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1. Introduction 

Evolution of technology and globalization create the 

subsequent acceleration of information flow. Thus, 

extraction of knowledge from the large pool of 

information is becoming a very difficult task. The 

rapid advancement in electronic commerce increases 

online transactions every year. Organizations store 

their ever-increasing day-to-day transactional details in 

their transaction databases. Data mining prepares 

models by analyzing the hidden relationships among 

stored data and deals with the problems that arise with 

large data repositories. 

The classical application of Association Rule 

Mining (ARM) is market-basket analysis that has been 

used to predict customer purchasing/spending behavior 

by analyzing the frequent itemsets in a large pool of 

transactions. Frequent patterns are a set of all subsets 

of items that frequently appear together in a dataset. 

Frequent Pattern Mining (FPM) plays a key role to 

obtain associations and correlations among items in a 

large transactional dataset [2]. As the amount of 

transactions increases it becomes very difficult to 

determine the frequent patterns with less time and 

space complexities. Scalability is one of the main 

requirements of an FPM algorithm. Some of the 

algorithms address the space complexity problem of 

very large database using partitioned database 

approach [14]. Partitioned algorithms generate all 

possible large itemsets from each partition in a 

sequential manner in the first scan, which may  

 

contain false positives (globally infrequent). During 

the second scan they remove the false positives and the 

global frequent sets are generated. The occurrence of 

false positives may lead to space complexity and time 

complexity for very large database. Thus, sequential 

algorithms [2, 7, 12] can provide scalability and very 

good performance up to a certain database size limit. 

Hence, parallel mining approaches [1, 5, 6] are 

required to provide scalability in massive data stores in 

an efficient manner. 

As the day to day transaction details get added to 

the transactional database, database becomes dynamic 

and incremental updating of frequent patterns is 

required. Also there is possibility for change in the 

customer’s purchase behavior due to the change in life 

style as well as addition of new customers. Thus to 

reflect the current status of database, old patterns must 

be removed and new patterns might appear. Many of 

the FPM algorithms [2, 7, 12, 14] prepare static 

patterns and use them for long term predictions; but 

those may not be capable to accommodate the 

behavioral changes in the incremental database. Thus 

dynamic algorithms [3, 4, 8, 9] that are capable of 

incremental and interactive mining with less 

computational cost are essential for an incremental 

database. The essential key feature of an incremental 

algorithm is to reuse the previously mined information 

and combine this information with the new data to 

incrementally update the frequent itemsets without 

rescanning the entire database. 
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The objective of this research is to develop FPM 

algorithms which are efficient, scalable, faster and 

dynamic to support behavioral changes using both 

sequential and parallel approaches. Sherly [15] 

proposes Interactive and Adaptive Partitioned 

Incremental (IAPI) FPM (IAPI Quad-Filter) algorithm 

for incremental FPM in large databases to solve the 

space and computational complexity. But it requires 

more than two database scan (equivalent to the number 

of frequent items), thus the data fetching time is fairly 

high. This paper proposes two incremental FPM 

algorithms (modified IAPI versions) capable of 

generating large itemsets from an incremental massive 

data store in two database scans and incrementally 

update the frequent itemsets without rescanning the 

entire database using sequential and parallel 

approaches with a system having fairly good storage 

and computing capability. 

1.1. Overview of the Proposed Algorithms 

IAPI type of algorithms use a database partitioning 

approach to produce frequent itemsets without 

generating local frequent itemsets. In these approaches, 

transaction items are pre-processed and arranged 

according to the item code; thus individual item 

counting and count comparisons are made faster. 

Rather than fixing single minimum support value IAPI 

Quad-filter uses a range of support values (low, high) 

for making the dynamic and the interactive mining 

faster. It logically divides the dataset into small sized 

non-overlapping horizontal partitions of user specified 

sizes so that each partition can be accommodated in the 

main memory. To reduce the computational cost, I/O 

overhead as well as space complexity, each Frequent 

Item (FI) transaction group is collected separately and 

four level filtering is done to remove infrequent items 

[15].  

Unlike Apriori [2] in IAPI, the number of 

transaction to be compared and their length both get 

reduced in finding higher frequent itemsets. This 

method is capable to incrementally update the database 

to accommodate the customer behavioural changes. 

IAPI also provides the user with the facility to 

interactively adjust the minimum support value as per 

one’s own convenience. To find the higher frequent 

itemsets, IAPI Quad-filter collects each FI transaction 

groups separately one after the other, thus the number 

of database scans required is the number of frequent 1-

itemsets, which is fairly high. Thus this approach is 

best suited with systems having low memory capacity. 

