
The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 175

Efficient Adaptive Frequent Pattern Mining

Techniques for Market Analysis in Sequential and

Parallel Systems

Sherly Kuriakose
1
 and Raju Nedunchezhian

2

1
Department of Information Technology, Rajagiri School of Engineering and Technology, India

2
Department of Computer Science and Engineering, Coimbatore Institute of Technology, India

Abstract: The classical applications of Association Rule Mining (ARM) are market analysis, network traffic analysis, and web

log analysis where strategic decisions are made by analyzing the frequent itemsets from a large pool of data. Datasets in such

domains are constantly updated and as they require an efficient Frequent Pattern Mining (FPM) algorithm which is capable of

extracting the required information. Several incremental algorithms have been proposed to generate frequent patterns, but

they are ineffective with very large datasets and do not provide the user interaction to adjust the minimum support value. This

paper first presents an efficient interactive sequential FPM algorithm that uses the knowledge gained in the previous mining

steps to incrementally mine the updated database with fewer complexities. Then to further reduce the time complexity it

proposes an efficient interactive and incremental parallel mining algorithm. It also prepares incremental frequent patterns,

without generating local frequent itemsets with less communication and synchronization overheads.

Keywords: Association rule, frequent pattern mining, interactive mining, incremental mining, parallel mining.

Received June 30, 2014; accepted August 31, 2014

1. Introduction

Evolution of technology and globalization create the

subsequent acceleration of information flow. Thus,

extraction of knowledge from the large pool of

information is becoming a very difficult task. The

rapid advancement in electronic commerce increases

online transactions every year. Organizations store

their ever-increasing day-to-day transactional details in

their transaction databases. Data mining prepares

models by analyzing the hidden relationships among

stored data and deals with the problems that arise with

large data repositories.

The classical application of Association Rule

Mining (ARM) is market-basket analysis that has been

used to predict customer purchasing/spending behavior

by analyzing the frequent itemsets in a large pool of

transactions. Frequent patterns are a set of all subsets

of items that frequently appear together in a dataset.

Frequent Pattern Mining (FPM) plays a key role to

obtain associations and correlations among items in a

large transactional dataset [2]. As the amount of

transactions increases it becomes very difficult to

determine the frequent patterns with less time and

space complexities. Scalability is one of the main

requirements of an FPM algorithm. Some of the

algorithms address the space complexity problem of

very large database using partitioned database

approach [14]. Partitioned algorithms generate all

possible large itemsets from each partition in a

sequential manner in the first scan, which may

contain false positives (globally infrequent). During

the second scan they remove the false positives and the

global frequent sets are generated. The occurrence of

false positives may lead to space complexity and time

complexity for very large database. Thus, sequential

algorithms [2, 7, 12] can provide scalability and very

good performance up to a certain database size limit.

Hence, parallel mining approaches [1, 5, 6] are

required to provide scalability in massive data stores in

an efficient manner.

As the day to day transaction details get added to

the transactional database, database becomes dynamic

and incremental updating of frequent patterns is

required. Also there is possibility for change in the

customer’s purchase behavior due to the change in life

style as well as addition of new customers. Thus to

reflect the current status of database, old patterns must

be removed and new patterns might appear. Many of

the FPM algorithms [2, 7, 12, 14] prepare static

patterns and use them for long term predictions; but

those may not be capable to accommodate the

behavioral changes in the incremental database. Thus

dynamic algorithms [3, 4, 8, 9] that are capable of

incremental and interactive mining with less

computational cost are essential for an incremental

database. The essential key feature of an incremental

algorithm is to reuse the previously mined information

and combine this information with the new data to

incrementally update the frequent itemsets without

rescanning the entire database.

176 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

The objective of this research is to develop FPM

algorithms which are efficient, scalable, faster and

dynamic to support behavioral changes using both

sequential and parallel approaches. Sherly [15]

proposes Interactive and Adaptive Partitioned

Incremental (IAPI) FPM (IAPI Quad-Filter) algorithm

for incremental FPM in large databases to solve the

space and computational complexity. But it requires

more than two database scan (equivalent to the number

of frequent items), thus the data fetching time is fairly

high. This paper proposes two incremental FPM

algorithms (modified IAPI versions) capable of

generating large itemsets from an incremental massive

data store in two database scans and incrementally

update the frequent itemsets without rescanning the

entire database using sequential and parallel

approaches with a system having fairly good storage

and computing capability.

1.1. Overview of the Proposed Algorithms

IAPI type of algorithms use a database partitioning

approach to produce frequent itemsets without

generating local frequent itemsets. In these approaches,

transaction items are pre-processed and arranged

according to the item code; thus individual item

counting and count comparisons are made faster.

Rather than fixing single minimum support value IAPI

Quad-filter uses a range of support values (low, high)

for making the dynamic and the interactive mining

faster. It logically divides the dataset into small sized

non-overlapping horizontal partitions of user specified

sizes so that each partition can be accommodated in the

main memory. To reduce the computational cost, I/O

overhead as well as space complexity, each Frequent

Item (FI) transaction group is collected separately and

four level filtering is done to remove infrequent items

[15].

Unlike Apriori [2] in IAPI, the number of

transaction to be compared and their length both get

reduced in finding higher frequent itemsets. This

method is capable to incrementally update the database

to accommodate the customer behavioural changes.

