and studied in detail by many researchers to 

answer similar question [6, 11].   

Aforementioned questions 1, 3 and 4 in Figure 1 

may fall into the category of inspection-based studies. 

These studies focus on practical software system, in 

which the data of interest are generated, collected and 

analyzed, with the purpose of forecasting possible 

incoming aging, understanding the mechanism of 

software aging, and/or quantitative evaluation of aging 

effect. The rationale behind inspection-based studies is 

that aging phenomenon is significantly related to 

available resources of computer system [3, 7, 10]. 

Shereshevsky et al. [9] monitors the Hölder exponent 

(a measure of the local rate of fractality) of the system 

parameters and find that system crashes are often 

preceded by the second abrupt increase in this 

measure. Vaidyanathan and Trivedi [10], a reward 

function is defined based on the rate of resource 

consumption, to estimate time to exhaustion for each 

resource. A metric “estimated time to exhaustion” is 

proposed to predict the approximate time of system 

resource depletion. A comprehensive evaluation 

function is proposed in [5] to measure the mean aging 

speed of the apache server. The proposed metric 

abstracts seven important resource usage parameters 

of system into two primary components via Principal 

Component Analysis (PCA) method. The two primary 

components are then combined to a hybrid metrics, 

namely the z-metric to represent the average aging 

speed along the runtime of the system.   

Software metrics play a major role in estimating the 

quality of software [8]. The motivation of this paper 

lies in the fact that, metrics or measurements of 

software aging are rarely reported.  Further, those 

metrics proposed in previous literatures only represent 

the mean aging speed over a relatively long time. 

Nevertheless, when the subject software becomes aged 

is not clearly stated. Moreover, how to detect aging 

and estimate its severity is not well studied. This paper 

is aimed to answer above questions based on 

observations in controlled experiments. 

3. Datasets 

The aging phenomenon discussed in this paper is 

shown in Figure 2, which is reported but not in-depth 

discussed in our previous study [5]. The data 

collection process in [5] can be described as follows: 

three workstations are used as clients to generate 

artificial requests to a web server (Apache httpd2.0). 

All four workstations are connected with a LAN. The 

system activity of the server is collected periodically. 

In order to expedite aging, we first test the capacity of 

web server under experimental environment. Then the 

three clients generate artificial requests slightly higher 

than the capacity to the web server. Finally, we collect 

many parameters by using a usage collection tools, 

which is running on the tested server. The objects or 

parameters collected on the workstations include those 

that describe the state of the operating system 
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resources, state of the processes running, information 

on the /tmp file system, availability and usage of 

network related resources, and information on terminal 

and disk I/O activity. Dozens of such parameters were 

collected at regular intervals (5 mins) for more than 400 

hours. 

Figure 2 shows the available physical memory 

(denoted by availablememory) of our subject software 

system under test. It should be noted that, our research 

focuses on the whole software system, i.e., including 

operating system and subject software. The available 

memory refers to that operating system can use as 

computing resources. The rationale behind this 

proposal lies in the fact that, the performance 

degradation refers to that of the whole computer 

system. 
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Figure 2. availablememory observed in our experiment. 

From Figure 2 we can see that, the availablememory 

fluctuates with time from the very beginning, not 

showing obvious increasing or decreasing trend. This is 

because we apply too much requests on the web server, 

i.e., the web server is overloaded all the time. Usually, 

Apache httpd will spawn more child processes to 

handle the requests waiting in the request queue. 

Hence, too much physical memory is occupied by the 

child processes. In addition, if the workload of a server 

is too much, the network throughout will greatly 

increase consequently. Linux OS will allocate more 

physical memory as buffer or cache to improve the 

performance of web server. 

In Figure 2, the vibratory curve tell us that the 

physical memory of computer system is nearly used up. 

Hence, Linux OS will use the swap space as memory to 

store data. The vibratory signal illustrate the page 

swapping mechanism between swap space and physical 

memory. 

However, the vibration frequency in Figure 2 is 

decreasing gradually except for a period of abnormally 

increase at about 200
th
 hour. More specifically, 

availablememory shows an obviously higher vibration 

frequency in the first 100 hour than that from 100
th
 hour 

to about 280
th
 hour. The vibration frequency becomes 

slightly even from 280
th
 hour to the last.  