To improve the performance, this paper proposes 

another algorithm Faster-IAPI, which generates 

frequent patterns in two database scans only. It collects 

all the FI transaction groups simultaneously in one 

database scan; but the down side is that it requires 

more memory (multiple memory buffers) to hold the 

different FI transaction groups. Then the higher 

frequent itemsets of each transaction groups are 

obtained sequentially. 

Speed of operation in very large dataset can be 

further improved using parallel mining approach. Thus 

a second algorithm Parallel-IAPI is suggested for 

shared memory multi processor systems. This method 

finds the higher frequent itemsets of all frequent 1-

itemsets simultaneously using parallel processors. In 

this approach each Local Processor (LP) finds the local 

partition count of each item and sends it to Master 

Processor (MP) to obtain their global count. MP 

identifies the frequent 1-itemsets and sends the count 

of all frequent items to each LP and assigns them to 

obtain higher frequent itemsets of each item. LP 

collect the transaction groups of assigned FI with their 

co-occurring items (items having count greater than it) 

and find their higher frequent itemsets concurrently 

using the IAPI approach. The main attraction of this 

approach is that each LP work independently for 

higher frequent itemset generation; thus there is very 

less communication overhead. Figures 1 and 2 

describes the frequent itemset generation procedures of 

Faster-IAPI and Parallel-IAPI respectively. 

 

Figure 1. Functional block diagram of Faster-IAPI. 

 

Figure 2. Functional block diagram of parallel-IAPI. 

This paper is organized as follows. Section 2 

describes related work on different FPM algorithms. 

Section 3 presents the proposed algorithms with the 

details of the various phases of the algorithms and their 

functionalities are described using sample data. 

Section 4 gives the details of experiments conducted 

and performance analysis. Section 5 concludes the 

paper. 

2. Related Works 

The popular algorithm Apriori [2] forms the 

foundation for static frequent pattern mining. The 

major problem of Apriori is that it has to read the 
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entire database in every pass, although many items and 

transactions are no longer needed in later passes. It 

generates candidate itemsets iteratively, which makes 

the computational cost very high. Instead of using 

generate and test paradigm of Apriori, FP-tree 

approaches [7, 8, 10] encode the dataset using a 

compact tree structure and directly extracts the 

frequent itemsets from this structure. Thus tree 

approaches outperform Apriori-like approaches by 

generating frequent patterns without producing 

candidate sets. But it has to generate conditional 

pattern bases and sub-conditional pattern tree 

recursively.  

To obtain frequent sets from very large datasets 

with low memory utilization, [14] suggests a 

partitioning algorithm which generates frequent 

itemsets in two database scans. During the first scan, it 

identifies the local frequent item-sets from each 

partition and in the second scan it estimates the global 

frequent sets. This algorithm is highly dependent on 

the heterogeneity of the database and may generate too 

many independent local frequent itemsets. To analyze 

the problem of market basket data, [4] presents an 

algorithm DIC which uses fewer passes over the data 

than classical algorithms to find the frequent itemsets. 

It provides the flexibility to add and delete counted 

itemsets on the fly. Downside of DIC is that it is 

sensitive to the homogeneity of data. 

An interactive mining algorithm, Continuous 

Association Rule Mining Algorithm (CARMA) [9] 

requires two database scans to produce large itemsets. 

CARMA provides a lower and upper bound for its 

support for each set. Thus, the user can interactively 

adjust the support and confidence at any time. A 

dynamic algorithm CanTree [10] facilitates 

incremental mining as well as interactive mining. In 

this approach, the items in each transaction are 

arranged in a canonical order and the entire 

transactions are stored in a tree structure with one 

database scan. The construction of CanTree is 

independent of the threshold values. Thus, interactive 

mining is possible without rescanning the entire 

database. A novel tree structure called CP-tree [16], 

which creates incremental frequent patterns with the 

support of interactive mining in one database scan. 

First phase inserts transactions into CP-tree and second 

phase rearranges the items according to the frequency 

order. Since items are arranged in the ascending order, 

CP-tree has less number of nodes compared to 

CanTree. But tree reconstruction introduces additional 

computations. To reduce the time of restructuring a 

new prefix tree structure proposed in [8]. An 

Incremental Mining Binary Tree (IMBT) algorithm is 

presented in [19] in which each node of the tree 

represents one of all the possible combinations of 

items in the entire dataset. It processes a transaction at 

a time and record the possible itemsets in the 

respective nodes, thus reduces the processing and I/O 

time but requires more memory to keep all 

combinations of items in the database. To reduce the 

search space and model size in evolving database, 

YAMI (YAMI is derived from the names of the 

Authors) [18] a dynamic ARM algorithm is 

developed. It uses a shocking interestingness measure 

as a constraint to discover rules that are interesting for 

the user. 