IAPI also provides the user with the facility to

interactively adjust the minimum support value as per

one’s own convenience. To find the higher frequent

itemsets, IAPI Quad-filter collects each FI transaction

groups separately one after the other, thus the number

of database scans required is the number of frequent 1-

itemsets, which is fairly high. Thus this approach is

best suited with systems having low memory capacity.

To improve the performance, this paper proposes

another algorithm Faster-IAPI, which generates

frequent patterns in two database scans only. It collects

all the FI transaction groups simultaneously in one

database scan; but the down side is that it requires

more memory (multiple memory buffers) to hold the

different FI transaction groups. Then the higher

frequent itemsets of each transaction groups are

obtained sequentially.

Speed of operation in very large dataset can be

further improved using parallel mining approach. Thus

a second algorithm Parallel-IAPI is suggested for

shared memory multi processor systems. This method

finds the higher frequent itemsets of all frequent 1-

itemsets simultaneously using parallel processors. In

this approach each Local Processor (LP) finds the local

partition count of each item and sends it to Master

Processor (MP) to obtain their global count. MP

identifies the frequent 1-itemsets and sends the count

of all frequent items to each LP and assigns them to

obtain higher frequent itemsets of each item. LP

collect the transaction groups of assigned FI with their

co-occurring items (items having count greater than it)

and find their higher frequent itemsets concurrently

using the IAPI approach. The main attraction of this

approach is that each LP work independently for

higher frequent itemset generation; thus there is very

less communication overhead. Figures 1 and 2

describes the frequent itemset generation procedures of

Faster-IAPI and Parallel-IAPI respectively.

Figure 1. Functional block diagram of Faster-IAPI.

Figure 2. Functional block diagram of parallel-IAPI.

This paper is organized as follows. Section 2

describes related work on different FPM algorithms.

Section 3 presents the proposed algorithms with the

details of the various phases of the algorithms and their

functionalities are described using sample data.

Section 4 gives the details of experiments conducted

and performance analysis. Section 5 concludes the

paper.

2. Related Works

The popular algorithm Apriori [2] forms the

foundation for static frequent pattern mining. The

major problem of Apriori is that it has to read the

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 177

entire database in every pass, although many items and

transactions are no longer needed in later passes. It

generates candidate itemsets iteratively, which makes

the computational cost very high. Instead of using

generate and test paradigm of Apriori, FP-tree

approaches [7, 8, 10] encode the dataset using a

compact tree structure and directly extracts the

frequent itemsets from this structure. Thus tree

approaches outperform Apriori-like approaches by

generating frequent patterns without producing

candidate sets. But it has to generate conditional

pattern bases and sub-conditional pattern tree

recursively.

To obtain frequent sets from very large datasets

with low memory utilization, [14] suggests a

partitioning algorithm which generates frequent

itemsets in two database scans. During the first scan, it

identifies the local frequent item-sets from each

partition and in the second scan it estimates the global

frequent sets. This algorithm is highly dependent on

the heterogeneity of the database and may generate too

many independent local frequent itemsets. To analyze

the problem of market basket data, [4] presents an

algorithm DIC which uses fewer passes over the data

than classical algorithms to find the frequent itemsets.

It provides the flexibility to add and delete counted

itemsets on the fly. Downside of DIC is that it is

sensitive to the homogeneity of data.

An interactive mining algorithm, Continuous

Association Rule Mining Algorithm (CARMA) [9]

requires two database scans to produce large itemsets.

CARMA provides a lower and upper bound for its

support for each set. Thus, the user can interactively

adjust the support and confidence at any time. A

dynamic algorithm CanTree [10] facilitates

incremental mining as well as interactive mining. In

this approach, the items in each transaction are

arranged in a canonical order and the entire

transactions are stored in a tree structure with one

database scan. The construction of CanTree is

independent of the threshold values. Thus, interactive

mining is possible without rescanning the entire

database. A novel tree structure called CP-tree [16],

which creates incremental frequent patterns with the

support of interactive mining in one database scan.

First phase inserts transactions into CP-tree and second

phase rearranges the items according to the frequency

order. Since items are arranged in the ascending order,

CP-tree has less number of nodes compared to

CanTree. But tree reconstruction introduces additional

computations. To reduce the time of restructuring a

new prefix tree structure proposed in [8]. An

Incremental Mining Binary Tree (IMBT) algorithm is

presented in [19] in which each node of the tree

represents one of all the possible combinations of

items in the entire dataset. It processes a transaction at

a time and record the possible itemsets in the

respective nodes, thus reduces the processing and I/O

time but requires more memory to keep all

combinations of items in the database. To reduce the

search space and model size in evolving database,

YAMI (YAMI is derived from the names of the

Authors) [18] a dynamic ARM algorithm is

developed. It uses a shocking interestingness measure

as a constraint to discover rules that are interesting for

the user.

A potential solution for improving the performance

and scalability in FPM from very large database is to

parallelize the mining algorithms. An algorithm

Parallel Data Mining (PDM) is proposed [13] for

parallel mining which is an adaptation of the Direct

Hashing and Pruning (DHP) algorithm [12] in the

distributed environment. In PDM each node computes

the globally large itemsets by exchanging the support

counts of the candidate sets. Downside of this is that

O(n
2
) messages are required for support count

exchange among n nodes for each candidate set.