As aforementioned, when the physical memory is 

nearly used up, Linux will swap out some out-of-date 

pages to disk, which will be swapped in while they are 

used again. Hence, the peaks in Figure 2 refers to the 

value of availablememory just as some pages are 

swapped out, and the valleys refer to that just as some 

pages are swapped in.  Because a set of pages cannot 

be used or processed by CPU until they are swapped 

in, the swapping period, i.e., time from each peak to 

the next closest valley, can be employed as an 

indicator of performance. Thus, the obvious flattening 

trend of vibration frequency shown in Figure 2 drives 

us to extract a metric to represent the performance 

level of whole computer system.   

4. Our Approach 

4.1. FFT-Based Fault Diagnosis  

Vibratory signals in engineering practice have been 

reported widely. These vibratory signals are usually 

obscure although it implicates much useful 

information. Frequency Fourier analysis can disclose 

the detailed information implicated in vibratory 

signals. In fact, frequency Fourier analysis has been 

widely employed to detect/diagnose the faults of 

machines [2].  

For example, we can take the following steps to 

diagnose whether a machine is broken. First, a set of 

parameters of the machine are defined to describe the 

health of that machine. The vibratory signals of those 

parameters are collected when the machine is working 

in healthy state. Accordingly, the frequency spectrum 

of those signals should be calculated, which is used as 

“health indicator”. Second, the frequency spectrum of 

those signals at specific time instant will be calculated, 

and will be compared against the health indicator. 

Finally, the deviation from the health indicator will be 

captured and used as a metric to indicate whether the 

machine is broken. For example, a nut wearing can 

introduce much low frequency signal into the 

vibratory signal of machine. 

Inspired by the fault detection method used in 

mechanical system, we make a qualitatively analysis 

of Figure 2 based on Fourier analysis. First, we divide 

the curve in Figure 2 into ten parts. Each part 

represents the working state at that time. Then, we 

calculate the amplitude spectrum of each part of curve, 

and define the amplitude spectrum of the first part as 

healthy state. That is to say, we assume that the 

computer be not aged when it is restarted. Finally, we 

found the amplitude of low frequency part increases 

with each part of curve. That is an important sign of 

aging. 

4.2. Amplitude Spectrum Based Aging 

Detection 

In its narrowest sense, the Discrete-Time Fourier 

Transform (DTFT) of a time series is a decomposition 

of the series into a sum of sinusoidal components. The 

coefficients of which is the discrete Fourier transform 
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of the series. Given a discrete set of real or complex 

numbers: ( ),x n n Z ， the DTFT of x(n) is usually 

written as: 

                    1
-1 2 ( )

0

( ) ( )
N =

-i π v / N n

n=

X v = N x n e  

Where υ=0, 1, …, N-1.                       

If the sampling interval is T, the frequency measured 

in hertz is v/NT. The power spectrum refers to the 

square of amplitude of each sine or cosine signals, as 

accounts for the weight of various-frequency signals. A 

Fast Fourier Transform (FFT) is an efficient algorithm 

to compute the discrete Fourier transform. This 

algorithm requires the number of time series be power 

of 2. Adoption of the number of data employed in the 

FFT is a trade-off between robustness and sensitivity, 

i.e., the larger the number of data employed, the result 

is more immune from outliers and the result is more 

insensitive. In our case we use 512 data, which can 

eliminate the effect of outliers at about 200
th
 hour 

shown in Figure 2. In our experiments, the sampling 

interval is 300 seconds, and the N=512, so the range of 

frequency is 0 to 0.00333 hertz. 

The experiences of mechanical fault diagnosis tell us 

that, the distribution of amplitude spectrum in low 

frequency part, intermediate-frequency part and high 

frequency part, may implicate fault symptom. Because 

Fourier Transform is an even and periodical function, 

half frequency range, i.e., 0 to 0.00166 hertz can 

implicate most of information. Accordingly, the 

frequency range is divided into four sections: 0-

frequency signal (0 hertz), low frequency signal 

(6.5×10-6 to 5.53×10-4 ), intermediate-frequency 

signals (5.53×10-4  to 1.10677×10-3 ) and high 

frequency signals (1.10677×10-3  to 1.6 to 10-3), in 

which 0-frequency signal represents the mean of 

original data in time domain.  