A potential solution for improving the performance 

and scalability in FPM from very large database is to 

parallelize the mining algorithms. An algorithm 

Parallel Data Mining (PDM) is proposed [13] for 

parallel mining which is an adaptation of the Direct 

Hashing and Pruning (DHP) algorithm [12] in the 

distributed environment. In PDM each node computes 

the globally large itemsets by exchanging the support 

counts of the candidate sets. Downside of this is that 

O(n
2
) messages are required for support count 

exchange among n nodes for each candidate set. 

Another algorithm Count Distribution (CD) [1], which 

is an adaptation of the Apriori algorithm, is proposed 

for the same parallel mining environment. This 

algorithm also has the similar problems. A tree-

partition algorithm for parallel mining of frequent 

patterns on shared-memory structures is presented in 

[5]. It builds one FP-Tree of the entire database, then 

partitions it into several independent parts and 

distributes them to different threads. This approach 

uses a Master/Slave Model. The parallel 

implementation of Apriori algorithm based on 

MapReduce framework [11] is suggested for 

processing huge datasets using a large number of 

computers. But these parallel algorithms are not 

suitable for incremental database. An incremental, 

interactive and parallel mining technique for shared 

memory multiprocessor system is designed in [17] for 

incremental mining. This approach is based on the 

adaptive tidlist interval distribution technique, which 

continuously assigns partitions of the tidlist among the 

different processors. A parallel IMBT structure is 

proposed in [3] to enumerate the support count of each 

itemset in an efficient way after the new transactions 

are added or deleted. 

3. Proposed Algorithms 

3.1. Problem Definition 

Let D be a database with N number of transactions. Let 

I be the item domain, {I1, I2, ..., Iq}. The problem is to 

identify all interesting frequent patterns in an 

interactive and incremental manner with fewer 

complexities. A partition P⊆D of the database refers to 

any subset of the transactions contained in the database 

D. Initially the database D is logically partitioned into 

n non-overlapping partitions of size Z, i.e., Pi∩Pj = Φ, 

i≠j. Two minimum support values used here are: Sl, Sh 

namely, lower minimum support value and upper 
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minimum support value. It creates two category 

itemsets: Frequent (Fset), Nearly Frequent (NFset). 

Itemset X is Frequent if support(X)≥Sh and Nearly 

frequent if Sl≤ support (X)≤ Sh. Pn represents a 

partition number at which a NFset has been last 

updated. Let F1-itemset be the frequent 1-item domain, 

F1-itemset={f1, f2, ..., fm}in the ascending order of 

occurrence count. Each FI is associated with a co-

occurring item set list Cf, {Cf1, Cf2, ..., Cfm-1} refers to 

the list of items to be considered along with each FI to 

find the higher frequent itemsets, where as Cf1 be the 

co-occurring item list of FI f1 i.e., Cf1={f2, f3,..., fm}. In 

general: Cfi = {{fi+1, fi+2, ..., fm} |frequency(fi+1, fi+2,…, 

fm)≥ frequency(fi)} i.e., Cf1⊃Cf2⊃, ..., ⊃Cfm-1, it 

indicates that as the frequency of occurrence is more 

the number of co-occurring items considered for 

frequent itemset mining get reduced. 

3.2. Faster-IAPI Algorithm 

This algorithm has all the features of IAPI Quad-filter 

and has four phases. The first phase generates the 

frequent itemsets from the large history database. The 

second phase accommodates the newly arrived 

transactions to the existing set and updates the frequent 

itemsets to provide incremental mining. The third 

phase removes the old transactions after a preset time 

period and modifies the patterns to accommodate the 

behavioural changes. The last phase provides the 

facility to interactively adjust minimum support value 

as per the user’s requirement. In the first scan, Faster 

IAPI adopts the same method of IAPI Quad-filter and 

generates frequent 1-itemsets. To generate higher 

frequent itemsets, do the second scan of database and 

collect only frequent items from each transaction. 

Then, form separate transaction set groups of each FI 

and keep only the corresponding co-occurring items of 

each transaction group in separate buffers as shown in 

Figure 3. Also eliminate the similar transaction entry 

in each transaction group (compress the transaction 

set) by recording the occurrence count, then find the 

frequent items in the selected group and eliminate 

others. Higher frequent itemsets are obtained from 

each buffer sequentially using IAPI Quad-filter 

approach as shown in Figure 3. Frequent itemset 

generation steps of Faster-IAPI algorithm are given 

below. 

 

Figure 3. Frequent set generation. 

3.2.1. Faster-IAPI Frequent Item Set Generation 

Steps (Phase 1) 

Input: 

 D: Transaction database contain N transactions (T1, 

T2, …, TN), horizontally partition D into n non-

overlapping partitions (P1, P2, …, Pn) and sort the 

items of each transaction in the order of item code. 

