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Abstract: Network represents a multitude of interactions through which information spreads within a society. Indeed, people 

are connected according to the way they interact with one another and the resulting network significantly determines the 

efficiency and speed of information spreading. This paper aimed at examining how topological structures of dynamic social 

network and Fermi function’s parameter β influence information spreading. In order to carry out this study precisely, two 

models were proposed to generate a variety of network structures. To study the spreading process, the models were integrated 

with an epidemic Susceptible-Infected-Recovered (SIR) model and designed in such a way that nodes rewire network edges 

according to Fermi function which depends on a parameter β. By studying the number of recovered nodes generated in the 

spreading process and the number of acquainted nodes that are receiving information in each time step, the results suggested 

that network structure and both positive and negative β play an important role in promoting information spreading. These 

results give a good indication that the structure of a society influences the spreading process. More specifically, the structure 

of dynamic interactions is a good promoter of information spreading. Moreover, it is proposed that rewiring more than three 

edges of random network could yield no significant advantages in promoting information spreading. The present study likely 

enriches our knowledge and provides more insight on information spreading.  
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1. Introduction 

Information spreading plays a key role in changing and 

dealing with a society, by means of knowledge sharing 

[8], broad casting technological innovations [12], and 

so on, through their social connection [17]. The 

network structure of who is connected to whom 

becomes an important tool of information spreading 

[26, 29]. In real networks, frequent social activities of 

individuals shape the network evolution such as 

rewiring of new edges or removal of edges or nodes 

[11]. This network dynamic enhances information 

spreading process [10, 14]. However, the role it plays 

has to be considered in conjunction with other 

influences such as Fermi function‟s parameter β [14, 

27] and social reinforcement [15]. Authors who 

previously devoted their interest to understanding 

information spreading mainly assumed a static society 

[14], a notable exception being that of Liu and Zhang 

[14].  

Liu and Zhang [14] found that information 

spreading is very narrow for negative β while effective 

when selecting positive β. It is not clear that this result 

is general and will hold when the network structure is 

altered. However, their study mainly concerned 

rewiring the link to only second order friends; 

specifically, it did not consider the neighbours with no 

connections to first order friends.  

 

 

In real social network, interactions are far from being 

static: nowadays people are really dynamic and 

continuously make friends. It is believed that people 

can make friends without connection from the first 

order friends. Through interactions in the sport‟s 

playgrounds, people can make friends. This 

deliberation motivates us to raise a question about the 

network structures and the dependence of parameter β 

in promoting information spreading. In this paper, the 

authors aimed at studying the effects of topological 

structures of dynamic networks and Fermi function‟s 

parameter β in enhancing the speed and efficiency of 

information spreading. In order to carry out this study, 

two models were proposed to generate a variety of 

network structures. To study the spreading process, the 

present models were coupled with Susceptible-

Infected-Recovered (SIR) model [2, 3, 9, 24] on four 

prototype complex networks: The Regular network 

(RG), the Erdős-Rényi (ER), the Watts-Strogatz (WS) 

and the Barabási-Albert (BA) models. The first model 

is a prototype example of RG with finite connectivity 

fluctuations [1]. However, the regular connectivity 

might be destroyed after rewiring with the present 

models; the second model is a random network with 

random connectivity fluctuations [1]. The third one is a 

small world network with bounded connectivity 

fluctuations. It interpolates between RG and random 
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network without changing the number of nodes or 

edges [1]. However, most of the nodes in this network 

are not neighbours of one another but can be reached 

from each other [13]. The last model is a prototype 

example of scale free network [1]. 

For proper comparative and comprehensive 

analysis, the same approach of study in [14] was 

maintained, where the network edges were rewired 

according to Fermi function from statistical mechanics. 

This function has been commonly used in the previous 

studies in [5, 7, 20, 21, 22, 28].Within this frame, a 

number of different facets of analysis have been 

proposed in [14]. In this work, the focus was on 

investigating the number of recovered nodes and 

acquainted nodes that are generated as a result of the 

spreading process [6]. In view of this situation, it is 

appealing to compare the results demonstrated in [14] 

and discuss the spreading influence based on the 

network structures proposed in their work. 