In order to analyze the variation of amplitude 

spectrum with time, we equally divide our collected 

time series of availablememory into ten sections to 

make an off-line analysis. For example, section 1 

corresponds to the data from very beginning to the 42
th
 

hour, section 3 corresponds to the data from the 85
th
 

hour to 127
th
 hour. The last 139 data are discarded. 

Then we transform the original signal in time 

domain to frequency domain to illustrate their 

amplitude spectrum distribution. Due to limited space 

of this paper, we only list the transformed results in 

sections 1, 2 and 10, which are corresponding to 

Figures 3, 4 and 5. In each figure, the upper subfigure 

represents availablememory signal in time domain. The 

bottom subfigure represents that in frequency domain. 

Take Figure 3 as an example, the upper subfigure 

shows the availablememory from the very beginning to 

42
th
 hour observed in our experiment. Corresponding to 

the upper subfigure in Figure 3, the bottom subfigure 

shows the amplitude distribution with respect to 

frequency. 
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Figure 3. Amplitude spectrums in section 1. 
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Figure 4. Amplitude spectrums in section 2. 
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Figure 5. Amplitude spectrums in section 10. 

Amplitude spectrum denotes the “amplitude 

distribution” with respect to frequency. In principle, 

the amplitude in low frequency part represents the 

“flattening degree” of a curve. More specifically, if the 

low-frequency amplitude is higher, the curve in time 

domain is flatter.  

In comparison with the Figures 3 and 4 shows an 

increasing trend in its low frequency signals, i.e., the 

amplitude of low-frequency signal is increasing. This 

trend continues to grow in section four to section ten. 

Due to limited space of this paper, only section ten is 

listed, which is shown in Figure 5.  From Figure 5, we 

(1) 
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can see that, the amplitude of low frequency signals 

increases furthermore, and that of intermediate-

frequency signals and high frequency signals decrease 

obviously. This trend illustrate that the computer will 

spend more time to swap a set of pages from swap 

space to physical memory and vice versa. This 

phenomenon can be interpreted as the decrease of 

activity level.  

5. Online Aging Measurement 
 

5.1 Aging Metric 

We follow the fault diagnosis steps mentioned above to 

measure the effect of aging. In software aging studies, 

the initial state of computer system can be treated as 

healthy. This is to say, when the computer is started, 

there is no error conditions result from aging-related 

bugs. In this paper, the amplitude spectrum of section 1, 

which is shown in the bottom subfigure in Figure 3, can 

be defined as healthy state of our subject web server. 

From the subfigure in Figure 3, we can see the even 

distribution of amplitude spectrum with respect to 

frequency. Hence, the increasing trend of amplitude of 

low frequency signals mentioned above, can be used to 

represent how much the state of subject software 

deviates from healthy state. 

According to Plancherel theorem, sum of power of 

time-domain signals is equal to that of frequency-

domain signals, which is formulated as follows: 

                               
-1 1

2 2

0 0

1N N -

n k

n= k =

x = X
N

   

 

Above equation tells us that, if the signals in time 

domain fluctuate around a constant, the sum of power 

of it will be a constant. Considering there is no obvious 

trend with time shown in Figure. 2, we employ power 

spectrum to measure the aging symptom. In this 

subsection, we propose a simply yet efficient metric to 

measure the identified symptom. For purpose of aging 

symptom identification, we designate the proportion of 

Power of Low Frequency Signal (PLFS) over Power of 

All Frequency Signals (PAFS) as a metric of software 

aging, which can be written as:                        

                   ( )

( )

v low frequency

v  all frequency

x v

PLFS / PAFS =
x v









 

It should be noted that the 0-frequency signal, i.e., the 

first item in Equation 1 is excluded in the metric, 

because 0-frequency signal represents the mean of 

original data in time domain. We designate the sum of 

PLFS and all frequency signals as PAFS.  

As expressed in Equation 2, and recall that the 

amplitude of our data is nearly constant, we can 

determine the PAFS is nearly a constant. Then, we can 

use only PLFS as our aging indicator.  