 Sl: Low minimum support value 

 Sh: User selected min. support (Sh > Sl) 

 Output: 

Complete set of frequent itemsets 

1. For each partition do 

Read each transaction and find frequency flocal(i) 

for each item i; 

2. Identify frequent 1-itemsets F1-itemset ={i | ∑ flocal(i) 

≥ Sh for each item i} 

3. Sort F1-itemset in ascending order F1-sorted ={f1, f2, …, 

fm} 

4. Prepare co-occurring item set list Cfi = {{fi+1, fi+2, 
…, fm}|frequency(i+1, fi+2, …, fm) ≥ frequency(fi)} for 

each fi  

5. Read each transaction of D and do 

Collect transactions contain each fi in to separate 

buffers and remove items that are not in the Cfi list 

from each transaction. 

6. For each fi-transaction group: 
 

 Find frequency of each Cfi item in the selected fi-

transaction group 

 If frequency(Cfi ) ≥Sl  

 F2-itemset= {Cfi} for each Cfi item  

 Else remove Cfi from the selected buffer 

 Sort F2-itemset in ascending order 

 To obtain higher frequent itemsets of F2  

for each item in F2-itemset do 

Fitemset =Higher-frequentItemset-Generate (fi-

transactions(Buffer1), F2-itemset ); 

If support(Fitemset) ≥ Sh then 

Fset=Fitemset  

Else NFset=Fitemset  

Procedure Higher-frequentItemset-Generate (fi-

transactions (Buffer1), Fn) //Fnp:p
th
 item of Fn-itemset: 

1. Collect fi-transactions contain Fnp to a new 

temporary buffern and remove items having count ≤ 

Fnp from each transaction in the buffern, p 

initialized to 0 

2. Find frequency of each item in the selected Fnp 

transaction group 

3. F(n+1)-itemset ={Fn(p+k)|frequency(Fn(p+k)) ≥Sl}for each 

Fn(p+k) item where k=1 to (m-p) 

4. else remove Fn(p+k) from the Fnp transactions 

5. Sort F(n+1)-itemset in ascending order 

6. To obtain higher frequent itemsets of fi do 

7. if (F(n+1)-itemset≠Φ) then 
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n=n+1 & Repeat above steps 

8. else if p< sizeFn-itemset) then 

   p=p+1 & repeat above steps 

9. else remove buffern content n=n-1, p=1 

10. if n ≥ 2 repeat above steps  

11. else return Fitemset 

3.2.2. Working of Faster IAPI 

The working principle of algorithm is illustrated with a 

sample dataset having 10 transactions with 5 distinct 

items {p, q, r, s, t} shown in Table 1. It is divided into 

two horizontal partitions of size 5 transactions in each. 

Scan each transaction and count of each item in both 

partitions is recorded separately, which is given in 

Table 2. Then, calculate total count of each item and 

identify the frequent items (items with count greater 

than or equal to minimum support i.e., 50% of total 

transaction count). Next step is to find the higher 

frequent itemsets of each frequent item. This approach 

reduces the database scan and the computational 

complexity by grouping transaction containing each FI 

in to separate buffers as shown in Table 4 during the 

second database scan. To reduce the space complexity 

while forming the frequent transaction group, each 

group needs to consider only the items that are having 

count greater than its own count which is shown as co-

occurring items list in Table 3. Higher frequent itemset 

generation steps of frequent items q and p are 

illustrated in Figures 4 and 5 respectively. To facilitate 

incremental mining this algorithm uses two minimum 

support values Sh and Sl and considers itemsets having 

support greater than Sh (50%) as frequent itemsets 

(FSets) and Sl (30%) as nearly frequent itemsets 

(NFsets). Fsets and NFsets obtained from each 

transaction group are recorded separately into Tables 5 

and 6 respectively. 

Table 1. Dataset. 

Tid Transactions partition 

1 r, s, t  
 

P1 
2 p, q, s, t 

3 r, t 

4 p, s, t 

5 p, r, s, t 

6 p, q, r, s  
 

P2 
7 r, s 

8 p, r, s 

9 p, r, s, t 

10 q, s, t 

Table 2. Item Count.  

Item P1 P2 

p 3 3 

q 1 2 

r 3 4 

s 4 5 

t 5 2 

Table 3. Co-items list. 

Item Co-Items 

p r, s, t 

r s, t 

t s 

Table 4. Buffers. 

Tid Transactions  count 

Buffer p 
2, 4 s, t 2 

5,9 r, s, t 2 

6,8 r, s 2 

Buffer r 
1,5,9 s, t 3 

3 t 1 

6,7,8 s 3 

Buffer t 

1,2,4,5,9,10 s 6 

 

Figure 4. Buffer r frequent set generation steps. 