Consequently, three models were considered in the 

present work: Model A, model B and the model in 

[14]. Analysis on a variety of structures generated by 

these models revealed that topology of a network, as 

shown below, has a great influence in information 

spreading. However, the speed and efficiency of 

spreading is also determined by the numerical value of 

parameter β. 

2. Models Descriptions 

The methodology implemented here follows that of 

Liu and Zhang [14] but strategies of rewiring network 

edges were different in the present models. We 

introduced two rewiring models to generate various 

structures based on the four prototype complex 

networks. In order to study the spreading process, the 

present models were integrated with an 

epidemiological model, the SIR model, which 

classifies the population into three categories 

according to their states [2]. Let‟s consider a 

population of N individuals that are represented as 

nodes in the network, where each node must occupy 

one of the three states: Susceptible node (S state)-will 

not inform others but may be informed; Acquainted 

node (I state)-have information and can transmit to 

susceptible nodes; and Recovered node (R state)-

recovered and thus will not take part in the spreading 

process. The link between them is a connection along 

which information can spread. In all the experiments, 

the spreading rate was set to 0.2 and the probability of 

recovery was set to 1. The study assumed that a seed 

node breaks old edge and rewire new edges with a 

probability 𝑝 =
1

1+𝑒𝑥𝑝 −𝛽 (Π2−Π1)
, which depends on the 

payoff difference  
2 1

Π Π  between two nodes. The 

notation 
1Π

 
and 

2Π represent the number of susceptible 

neighbours of the two targeting nodes: Anode with old 

edge connecting to the seed of information and a node 

to establish new connection, respectively. The 

parameter ( )     is considered as the ratio of 

Boltzmann distribution (Boltzmann‟s constant and 

temperature) for the two states of energy levels in 

statistical mechanics. Here, such parameter denotes the 

strength of selecting neighbours. Small β means the 

selection is nearly neutral whereas for large β selection 

turns out to be arbitrarily strong. Each model is 

described separately. 

2.1. Model A 

In the model A, an acquainted node breaks old network 

edge and rewires the edge to two different randomly 

selected susceptible nodes: One among the second 

order friends and other chosen from the whole 

network, following the above mentioned rescaled 

Fermi function [5, 7, 20, 21, 22, 28]. 

2.2. Model B 

In the Model B, an acquainted node breaks old 

network edge and rewires the edge to three different 

randomly selected susceptible nodes: One among the 

second order friends and other two randomly selected 

from the whole network, following the above 

mentioned rescaled Fermi function [5, 7, 20, 21, 22, 

28]. 

All the models assumed that nodes break old edge 

and refurbish their edges to friends with larger payoff 

(a node with large number of friends) [18, 

23].However, it can also be possible to make friends to 

nodes with smaller payoff [7, 14]. In social networks, 

individual‟s degrees vary greatly, and highly connected 

individuals can spread information to a large number 

of peers if informed. The study assumed the same 

scenario as the common approach in which an 

individual interacts with the whole population and able 

to derive an individual payoff. This is similar to Tuyls 

and Parsons [23] noted in Rosenchein and Zlotkin [19]. 

In all the experiments, it was designed in such a 

way that at the beginning of the experiment, one 

acquainted node (I state) is randomly chosen from the 

whole network which, in this paper, considered as the 

source of information; and all other nodes were 

considered as susceptible (S state). The study assumed 

that at each time step, the acquainted node conveys 

information to susceptible nodes and then recovered 

(change to R state). The simulation continued until all 

acquainted nodes completely changed to R state. 

2.3. Network and Experimental Settings 

A series of experiments for the present models were 

performed on four different prototype complex 

networks: The RG, ER, WS and BA models. We 

simulated population structures that use network size 

N=10,000 and average degree <k>=6. In RG network, 

we designed a circular lattice (no randomness) with N 

http://en.m.wikipedia.org/wiki/Boltzmann%27s_constant
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nodes and k edges per node [1, 25], WS network: Each 

edge was rewired based on RG with a probability of 

0.4 [1, 25]; ER network: All edges were randomly 

rewired with a probability of 1 and BA network was 

generated by the BA model with the number of edges 

for the new node set to 3 (k/2) [4, 14]. Each experiment 

was performed by setting various techniques namely 

static network, β=2, β=0 and β=-2. All the simulations 

run over 10,000 independent realizations for a given 

value of parameter β and static network technique. 