Another algorithm Count Distribution (CD) [1], which

is an adaptation of the Apriori algorithm, is proposed

for the same parallel mining environment. This

algorithm also has the similar problems. A tree-

partition algorithm for parallel mining of frequent

patterns on shared-memory structures is presented in

[5]. It builds one FP-Tree of the entire database, then

partitions it into several independent parts and

distributes them to different threads. This approach

uses a Master/Slave Model. The parallel

implementation of Apriori algorithm based on

MapReduce framework [11] is suggested for

processing huge datasets using a large number of

computers. But these parallel algorithms are not

suitable for incremental database. An incremental,

interactive and parallel mining technique for shared

memory multiprocessor system is designed in [17] for

incremental mining. This approach is based on the

adaptive tidlist interval distribution technique, which

continuously assigns partitions of the tidlist among the

different processors. A parallel IMBT structure is

proposed in [3] to enumerate the support count of each

itemset in an efficient way after the new transactions

are added or deleted.

3. Proposed Algorithms

3.1. Problem Definition

Let D be a database with N number of transactions. Let

I be the item domain, {I1, I2, ..., Iq}. The problem is to

identify all interesting frequent patterns in an

interactive and incremental manner with fewer

complexities. A partition P⊆D of the database refers to

any subset of the transactions contained in the database

D. Initially the database D is logically partitioned into

n non-overlapping partitions of size Z, i.e., Pi∩Pj = Φ,

i≠j. Two minimum support values used here are: Sl, Sh

namely, lower minimum support value and upper

178 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

minimum support value. It creates two category

itemsets: Frequent (Fset), Nearly Frequent (NFset).

Itemset X is Frequent if support(X)≥Sh and Nearly

frequent if Sl≤ support (X)≤ Sh. Pn represents a

partition number at which a NFset has been last

updated. Let F1-itemset be the frequent 1-item domain,

F1-itemset={f1, f2, ..., fm}in the ascending order of

occurrence count. Each FI is associated with a co-

occurring item set list Cf, {Cf1, Cf2, ..., Cfm-1} refers to

the list of items to be considered along with each FI to

find the higher frequent itemsets, where as Cf1 be the

co-occurring item list of FI f1 i.e., Cf1={f2, f3,..., fm}. In

general: Cfi = {{fi+1, fi+2, ..., fm} |frequency(fi+1, fi+2,…,

fm)≥ frequency(fi)} i.e., Cf1⊃Cf2⊃, ..., ⊃Cfm-1, it

indicates that as the frequency of occurrence is more

the number of co-occurring items considered for

frequent itemset mining get reduced.

3.2. Faster-IAPI Algorithm

This algorithm has all the features of IAPI Quad-filter

and has four phases. The first phase generates the

frequent itemsets from the large history database. The

second phase accommodates the newly arrived

transactions to the existing set and updates the frequent

itemsets to provide incremental mining. The third

phase removes the old transactions after a preset time

period and modifies the patterns to accommodate the

behavioural changes. The last phase provides the

facility to interactively adjust minimum support value

as per the user’s requirement. In the first scan, Faster

IAPI adopts the same method of IAPI Quad-filter and

generates frequent 1-itemsets. To generate higher

frequent itemsets, do the second scan of database and

collect only frequent items from each transaction.

Then, form separate transaction set groups of each FI

and keep only the corresponding co-occurring items of

each transaction group in separate buffers as shown in

Figure 3. Also eliminate the similar transaction entry

in each transaction group (compress the transaction

set) by recording the occurrence count, then find the

frequent items in the selected group and eliminate

others. Higher frequent itemsets are obtained from

each buffer sequentially using IAPI Quad-filter

approach as shown in Figure 3. Frequent itemset

generation steps of Faster-IAPI algorithm are given

below.

Figure 3. Frequent set generation.

3.2.1. Faster-IAPI Frequent Item Set Generation

Steps (Phase 1)

Input:

 D: Transaction database contain N transactions (T1,

T2, …, TN), horizontally partition D into n non-

overlapping partitions (P1, P2, …, Pn) and sort the

items of each transaction in the order of item code.

 Sl: Low minimum support value

 Sh: User selected min. support (Sh > Sl)

 Output:

Complete set of frequent itemsets

1. For each partition do

Read each transaction and find frequency flocal(i)

for each item i;

2. Identify frequent 1-itemsets F1-itemset ={i | ∑ flocal(i)

≥ Sh for each item i}

3. Sort F1-itemset in ascending order F1-sorted ={f1, f2, …,

fm}

4. Prepare co-occurring item set list Cfi = {{fi+1, fi+2,
…, fm}|frequency(i+1, fi+2, …, fm) ≥ frequency(fi)} for

each fi

5. Read each transaction of D and do

Collect transactions contain each fi in to separate

buffers and remove items that are not in the Cfi list

from each transaction.