 

Figure 5. Buffer p frequent set generation steps. 

Table 5. Frequent itemsets. 

F-itemset count 

p, s 6 

r, s 6 

t, s 6 

Table 6. Nearly frequentsets. 

NF-itemset count 

p, t 4 

r, t 4 

p, r, s 4 

p, t, s 4 

r, t, s 3 

3.2.3. Incremental Mining (Phase 2) 

This algorithm is capable to accommodate newly 
arrived transactions and update the existing frequent 
itemsets without rescanning the entire datasets by 
utilizing NFsets. Incremental mining process is 
illustrated using the example given in Tables 7, 8, 9, 
10 and 11. The newly added transaction set is recorded 
in Table 7 and count of items in the new partition is 
calculated and added with the existing count to update 
the frequent items, Table 8. FI transaction groups of 
the newly added partition are collected to separate 
buffers Table 9 and find their higher frequent itemsets 
in the new partition. Then update the count of the 
existing Fset belongs to each group Table 10. If any 
existing frequent item/itemsets is found to be 
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infrequent, remove it from the Fset list and include it 
with the NFset list if it’s support≥Sl along with the 
current partition number Table 11. If any new frequent 
itemset obtained from new partition, obtain its global 
count using NFset. If not obtained from NFset, then 
conduct a possibility test using Equation 1 and if 
possible to be frequent find their global count from the 
old transaction set. 

Table 7. New transactions. 

Tid Transactions 

11 r, s, t 

12 q, s 

13 p, q, r, t 

14 q, s, t 

15 p, r, s, t 

Table 8. Updated item count. 

Item P1 P2 P3 total 

p 3 3 2 8 

q 1 2 3 6 

r 3 4 3 10 

s 4 5 4 13 

t 5 2 4 11 

Table 9. New buffers. 

 

 

 

 

 

 

 

Table 10. Updated frequent sets. 

Updated Fitemset New count 

r, s 8 

t, s 9 

Table 11. Updated NFsets. 

NF-itemset 
New 

count 

p, t, s 5 

r, t, s 5 

p, r, s 5 

p, r 6 

p, s 7 

p, t 6 

r, t 7 

         S*Z+(Pc-Pi-1)(U*Z-1)+L*Pi*Z-1≥Pc*U*Z                 (1) 

Where Pi no. of partitions used for initial pattern 
generation, Pc current partition no, Z Partition size, L 
Lower minimum support, U Upper minimum support, 
S new Fset support in new partition. 
 

3.2.4. Accommodation of Behavioural Changes 

          (Phase 3) 

After a certain period, the behaviour/purchase patterns 
may change. Thus to reflect the behavior change older 
transactions (partitions) must be removed as shown in 
Table 12. After the partition removal the occurrence 

frequency of each item may change and due to the 
heterogeneity of the dataset, there is a chance of new 
frequent itemsets to occur with the existing frequent 
items. To update the frequent itemsets first update the 
count of each item by deducting the count of each item 
in that partition from the total count as shown in Table 
13. If any existing FI becomes infrequent, remove it 
from the frequent itemset and if any new FI occurred, 
find its higher frequent itemsets by rescanning the 
remaining partitions. Updated item count recorded in 
Table 13 shows that a new FI q is generated. Now 
update the co-item list as shown in Table 14 and find 
the higher frequent itemsets of the newly formed FI q 
by collecting transactions containing item q from the 
entire dataset into buffer q as shown in Table 15. Next 
to update the count of Fset and NFset, find their count 
in the removed partition buffers as shown in Table 17 
and deduct them from the previous count. Finally 
update the frequent and nearly frequent itemset list 
based on the updated count as shown in Tables 16 and 
18. 

Table 12. Updated dataset. 

Tid Transactions Partition 

6 p, q, r, s  

 

P2 
7 r, s 

8 p, r, s 

9 p, r, s, t 

10 q, s, t 

11 r, s, t  
 

P3 
12 q, s 

13 p, q, r, t 

14 q, s, t 

15 p, r, s, t 

Table 13. Updated Item count. 

Item P2 P3 total 

p 3 2 5 

q 2 3 5 

r 4 3 7 

s 5 4 9 

t 2 4 6 

Table 14. Updated co-item list. 

Item Co-Items 

p r, s, t 

r s, t 

t s 

q p, r, s, t 

Table 15. New buffer q. 

Tid Transactions with item q 

6 p, q, r, s 

10,14 q, s, t 

12 q, s 

13 p, q, r, t 

Table 16. Updated fset. 

Updated 

Fitemset 

New count 

r, s 6 

t, s 5 

p, r 5 

 

 

Tid Transactions  

Buffer p 

13 r, t 

15 r, s, t 

Buffer r 

11  s, t 

13  t 

15  s, t 

Buffer t 

11 s 

14 s 

15 s 
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Table 17. Removed Buffers. 