3. Simulation Results and Discussion 
 

3.1. Results of Recovered Nodes (pr) Obtained 

from Various Network Structures  
 

We present results of simulations that were performed 

on various network structures generated by different 

models. The evolution of recovered nodes (pr) was 

examined. In general, a larger pr value indicates faster 

and broader information spreading [29]. Precisely, 

information spreads more effectively on a network 

structure which promotes high values of pr. 

3.1.1. Results of The Model A 

Figures 1, 2, 3, and 4 show the simulation results 

obtained when rewiring the networks with model A. 

The results revealed that for the same value of 

parameter β (say β=2), different network structures 

produce different values of pr to different extents. As a 

specific example, the structures obtained from ER, 

WS, RG and BA networks were found to produce 

80.5%, 72.1%, 36% and 29.8% of pr, respectively 

when the value of β was set to 2. The structures of 

these networks obtained by static network technique 

produced 80%, 63.6%, 0.05% and 18.1% of pr, 

respectively. Analyzing the results closely, the network 

structure seems to hold a role in promoting the value of 

pr. On the other hand, for one particular network 

structure, a variety of pr ranges appeared in a structure 

are attributed by different values of β. For example, the 

values of pr obtained on structures generated from RG 

network were 36%, 10.4% and 0.04% when 

considering β=2,0 and -2, respectively as shown in 

Figure 1. A similar case was observed on the other 

networks. For instance, when the value of β was set to 

2, 0 and -2 on BA network, the pr was enhanced to 

29.8%, 26.5% and 28.8%, respectively as shown in 

Figure 4. To this end we are motivated that efficient 

spreading of information in a network can be affiliated 

to both the value of parameter β [7, 14] and the 

structure of a network [29] imposed. To test this 

hypothesis further, another set of simulations with 

similar set up as before were performed, but this time 

different network structures generated by the model B 

were considered. 

 

 

Figure 1. Evolution of pr value on network structure generated after 

rewiring RG network with model A. 

 

Figure 2. Evolution of pr value on network structure obtained after 

rewiring ER network with model A. 

 

Figure 3. Evolution of pr value on network structure obtained after 

rewiring WS network with model A. 

 

Figure 4. Evolution of pr value on network structure obtained after 

rewiring BA network with model A. 

3.1.2. Results of the Model B 

The simulations, as shown in Figures 5, 6, 7, and 8, 
revealed a similar case of results for much wider 
ranges of pr. Different network structures were found 
to generate different values of pr to different 
magnitudes when the same value of β was set in the 
experiments. The values of pr on structures obtained 
after rewiring RG, ER, WS and BA networks were 
different for β=2. The pr on these networks were 
promoted at magnitudes of 58.3%, 85.1%, 79.4% and 
38.1%, respectively. Furthermore, the network 
structures generated by static network technique 
produced pr to different ranges. For example, pr on 
structure from RG network was promoted to only 
0.05% while it was 80% on ER network as shown in 
Figures 5 and 6. This indicates that both network 
structure and positive β have a certain influence on the 
value of pr.  
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Figure 5. Evolution of pr value on network structure generated after 

rewiring RG network with model B. 

 

Figure 6. Evolution of pr value on network structure generated after 

rewiring ER network with model B. 

 

Figure 7. Evolution of pr value on network structure generated after 

rewiring ws network with model B. 

 

Figure 8. Evolution of pr value on network structure generated after 

rewiring BA network with model B. 