6. For each fi-transaction group:

 Find frequency of each Cfi item in the selected fi-

transaction group

 If frequency(Cfi) ≥Sl

 F2-itemset= {Cfi} for each Cfi item

 Else remove Cfi from the selected buffer

 Sort F2-itemset in ascending order

 To obtain higher frequent itemsets of F2

for each item in F2-itemset do

Fitemset =Higher-frequentItemset-Generate (fi-

transactions(Buffer1), F2-itemset);

If support(Fitemset) ≥ Sh then

Fset=Fitemset

Else NFset=Fitemset

Procedure Higher-frequentItemset-Generate (fi-

transactions (Buffer1), Fn) //Fnp:p
th
 item of Fn-itemset:

1. Collect fi-transactions contain Fnp to a new

temporary buffern and remove items having count ≤

Fnp from each transaction in the buffern, p

initialized to 0

2. Find frequency of each item in the selected Fnp

transaction group

3. F(n+1)-itemset ={Fn(p+k)|frequency(Fn(p+k)) ≥Sl}for each

Fn(p+k) item where k=1 to (m-p)

4. else remove Fn(p+k) from the Fnp transactions

5. Sort F(n+1)-itemset in ascending order

6. To obtain higher frequent itemsets of fi do

7. if (F(n+1)-itemset≠Φ) then

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 179

n=n+1 & Repeat above steps

8. else if p< sizeFn-itemset) then

 p=p+1 & repeat above steps

9. else remove buffern content n=n-1, p=1

10. if n ≥ 2 repeat above steps

11. else return Fitemset

3.2.2. Working of Faster IAPI

The working principle of algorithm is illustrated with a

sample dataset having 10 transactions with 5 distinct

items {p, q, r, s, t} shown in Table 1. It is divided into

two horizontal partitions of size 5 transactions in each.

Scan each transaction and count of each item in both

partitions is recorded separately, which is given in

Table 2. Then, calculate total count of each item and

identify the frequent items (items with count greater

than or equal to minimum support i.e., 50% of total

transaction count). Next step is to find the higher

frequent itemsets of each frequent item. This approach

reduces the database scan and the computational

complexity by grouping transaction containing each FI

in to separate buffers as shown in Table 4 during the

second database scan. To reduce the space complexity

while forming the frequent transaction group, each

group needs to consider only the items that are having

count greater than its own count which is shown as co-

occurring items list in Table 3. Higher frequent itemset

generation steps of frequent items q and p are

illustrated in Figures 4 and 5 respectively. To facilitate

incremental mining this algorithm uses two minimum

support values Sh and Sl and considers itemsets having

support greater than Sh (50%) as frequent itemsets

(FSets) and Sl (30%) as nearly frequent itemsets

(NFsets). Fsets and NFsets obtained from each

transaction group are recorded separately into Tables 5

and 6 respectively.

Table 1. Dataset.

Tid Transactions partition

1 r, s, t

P1
2 p, q, s, t

3 r, t

4 p, s, t

5 p, r, s, t

6 p, q, r, s

P2
7 r, s

8 p, r, s

9 p, r, s, t

10 q, s, t

Table 2. Item Count.

Item P1 P2

p 3 3

q 1 2

r 3 4

s 4 5

t 5 2

Table 3. Co-items list.

Item Co-Items

p r, s, t

r s, t

t s

Table 4. Buffers.

Tid Transactions count

Buffer p
2, 4 s, t 2

5,9 r, s, t 2

6,8 r, s 2

Buffer r
1,5,9 s, t 3

3 t 1

6,7,8 s 3

Buffer t

1,2,4,5,9,10 s 6

Figure 4. Buffer r frequent set generation steps.

Figure 5. Buffer p frequent set generation steps.

Table 5. Frequent itemsets.

F-itemset count

p, s 6

r, s 6

t, s 6

Table 6. Nearly frequentsets.

NF-itemset count

p, t 4

r, t 4

p, r, s 4

p, t, s 4

r, t, s 3

3.2.3. Incremental Mining (Phase 2)

This algorithm is capable to accommodate newly
arrived transactions and update the existing frequent
itemsets without rescanning the entire datasets by
utilizing NFsets. Incremental mining process is
illustrated using the example given in Tables 7, 8, 9,
10 and 11. The newly added transaction set is recorded
in Table 7 and count of items in the new partition is
calculated and added with the existing count to update
the frequent items, Table 8. FI transaction groups of
the newly added partition are collected to separate
buffers Table 9 and find their higher frequent itemsets
in the new partition. Then update the count of the
existing Fset belongs to each group Table 10. If any
existing frequent item/itemsets is found to be

180 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

infrequent, remove it from the Fset list and include it
with the NFset list if it’s support≥Sl along with the
current partition number Table 11. If any new frequent
itemset obtained from new partition, obtain its global
count using NFset. If not obtained from NFset, then
conduct a possibility test using Equation 1 and if
possible to be frequent find their global count from the
old transaction set.

Table 7. New transactions.

Tid Transactions

11 r, s, t

12 q, s

13 p, q, r, t

14 q, s, t

15 p, r, s, t

Table 8. Updated item count.

Item P1 P2 P3 total

p 3 3 2 8

q 1 2 3 6

r 3 4 3 10

s 4 5 4 13

t 5 2 4 11

Table 9. New buffers.

Table 10. Updated frequent sets.

Updated Fitemset New count

r, s 8

t, s 9

Table 11. Updated NFsets.

NF-itemset
New

count

p, t, s 5

r, t, s 5

p, r, s 5

p, r 6

p, s 7

p, t 6

r, t 7

 S*Z+(Pc-Pi-1)(U*Z-1)+L*Pi*Z-1≥Pc*U*Z (1)

Where Pi no. of partitions used for initial pattern
generation, Pc current partition no, Z Partition size, L
Lower minimum support, U Upper minimum support,
S new Fset support in new partition.