Tid Transactions 

Buffer p 

2,4 t, s 

5 r, t, s 

Buffer r 

1,5 t, s 

3 t 

Buffer t 

1,2,4,5 s 

Table 18.Updated NF-sets. 

 

 

 

 

 

 

 

3.2.5. Interactive Mining (Phase 4) 

Finding an appropriate support value for a dataset is a 

challenging task. It is better to provide the users with 

the facility to change the support value as per their 

requirements. Interactive mining provides the user to 

interactively adjust minimum support value. 

1. When user increase the preset Sh value, choose the 

itemsets with support≥ new support as Fset from the 

existing frequent set and shift others to the NFset 

list and record their partition number (Pn) as last 

partition number. 

2. When the user reduces the Sh value, select the 

itemsets having support≥ new support from the 

existing NFset and include it along with the existing 

Fset list.  

3. If the Partition number (Pn) of any of itemset in the 

NFset is less than the current partition number (Pc), 

then find their count in the remaining partitions 

(Pn+1, Pn+2,…, Pc) to get the total count and identify 

the newly formed Fsets. 

4. Also choose the items having count greater than or 

equal to the newly set support count as frequent 

items and find their frequent supersets from the 

entire database 

3.3. Parallel IAPI Algorithm 

Parallel IAPI algorithm generates higher frequent 

itemsets of n FI in parallel manner using multiple 

processors. Thus, time requirement for higher frequent 

itemset generation get reduced to 1/n
th
 of frequent 

itemset generation time of Faster IAPI. In this 

approach count of each item in each partition are 

obtained by n LP simultaneously and send them to the 

MP. Then MP calculates their global count and 

identifies the frequent items (support≥Sh). Also 

prepare a co-occurring item list, Cf for each frequent 

item. For higher frequent itemset generation MP 

assigns separate LPs for each frequent item, and then 

MP rescans the database and broadcasts each 

transaction to all LPs. Further there is no 

communication required between LP and MP. LP 

collect the transactions containing the assigned FI and 

select only the co-occurring items of the assigned fi 

from each transaction for higher frequent itemset 

generation using IAPI approach. Parallel IAPI requires 

no communication among LPs, thus very less 

communication overhead. Parallel IAPI Algorithm 

steps of each phase are given in following sections. 

3.3.1. Working of Parallel IAPI 

The working of parallel IAPI can be illustrated using 

the same sample dataset given in Table 1. Consider 

that there are three processors Pr1 and Pr2 and Pr3 

and Pr1 and Pr2 are considered as LP and Pr3 as MP. 

In Phase 1 during the first database scan Pr1 and Pr2 

calculate the item count concurrently and submit to Pr3 

to find global frequent itemsets as shown in Table 2. 

Then, Pr3 generates co-occurring item list of each item 

as shown in Table 3 and assign Pr1 and Pr2 to find the 

higher itemsets of frequent items p and r. Pr3 scans 

database second time and send each transaction to both 

the processors for the buffer storage as shown in Table 

4. Then, higher frequent itemsets of items r and p are 

generated in parallel as shown in Figures 4 and 5. Item 

t has only one co-item, thus its count can be directly 

obtained from buffer t. All Fset and NFset generated 

are consolidated at processor Pr3 as shown in Tables 5 

and 6).  

In incremental mining (Phase 2) the count of each 

item in the newly added partition as shown in Table 7 

is calculated at Pr3 and added with the previous count 

as shown in Table 8 to identify the present frequent 

items. FI buffers in the newly added partition as shown 

in Table 9 are generated and frequency of the higher 

frequent itemsets is obtained by Pr1 and Pr2. Higher 

frequent itemsets count in the new partition is added 

with the previous count by Pr3 to update the frequency 

of the existing Fset and NFset as shown in Tables 10 

and 11. New patterns may get generated on adding 

new transactions made by the new customers as well 

due to the change in purchase behavior. Thus to reflect 

the pattern changes Phase 3 old transactions may be 

removed as shown in Table 12 and update the frequent 

patterns. Frequent pattern updating procedure is same 

as that used in Faster IAPI. Count of individual items 

in the removing partition is calculated by Pr3. Further 

the frequency of the existing frequent itemsets in the 

removed partition is obtained by the LP as shown in 

Table 17 and is deducted from the previous count by 

MP. Higher frequent itemsets of newly created 

frequent items (F1new) is obtained by scanning the 

remaining partitions by Pr3 in coordination with Pr1 a 

Pr nd 2 as shown in Table 15 and update the Fset and 

NFset as shown in Tables 16 and 18. 