On the other hand, negative β can also influence the 
value of pr. However, its influence is two-fold: it is 
very limited on the structures generated from RG 
network while much wider on ER, WS and BA 
networks with the proposed rewiring strategies. As a 
specific example, when β=-2, the value of pr was 
promoted to only 0.05% on RG structure while it was 
89.9%, 81.8%, 51.8% on ER, WS and BA, 
respectively. This implies that structures generated by 
RG model have a little information spreading influence 
with the proposed rewiring strategies when considering 
negative β. This may indicate that individuals are 
sometimes less responsive to the payoff differences, 
and an individual with a large payoff may rewire to 
individual with small payoff [7]. To this end and in 
order to provide further credence lets recall the results 
reported on a recent study in [14]. 

3.1.3. Results of the Model in [14] 

Below, we recall the results of network structures 
generated by the model in [14]. These results underline 

the hypothesis that network structure and parameter β 
have a great influence in information spreading. 
Evidently, when β=2, the pr on RG, ER, WS and BA 
networks was promoted to 0.097%, 21%, 17.5% and 
23.75%, respectively. Also, the structures of these 
networks generated by static network technique were 
found to produce pr of 0.049%, 2.5%, 1.25% and 
18.75%, respectively. On the other hand, the influence 
of pr evolution was also found to depend on the value 
of β. For example, the values of pr on BA network 
obtained for β=2, 0 and -2 were approximately 
23.75%, 18.71% and 2.3%, respectively. A similar 
case was observed on ER network where the values of 
pr were promoted to 21%, 7.5% and 1.25% when 
considering β=2, 0 and -2, respectively.  

Table 1. Summary on values of pr (approximated) generated by 
various network structures with several techniques. 

Networks Techniques Model A Model B Model in [14] 

RG 

2 36% 58.3% 0.097% 

0 10.4% 42.6% 0.069% 

-2 0.04% 0.05% 0.0625% 

Static 0.05% 0.05% 0.049% 

ER 

2 80.5% 85.1% 21% 

0 85% 89.3% 7.5% 

-2 86% 89.9% 1.25% 

Static 80% 80% 2.5% 

WS 

2 72.1% 79.4% 17.5% 

0 73.2% 81.7% 4.9% 

-2 72.5% 81.8% 1.25% 

Static 63.6% 63.6% 1.25% 

BA 

2 29.8% 38.1% 23.75% 

0 26.5% 38.8% 18.71% 

-2 28.8% 51.8% 2.3% 

Static 18.1% 18.1% 18.75% 

 
Besides, the results of the present models (models A 

and B) suggested that random network promotes more 

efficient information spreading compared to the other 

networks. On the contrary, recently Liu and Zhang 

[14] reported that scale free network is a vital promoter 

of information spreading. On the other hand, small 

world network demonstrated more effective spreading 

than scale free and random networks [29]. To this end, 

we have shown how information spreading is highly 

sensitive to both network structure and parameter β. A 

clear distinction of the effects of parameter β and a 

variety of network structures generated by the above 

mentioned models are summarized in Table 1.  

3.2. Results of Acquainted Nodes (pi) Obtained 

from Various Network Structures 

Let us further examine the role of network structure 

and parameter β in information spreading by another 

set of experiments. This time the focus was on 

studying the number of acquainted nodes (pi) in each 

time step. The same network structures generated by 

the models were considered. In general, a larger value 

of pi signifies more spreading of information in a 

single time step. 

 

 



Effects of Network Structures and Fermi Function’s Parameter…                                                                                             271 

 

  

3.2.1. Results of The Model A 

Figures 9, 10, 11, and 12 illustrate the evolution of pi 

obtained after rewiring the networks with Model A. It 

was found that for the same value of β, various 

network structures influence different ranges of pi. For 

example, when β=2; the value of pi on structures 

generated from RG, ER, WS and BA were promoted to 

3.92%, 23.5%, 18.6% and 6.84%, respectively. 
 

 

Figure 9. Evolution of pi value on network structure generated after 

rewiring RG network with model A. 

 

Figure 10. Evolution of pi value on network structure generated 

after rewiring ER network with model A. 

 

Figure 11. Evolution of pi value on network structure generated 

after rewiring WS network with model A. 

 

Figure 12. Evolution of pi value on network structure generated 

after rewiring BA network with model A. 