3.2.4. Accommodation of Behavioural Changes

 (Phase 3)

After a certain period, the behaviour/purchase patterns
may change. Thus to reflect the behavior change older
transactions (partitions) must be removed as shown in
Table 12. After the partition removal the occurrence

frequency of each item may change and due to the
heterogeneity of the dataset, there is a chance of new
frequent itemsets to occur with the existing frequent
items. To update the frequent itemsets first update the
count of each item by deducting the count of each item
in that partition from the total count as shown in Table
13. If any existing FI becomes infrequent, remove it
from the frequent itemset and if any new FI occurred,
find its higher frequent itemsets by rescanning the
remaining partitions. Updated item count recorded in
Table 13 shows that a new FI q is generated. Now
update the co-item list as shown in Table 14 and find
the higher frequent itemsets of the newly formed FI q
by collecting transactions containing item q from the
entire dataset into buffer q as shown in Table 15. Next
to update the count of Fset and NFset, find their count
in the removed partition buffers as shown in Table 17
and deduct them from the previous count. Finally
update the frequent and nearly frequent itemset list
based on the updated count as shown in Tables 16 and
18.

Table 12. Updated dataset.

Tid Transactions Partition

6 p, q, r, s

P2
7 r, s

8 p, r, s

9 p, r, s, t

10 q, s, t

11 r, s, t

P3
12 q, s

13 p, q, r, t

14 q, s, t

15 p, r, s, t

Table 13. Updated Item count.

Item P2 P3 total

p 3 2 5

q 2 3 5

r 4 3 7

s 5 4 9

t 2 4 6

Table 14. Updated co-item list.

Item Co-Items

p r, s, t

r s, t

t s

q p, r, s, t

Table 15. New buffer q.

Tid Transactions with item q

6 p, q, r, s

10,14 q, s, t

12 q, s

13 p, q, r, t

Table 16. Updated fset.

Updated

Fitemset

New count

r, s 6

t, s 5

p, r 5

Tid Transactions

Buffer p

13 r, t

15 r, s, t

Buffer r

11 s, t

13 t

15 s, t

Buffer t

11 s

14 s

15 s

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 181

Table 17. Removed Buffers.

Tid Transactions

Buffer p

2,4 t, s

5 r, t, s

Buffer r

1,5 t, s

3 t

Buffer t

1,2,4,5 s

Table 18.Updated NF-sets.

3.2.5. Interactive Mining (Phase 4)

Finding an appropriate support value for a dataset is a

challenging task. It is better to provide the users with

the facility to change the support value as per their

requirements. Interactive mining provides the user to

interactively adjust minimum support value.

1. When user increase the preset Sh value, choose the

itemsets with support≥ new support as Fset from the

existing frequent set and shift others to the NFset

list and record their partition number (Pn) as last

partition number.

2. When the user reduces the Sh value, select the

itemsets having support≥ new support from the

existing NFset and include it along with the existing

Fset list.

3. If the Partition number (Pn) of any of itemset in the

NFset is less than the current partition number (Pc),

then find their count in the remaining partitions

(Pn+1, Pn+2,…, Pc) to get the total count and identify

the newly formed Fsets.

4. Also choose the items having count greater than or

equal to the newly set support count as frequent

items and find their frequent supersets from the

entire database

3.3. Parallel IAPI Algorithm

Parallel IAPI algorithm generates higher frequent

itemsets of n FI in parallel manner using multiple

processors. Thus, time requirement for higher frequent

itemset generation get reduced to 1/n
th
 of frequent

itemset generation time of Faster IAPI. In this

approach count of each item in each partition are

obtained by n LP simultaneously and send them to the

MP. Then MP calculates their global count and

identifies the frequent items (support≥Sh). Also

prepare a co-occurring item list, Cf for each frequent

item. For higher frequent itemset generation MP

assigns separate LPs for each frequent item, and then

MP rescans the database and broadcasts each

transaction to all LPs. Further there is no

communication required between LP and MP. LP

collect the transactions containing the assigned FI and

select only the co-occurring items of the assigned fi

from each transaction for higher frequent itemset

generation using IAPI approach. Parallel IAPI requires

no communication among LPs, thus very less

communication overhead. Parallel IAPI Algorithm

steps of each phase are given in following sections.

3.3.1. Working of Parallel IAPI

The working of parallel IAPI can be illustrated using

the same sample dataset given in Table 1. Consider

that there are three processors Pr1 and Pr2 and Pr3

and Pr1 and Pr2 are considered as LP and Pr3 as MP.

In Phase 1 during the first database scan Pr1 and Pr2

calculate the item count concurrently and submit to Pr3

to find global frequent itemsets as shown in Table 2.

Then, Pr3 generates co-occurring item list of each item

as shown in Table 3 and assign Pr1 and Pr2 to find the

higher itemsets of frequent items p and r. Pr3 scans

database second time and send each transaction to both

the processors for the buffer storage as shown in Table

4. Then, higher frequent itemsets of items r and p are

generated in parallel as shown in Figures 4 and 5. Item

t has only one co-item, thus its count can be directly

obtained from buffer t. All Fset and NFset generated

are consolidated at processor Pr3 as shown in Tables 5

and 6).