 

NF-itemset New count 

p, t, r 3 

r, t, s 3 

p, r, s 4 

p, s 4 

p, t 3 

r, t 4 

q, s 3 
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3.3.2. Parallel IAPI Frequent Itemset Generation 

Steps (Phase 1) 

Input: 

 D: Transaction database contain N transactions (T1, 

T2, …. TN), horizontally partition D into n non-

overlapping partitions (P1, P2, …, Pn) and sort the 

items of each transaction in the order of item code.  

 Sl: Low minimum support value. 

 Sh: User selected minimum support (Sh > Sl). 
 

Output: 
 

Complete set of frequent itemsets: 

1. For each LP do 

Read local partition, find local 

frequency flocal(i) and send to MP for each item i; 

2. In MP  

 F1-itemset ={i | ∑ flocal(i) ≥ Sh for each i} 

 Sort F1-itemset in ascending order F1-sorted ={f1, 

f2,…,fm}. 

 Prepare co-occurring itemset list  
  Cfi={fi+1,fi+2,..., fm} 

   |count(fi+1,fi+2,…, fm) ≥ count(fi)} for each fi and 

send to LP(i) 

 Read each transaction of D and send to LP. 

3. For each LP do 

 Collect transactions contain FI fi in to buffer1 and 

remove items that are not in the Cfi list from each 

transaction. 

 Find frequency of each Cfi item in the selected fi-

transaction group 

 If frequency(Cfi ) ≥ Sl  

   F2-itemset={Cfi } for each Cfi item  

 Else remove Cfi from the selected buffer. 

 Sort F2-itemset in ascending order. 

 To obtain higher frequent itemsets of fi. 

 Fitemset = Higher-frequentItemset-Generate 

(fi-transactions(Bufferi), F2-itemset ); 

 Send Fitemset to the MP. 

4. In MP  

Fset = Fitemset │(support ≥ Sh) 

Else NFset = Fitemset  

3.3.3. Incremental Mining Steps (Phase 2) 

1. In MP 
 

 Read each transaction in the new partition (Pnew) 

and update the count of each item i. 

 n = n+1, update F1-itemset. 

 If F1new then set Cfnew ⊃ Cf1 and update existing 

Cf.  

 Collect transactions contain F1new item from all 

the partitions and find its higher frequent 

itemsets.  
 

2. In each LP do 
 

 Read each transaction of Pnew and follow the 

same procedure of higher frequent itemset 

generation. 

 Send all frequent itemsets to the MP. 
 

3. In MP 
 

 Update existing Fset and NFset. 

 If any of the existing Fset is not updated rescan 

Pnew and update it. 

 If any existing Fset become infrequent shift to 

NFset list, similarly any existing NFsets become 

frequent do vice versa. 

 If Fsetnew in Pnew, conduct possibility test and if 

possible to be frequent find its global count by 

rescanning the previous partitions. 

 

3.3.4. Accommodation of Behavioural Changes 

(Phase 3) 
 

1. Remove partition P1 and update each item count 

TCount(i)=Count(i)–P1Count(i) for each i and 

identify the current frequent items; 

2. If F1new then set Cfnew⊃Cf1 and update existing Cf. 

3. Collect transactions contain F1new item from all the 

remaining partitions and find its higher frequent 

itemsets. 

4. Find the count of existing Fset and NFset in the 

removing partition and deduct it from existing 

count. 

5. If any existing Fset become infrequent shift it to 

NFset list, similarly any existing NFsets become 

frequent do vice versa. 

3.3.5. Interactive Mining (Phase 4) 

Pn: Last updated partition number of NFset. 

Pc: Current partition number. 

Shnew: Newly set minimum support by user. 

1. If Shnew>Sh 

For each Fset  

If Support(Fset)<Shnew shift to NFset 

2. If Shnew < Sh 

 For each NFset  

 If Pn < Pc then for Pn+1 to Pc find the 

support(NFset) 

if support(NFset) ≥ Shnew shift to Fset 

 For each i if count(i) ≥Shnew shift to F1-itemset then 
 

a. If F1new then set Cfnew⊃ Cf1 and update existing 

Cf. 
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b. Collect transactions contain F1new item from 

all the partitions and find its higher frequent 

itemsets.  

4. Experimental Results and Performance 

Analysis 

Functionalities and effectiveness of the proposed IAPI 

algorithms were tested with market basket datasets 

T10I4D100K prepared by IBM Almaden Quest 

research group and a Synthetic dataset. This algorithm 

is developed and tested on Intel (i3), 3.2 GHz CPU 

having 4 GB RAM with Microsoft Windows 7 OS 

using NetBeans IDE 7.0.0 and MySQL Server 4.1. 