It should be noted that, the metric of aging refers to 

the current aging extent in any time instant. The 

calculation of this metric need a set of data in time 

domain. In engineering practice, we need detect the 

aging symptom as possibly quick as. Thus, an online 

analysis approach should be proposed accordingly. 

5.2. Slidingwindow Based Aging Detection 

As mentioned above, based on the observed increasing 

trend of power of low-frequency signals, we can 

estimate the severity of software aging. For online 

aging detection purpose, we employ slidingwindow 

Fourier Transform to estimate the severity of software 

aging at real time [2].  

Accordingly, we propose a slidingwindow 

monitoring approach to indicate the change of aging 

pattern online. It can be described as follows: 

 Step 1. Define sampling frequency f, size of sliding 

window s and movement steps n;  

 Step 2. Calculation of i*f/s; 

 Step 3. Divide the signals into low frequency, 

intermediate-frequency and high-frequency 

sections, equipartition is a simple method. 

 Step 4. Calculate PLFS in w1;  

 Step 5. Move the window n steps forward;  

 Step 6. Calculate PLFS in wi; 

In which, sampling frequency f refers to the collection 

interval in time domain in experiments. wi refers to i
th
 

window. s refers to the size of window. In principle, 

larger w may make our algorithm more insensitive 

from outliers. That is to say, larger s can decrease 

false alarm rate. Rather, too large s can make the aging 

symptom obscure, and injure the aging detection 

performance of our algorithm. In summary, adoption 

of w is a trade-off between sensitivity and false alarm 

rate.   

In principle, the smaller the symbol n is, the faster 

our approach can detect possible aging symptom. 

Nevertheless, too small n will result in too much 

computation workload. For an extreme example, when 

the n is set to 1, and interval of data collection is two 

minutes; if the computation of our approach cost more 

than two minutes, then, there are several new data will 

not be calculated by our approach. Consequently, too 

small value of n will delay aging detection. Also, too 

large value of n will still delay aging detection.  Thus, 

the optimal value of n should be determined by 

computation time of our algorithm. That is to say, the 

optimal result should be that, when the PLFS of 

current windows is calculated, our data collection 

agent just collect n data. In summary, the value of n 

should be determined by the following expression:  

            computation time of our approach
n =

interval of datacollection
 

The metric PLFS can be treated as a metric to identify 

aging. In our case, w is set to 256, and n is set to 1. 

Because the computation of our approach will cost no 

(2) 

(3) 

(4) 
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more than interval of data collection (five minutes).  

Finally, the calculated PLFS in each sliding window is 

shown in Figure 6. 
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Figure 6. PLFS/PAFS of availablememory. 

From Figure 6 we can see that, the resulting first 

point of our approach lies in about 21
th
 hour. This 

corresponds to the fact that the size of window is 256 

and interval of data collection is five minutes. From the 

very beginning to about 150
th
 hour, PLFS increase 

sharply, showing an approximately monotonous 

property. Because the PLFS depicted in Figure 6 means 

swapping rate with time. Swapping rate describes how 

fast the pages are swapped from/to disk to/from 

physical memory. This is heavily correlated with 

performance of whole computer system. This metric 

can easily be applied for online aging diagnostic. By 

selecting different size of the sliding window, our 

approach provides a flexible trade-off between 

sensitivity of detection and robustness against outliers 

of the performance data. More specifically, the larger 

the size of window is employed, the calculated metric is 

more immune from outliers.  

6. Conclusions 

In this paper, we carry out controlled experiment to 

study software aging phenomenon in an overloaded 

web server. Based on the experimental observations, 

discrete Fourier analysis is employed to characterize 

the aging symptom. We found that the low frequency 

signal shows an increasing trend. This means the 

computer system cost more time to swap pages. This is 

an indicator of software aging, which is not reported by 

previous studies. Accordingly, a metric is proposed to 

evaluate the severity of aging. Moreover, we propose 

an approach for online aging measurement based on 

slidingwindow Fourier transform. The contribution of 

this paper can be summarized as follows: 

 A metric is proposed to evaluate severity of aging. 

 An online aging detection approach is proposed to 

detect possible aging. 

 The methods in the field of signal processing is 

introduced to software aging study. This means the 

rich achievements in the field of signal processing 

can be employed to study the evolution of software 

aging. 
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