In incremental mining (Phase 2) the count of each

item in the newly added partition as shown in Table 7

is calculated at Pr3 and added with the previous count

as shown in Table 8 to identify the present frequent

items. FI buffers in the newly added partition as shown

in Table 9 are generated and frequency of the higher

frequent itemsets is obtained by Pr1 and Pr2. Higher

frequent itemsets count in the new partition is added

with the previous count by Pr3 to update the frequency

of the existing Fset and NFset as shown in Tables 10

and 11. New patterns may get generated on adding

new transactions made by the new customers as well

due to the change in purchase behavior. Thus to reflect

the pattern changes Phase 3 old transactions may be

removed as shown in Table 12 and update the frequent

patterns. Frequent pattern updating procedure is same

as that used in Faster IAPI. Count of individual items

in the removing partition is calculated by Pr3. Further

the frequency of the existing frequent itemsets in the

removed partition is obtained by the LP as shown in

Table 17 and is deducted from the previous count by

MP. Higher frequent itemsets of newly created

frequent items (F1new) is obtained by scanning the

remaining partitions by Pr3 in coordination with Pr1 a

Pr nd 2 as shown in Table 15 and update the Fset and

NFset as shown in Tables 16 and 18.

NF-itemset New count

p, t, r 3

r, t, s 3

p, r, s 4

p, s 4

p, t 3

r, t 4

q, s 3

182 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

3.3.2. Parallel IAPI Frequent Itemset Generation

Steps (Phase 1)

Input:

 D: Transaction database contain N transactions (T1,

T2, …. TN), horizontally partition D into n non-

overlapping partitions (P1, P2, …, Pn) and sort the

items of each transaction in the order of item code.

 Sl: Low minimum support value.

 Sh: User selected minimum support (Sh > Sl).

Output:

Complete set of frequent itemsets:

1. For each LP do

Read local partition, find local

frequency flocal(i) and send to MP for each item i;

2. In MP

 F1-itemset ={i | ∑ flocal(i) ≥ Sh for each i}

 Sort F1-itemset in ascending order F1-sorted ={f1,

f2,…,fm}.

 Prepare co-occurring itemset list
 Cfi={fi+1,fi+2,..., fm}

 |count(fi+1,fi+2,…, fm) ≥ count(fi)} for each fi and

send to LP(i)

 Read each transaction of D and send to LP.

3. For each LP do

 Collect transactions contain FI fi in to buffer1 and

remove items that are not in the Cfi list from each

transaction.

 Find frequency of each Cfi item in the selected fi-

transaction group

 If frequency(Cfi) ≥ Sl

 F2-itemset={Cfi } for each Cfi item

 Else remove Cfi from the selected buffer.

 Sort F2-itemset in ascending order.

 To obtain higher frequent itemsets of fi.

 Fitemset = Higher-frequentItemset-Generate

(fi-transactions(Bufferi), F2-itemset);

 Send Fitemset to the MP.

4. In MP

Fset = Fitemset │(support ≥ Sh)

Else NFset = Fitemset

3.3.3. Incremental Mining Steps (Phase 2)

1. In MP

 Read each transaction in the new partition (Pnew)

and update the count of each item i.

 n = n+1, update F1-itemset.

 If F1new then set Cfnew ⊃ Cf1 and update existing

Cf.

 Collect transactions contain F1new item from all

the partitions and find its higher frequent

itemsets.

2. In each LP do

 Read each transaction of Pnew and follow the

same procedure of higher frequent itemset

generation.

 Send all frequent itemsets to the MP.

3. In MP

 Update existing Fset and NFset.

 If any of the existing Fset is not updated rescan

Pnew and update it.

 If any existing Fset become infrequent shift to

NFset list, similarly any existing NFsets become

frequent do vice versa.

 If Fsetnew in Pnew, conduct possibility test and if

possible to be frequent find its global count by

rescanning the previous partitions.

3.3.4. Accommodation of Behavioural Changes

(Phase 3)

1. Remove partition P1 and update each item count

TCount(i)=Count(i)–P1Count(i) for each i and

identify the current frequent items;

2. If F1new then set Cfnew⊃Cf1 and update existing Cf.

3. Collect transactions contain F1new item from all the

remaining partitions and find its higher frequent

itemsets.

4. Find the count of existing Fset and NFset in the

removing partition and deduct it from existing

count.

5. If any existing Fset become infrequent shift it to

NFset list, similarly any existing NFsets become

frequent do vice versa.

3.3.5. Interactive Mining (Phase 4)

Pn: Last updated partition number of NFset.

Pc: Current partition number.

Shnew: Newly set minimum support by user.

1. If Shnew>Sh

For each Fset

If Support(Fset)<Shnew shift to NFset

2. If Shnew < Sh

 For each NFset

 If Pn < Pc then for Pn+1 to Pc find the

support(NFset)

if support(NFset) ≥ Shnew shift to Fset

 For each i if count(i) ≥Shnew shift to F1-itemset then

a. If F1new then set Cfnew⊃ Cf1 and update existing

Cf.

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 183

b. Collect transactions contain F1new item from

all the partitions and find its higher frequent

itemsets.

4. Experimental Results and Performance

Analysis

Functionalities and effectiveness of the proposed IAPI

algorithms were tested with market basket datasets

T10I4D100K prepared by IBM Almaden Quest

research group and a Synthetic dataset. This algorithm

is developed and tested on Intel (i3), 3.2 GHz CPU

having 4 GB RAM with Microsoft Windows 7 OS

using NetBeans IDE 7.0.0 and MySQL Server 4.1.