Execution time and memory utilization are compared 

for various support threshold values with differently 

sized partitions as well as with different number of 

partitions in both datasets. 
Experimental results show that execution time is 

directly proportional to the size of the dataset when the 
minimum support value remains constant as shown in 
Figure 6. Faster IAPI requires only two database scan 
for frequent itemset generation where as IAPI Quad-
filter requires (n+1) database scans if there are n 
frequent 1-itemsets. Thus initial pattern creation time 
of Faster IAPI is less compared with IAPI Quad filter. 
Updating of the frequent sets on addition of new data 
and deletion of old data requires less time compared 
with the initial pattern creation time. From the test 
results it is observed that updating time is related with 
the heterogeneity of the data, i.e., if new frequent 1-
itemset generated, then it requires entire database scan, 
else previous information can be used and require less 
time (5%-30% of the initial pattern creation time) 
depends on the number of FI sets as shown in Figure 7. 
It is also observed that, when the support threshold 
reduces, the number of frequent items increases, thus 
execution time required is more. Due to heterogeneity 
of dataset there are chances of reducing the number of 
frequent items, even though the dataset size increases. 
The test results illustrate that the execution time and 
the memory requirement of both sequential and 
parallel IAPI directly depend on the number of 
frequent items in the dataset. Graphical representations 
of the test results of IAPI are shown in Figures 6, 7 and 
8.  

 

Figure 6. Execution time comparison. 

 

Figure 7. Partition add, delete, support change time comparisons. 

 

Figure 8. Comparison of FPM algorithms. 

4.1. Performance Comparison 

Performance of Faster-IAPI is compared with popular 

algorithms: Apriori, Partition Algorithm, DIC, 

CanTree and IMBT using T10I4D100K dataset and a 

synthetic dataset. Speed of execution of Faster-IAPI is 

faster and the memory requirement of IAPI is lesser 

than other algorithms as shown in Figure 8. Though 

partition algorithm is designed for very large dataset, 

due to large number of independent local frequent sets 

generated for dense datasets, it requires more memory 

and computational delay; thus there is limitation in 

dataset size. For updating the frequent patterns, it is 

required to keep all local frequent sets in memory; also 

if the user wishes to change the support value, the 

rescanning of the entire database is required for 

updating the frequent sets. Since IAPI is not generating 

any local frequent sets, it is suitable for both dense and 

sparse datasets. 

 

Figure 9. Parallel FPM comparisons. 

DIC requires less time for updating the frequent 

patterns on addition of new datasets and the removal of 
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old transactions compared with IAPI. But the main 

difficulty with DIC is that it has to keep the count of 

all possible subsets in the entire transaction set; thus it 

consumes more memory. Subset generation introduces 

more computational cost and requires 40 to 50 times 

more time than IAPI for the initial frequent set 

generation. CanTree is suitable for both incremental 

and interactive mining. It keeps the entire transactions 

in the CanTree for preparing frequent itemsets; thus it 

requires 2 to 3 times more memory than IAPI. CanTree 

requires re-construction of FP tree for each FI for 

every addition, deletion as well as the support change 

cases, which may lead to more computational delay. It 

is observed that IMBT tree requires more time to 

create and more memory to store the entire tree. Thus 

it may not be suitable for datasets having more number 

of distinct items. This approach does not need not to 

predetermine the minimum support threshold and 

scans the database only once. IMBT requires less time 

to update the frequent sets on addition and deletion of 

data than IAPI algorithms. Performance of Parallel-

IAPI is tested with two parallel algorithms Parallel-

IMBT and parallel-Apriori using multi-threading and 

multi-processing systems as shown in Figure 9. 

Parallel-IAPI generates frequent itemsets in less time 

and requires less memory compared with Parallel-

IMBT and Parallel-Apriori. 

5. Conclusions 

To extract knowledge from the real life databases, 

efficient incremental and interactive FPM approaches 

of very large databases are required. This study 

proposes incremental and interactive mining 

algorithms with partitioning approach, designed to 

obtain frequent patterns from a very large sized dataset 

in sequential and parallel manner. This approach 

generates frequent sets without generating candidate 

sets/local frequent itemsets in two database scans with 

simple data structures. It combines the features of 

various algorithms such as Apriori, FP-Growth, 

CARMA and Partitioning algorithm to obtain frequent 

itemsets. The length and the number of transaction to 

be compared at each level of higher frequent sets get 

reduced due to four level filtering approaches. Thus, 

30% to 50% of data comparisons reduction is achieved 

at each level (n-itemsets to (n+1)-itemsets). This 

approach uses two bounds (low, high) for minimum 

support to incrementally update the frequent set 

without rescanning the entire dataset. This study 

illustrates that the proposed methods are capable to 

prepare more accurate user spending profile and 

market analysis with less time and space complexities 

compared with the existing techniques. 
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