Execution time and memory utilization are compared

for various support threshold values with differently

sized partitions as well as with different number of

partitions in both datasets.
Experimental results show that execution time is

directly proportional to the size of the dataset when the
minimum support value remains constant as shown in
Figure 6. Faster IAPI requires only two database scan
for frequent itemset generation where as IAPI Quad-
filter requires (n+1) database scans if there are n
frequent 1-itemsets. Thus initial pattern creation time
of Faster IAPI is less compared with IAPI Quad filter.
Updating of the frequent sets on addition of new data
and deletion of old data requires less time compared
with the initial pattern creation time. From the test
results it is observed that updating time is related with
the heterogeneity of the data, i.e., if new frequent 1-
itemset generated, then it requires entire database scan,
else previous information can be used and require less
time (5%-30% of the initial pattern creation time)
depends on the number of FI sets as shown in Figure 7.
It is also observed that, when the support threshold
reduces, the number of frequent items increases, thus
execution time required is more. Due to heterogeneity
of dataset there are chances of reducing the number of
frequent items, even though the dataset size increases.
The test results illustrate that the execution time and
the memory requirement of both sequential and
parallel IAPI directly depend on the number of
frequent items in the dataset. Graphical representations
of the test results of IAPI are shown in Figures 6, 7 and
8.

Figure 6. Execution time comparison.

Figure 7. Partition add, delete, support change time comparisons.

Figure 8. Comparison of FPM algorithms.

4.1. Performance Comparison

Performance of Faster-IAPI is compared with popular

algorithms: Apriori, Partition Algorithm, DIC,

CanTree and IMBT using T10I4D100K dataset and a

synthetic dataset. Speed of execution of Faster-IAPI is

faster and the memory requirement of IAPI is lesser

than other algorithms as shown in Figure 8. Though

partition algorithm is designed for very large dataset,

due to large number of independent local frequent sets

generated for dense datasets, it requires more memory

and computational delay; thus there is limitation in

dataset size. For updating the frequent patterns, it is

required to keep all local frequent sets in memory; also

if the user wishes to change the support value, the

rescanning of the entire database is required for

updating the frequent sets. Since IAPI is not generating

any local frequent sets, it is suitable for both dense and

sparse datasets.

Figure 9. Parallel FPM comparisons.

DIC requires less time for updating the frequent

patterns on addition of new datasets and the removal of

184 The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017

old transactions compared with IAPI. But the main

difficulty with DIC is that it has to keep the count of

all possible subsets in the entire transaction set; thus it

consumes more memory. Subset generation introduces

more computational cost and requires 40 to 50 times

more time than IAPI for the initial frequent set

generation. CanTree is suitable for both incremental

and interactive mining. It keeps the entire transactions

in the CanTree for preparing frequent itemsets; thus it

requires 2 to 3 times more memory than IAPI. CanTree

requires re-construction of FP tree for each FI for

every addition, deletion as well as the support change

cases, which may lead to more computational delay. It

is observed that IMBT tree requires more time to

create and more memory to store the entire tree. Thus

it may not be suitable for datasets having more number

of distinct items. This approach does not need not to

predetermine the minimum support threshold and

scans the database only once. IMBT requires less time

to update the frequent sets on addition and deletion of

data than IAPI algorithms. Performance of Parallel-

IAPI is tested with two parallel algorithms Parallel-

IMBT and parallel-Apriori using multi-threading and

multi-processing systems as shown in Figure 9.

Parallel-IAPI generates frequent itemsets in less time

and requires less memory compared with Parallel-

IMBT and Parallel-Apriori.

5. Conclusions

To extract knowledge from the real life databases,

efficient incremental and interactive FPM approaches

of very large databases are required. This study

proposes incremental and interactive mining

algorithms with partitioning approach, designed to

obtain frequent patterns from a very large sized dataset

in sequential and parallel manner. This approach

generates frequent sets without generating candidate

sets/local frequent itemsets in two database scans with

simple data structures. It combines the features of

various algorithms such as Apriori, FP-Growth,

CARMA and Partitioning algorithm to obtain frequent

itemsets. The length and the number of transaction to

be compared at each level of higher frequent sets get

reduced due to four level filtering approaches. Thus,

30% to 50% of data comparisons reduction is achieved

at each level (n-itemsets to (n+1)-itemsets). This

approach uses two bounds (low, high) for minimum

support to incrementally update the frequent set

without rescanning the entire dataset. This study

illustrates that the proposed methods are capable to

prepare more accurate user spending profile and

market analysis with less time and space complexities

compared with the existing techniques.

References

[1] Agrawal R. and Shafer J., Parallel Mining of

Association Rules: Design, Implementation, and

Experience, IBM Research Report, 1996.

[2] Agrawal R. and Srikant R., “Fast Algorithms for

Mining Association Rules,” in Proceeding of

International Conference Very Large Databases,

San Francisco, pp. 487-499, 1994.

[3] Bhadane C., Shah K., and Vispute P., “An

Efficient Parallel Approach for Frequent Itemset

Mining of Incremental Data,” International

Journal of Scientific and Engineering Research,

vol. 3, no. 2, pp. 1-5, 2012.

[4] Brin S., Motwani R., Ullman J., and Tsur S.,

“Dynamic Itemset Counting and Implication

Rules for Market Basket Data,” in Proceeding of

ACM SIGMOD International Conference on

Management of Data, New York, pp. 255-264,

1997.

[5] Chen D., Lai C., Hu W., Chen W., Zhang W.,

and Zhen W., “Tree Partition Based Parallel

Frequent Pattern Mining on Shared Memory

Systems,” in Proceeding of 20
th
 International

Conference on Parallel and Distributed

Processing Symposium, Rhodes Island, pp. 1-8,

2006.

[6] Cheung D., Ng T., Fu A., and Fu Y., “Efficient

Mining of Association Rules in Distributed

Databases,” IEEE Transactions on Knowledge

and Data Engineering, vol. 8, no. 6, pp. 911-922,

1996.

[7] Han J., Pei J., and Yin Y., “Mining Frequent

Patterns without Candidate Generation,” in

Proceeding of ACM SIGMOD International

Conference on Management of Data, New York,

pp. 1-12, 2000.

[8] Hamedanian M., Nadimi M., and Naderi M., “An

Efficient Prefix Tree for Incremental Frequent

Pattern Mining,” International Journal of

Information and Communication Technology

Research, vol. 3, no. 2, pp. 49-55, 2013.

[9] Hidber C., “Online Association Rule Mining,” in

Proceeding of the ACM SIGMOD International

Conference on Management of Data,

Philadelphia, pp.145-0156, 1999.

[10] Leung C., Khan Q., Quamrul I., Li Z., and Hoque

T., “CanTree: A Canonical-Order Tree for

Incremental Frequent-Pattern Mining,”

Knowledge and Information Systems, vol. 11, no.

3, pp. 287-311, 2007.

[11] Li N., Zeng L., He Q., and Shi Z., “Parallel

Implementation of Apriori Algorithm Based on

MapReduce,” International Journal of

Networked and Distributed Computing, vol. 1,

no. 2, pp. 89-96, 2013.

[12] Park J., Chen M., and Yu P., “An Effective Hash-

Based Algorith for Mining Association Rules,” in

Efficient Adaptive Frequent Pattern Mining Techniques for Market Analysis… 185

Proceeding of PYOC ACM-SIGMOD

International Conference Management of Data,

New York, pp.175-186, 1995.

[13] Park J., Chen M., and Yu P., “Efficient Parallel

Data Mining for Association Rules,” in

Proceeding of International Conference

Information and Knowledge Management,

Baltimore, pp. 31-36, 1995.

[14] Savasere A., Omiecinski E., and Navathe S., “An

Efficient Algorithm for Mining Assocation Rules

in Large Databases,” in Proceeding of

International Conference Very Large Databases,

San Francisco, pp. 432-444, 1995.

[15] Sherly K., Nedunchezhian R., and Rajalakshmi

M., “IAPI Quad-Filter: An Interactive and

Adaptive Partitioned Approach For Incremental

Frequent Pattern Mining,” Journal Of

Theoretical and Applied Information Technology,

vol. 63, no. 1, pp. 147-157, 2014.

[16] Tanbeer S., Ahmed C., Jeong B., and Lee Y.,

“Efficient Single-Pass Frequent Pattern Mining

Using a Prefix-Tree,” Information Science, vol.

179, no. 5, pp. 559-583, 2008.

[17] Veloso A., Meira W., Carvalho M., Parthasarathy

S., and Zaki M., “Parallel, Incremental and

Interactive Mining for Frequent Itemsets in

Evolving Databases,” in Proceeding of

International Workshop High Performance Data

Mining, New York, pp. 1-10, 2003.

[18] Yafi E., Al-Hegami A., Alam A., and Biswas R.,

“YAMI-Incremental Mining of Interesting

Association Patterns,” The International Arab

Journal of Information Technology, vol. 9, no. 6,

pp. 504-510, 2012.

[19] Yang C. and Yang D., “IMBT-A Binary Tree for

Efficient Support Counting of Incremental Data

Mining,” in Proceeding of International

Conference on Computational Science and

Engineering IEEE Computer Society, Vancouver,

pp. 324-329, 2009.

Sherly Kuriakose received her B.E

(Electronics & Communication)

degree in 1990, M.Tech

(Information Technology) degree in

2004 and Ph.D (Computer Science

and Engineering) in 2015. Presently

she is working as Associate

Professor in Rajagiri School of Engineering,

Ernakulam. She also worked as Head of Department of

Information Technology at Toc H Institute of Science

& Technology, Arakunnam. She has more than 25

years of academic experience. Her research interests

are Network security, Knowledge Discovery in

Databases, Distributed Database Systems and Parallel

Processing.

Raju Nedunchezhian is the

Professor in Coimbatore Institute of

Technology, TamilNadu. Prior to

this, he was Principal of Sri

Ranganathar Institute of

Engineering and Technology,

Coimbatore and Vice-principal of

KIT-Kalaignarkarunanidhi Institute

of Technology, Coimbatore. He also worked as

Research Coordinator of the Institute and Head of

Computer Science and Engineering Department (PG)

at Sri Ramakrishna Engineering College, Coimbatore.

He has more than 25 years of experience in research

and teaching. He obtained his BE(Computer Science

and Engineering) degree in 1991, ME(Computer

Science and Engineering) degree in 1997 and

Ph.D(Computer Science and Engineering) in 2007. He

has guided many UG, PG, M.Phil and Ph. D scholars.

Currently, he is research guide for many Ph.D scholars

of the Anna University, Coimbatore, and Bharathiar

University. His research interests include knowledge

discovery and data mining, Soft Computing,

distributed computing, Information Privacy and

security, Video processing and Software Engineering.

He has published many research papers in

national/international conferences and journals. He is a

Life member of Advanced Computing and

Communication Society and ISTE.