3.2.2. Results of The Model B 

The network structures obtained after rewiring the 

networks with Model B have shown a behavior similar 

to the case of model A. Different network structures 

enhance pi to different ranges. Evidently, as shown in 

Figures 13, 14, 15, and 16, the value of pi on the 

structures obtained from RG, ER, WS and BA were 

promoted to 13.3%, 29.3%, 25.94% and 9.58%, 

respectively when β=2. 
 

 
Figures 13. Evolution of pi value on network structure generated 

after rewiring RG network with model B. 

 
Figure 14. Evolution of pi value on network structure generated 

after rewiring ER network with model B. 
 

Moreover, for one particular network structure, the 

value of pi was promoted to various ranges when 

different values of parameter β were set in the 

experiments. For instance, when the value of β on WS 

network was set to 2, 0 and -2, the pi was enhanced to 

25.94%, 22.11% and 16.87%, respectively. More 

excitingly, BA network revealed that when β=2, the 

value of pi increases rapidly in the early stages and 

suddenly drops to zero. At the same time it continues 

to increase in several steps for β=-2 before gradually 

dropping to zero, as in the case of Model A but this 

time much wider ranges of pi were observed. 

Additionally, in both Figures from 9 to 16 there is a 

remarkable difference in ranges of pi between β=2 and 

static network, in a good agreement with the 

simulation results in Figures from 1 to 8 and also the 

study in [14].  

Table 2. Summary on values of pi (approximated) generated by 
various network structures with several techniques. 

Networks Techniques Model A Model B Model in [14] 

RG 

2 3.92% 13.3% 0.028% 

0 0.33% 5.2% 0.026% 

-2 0.01% 0.01% 0.025% 

Static 0.01% 0.01% 0.024% 

ER 

2 23.5% 29.3% 3% 

0 22.5% 29.1% 0.5% 

-2 18.1% 25.37% 0.125% 

Static 15.8% 15.84% 0.25% 

WS 

2 18.6% 25.94% 2.4% 

0 14.7% 22.11% 0.4% 

-2 10.5% 16.87% 0% 

Static 8.28% 8.28% 0% 

BA 

2 6.84% 9.58% 8.1% 

0 3.75% 6.24% 6% 

-2 1.5% 6.08% 0% 

Static 2.61% 2.61% 6% 

3.2.3. Results of The Model in [14] 

The results in their model revealed that RG, ER, 

WS and BA networks produces pi to 0.028%, 3%, 

2.4 % and 8.1%, respectively when β=2. On the 

other hand, the values of pi generated by various 
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values of β were different on the same network 

structure. For example, the values of pi on ER 

network were 3%, 0.5% and 0.125% when the 

value of β was2, 0 and -2, respectively. The results 

shown in Figure 1 to Figure 16 and the results in 

the study by Liu and Zhang [14] provide evidence 

to conclude that network structure and both 

positive and negative β hold an important role in 

information spreading. The results are 

summarized in Table 2. 

4. Summary and Concluding Remarks 

We have studied the effects of network structures and 

dependency of parameter β in enhancing information 

spreading on dynamic social networks by considering 

different rewiring strategies. It is widely known that 

network structure promote information spreading [26, 

29]. We have shown, however, that network structure 

is a„two-edged sword‟ for information spreading: it can 

promote high levels of information spreading for some 

values of parameter β, but other values can cause 

spreading influence to plummet. For example, the 

structures of RG with negative β (β=-2) can prevent 

information spreading, but about 0.05 per cent of the 

population can be informed. Further, network 

structures generated by the Model B promote more 

effective spreading in most cases than the structures 

generated by the other models. This implies that the 

connectivity fluctuations of a network play a major 

role by strongly enhancing the spreading process. 

Furthermore, a society of dynamic interaction is 

significantly more efficient in information spreading 

than the one with static interactions. This is consistent 

with the studies in [14, 16]. 

Moreover, negative β can influence high ranges of 

information spreading on random network, small world 

network and scale free network depending on the 

strategy used to generate their structures. More 

specifically, scale free network generated by the model 

B clearly proves much wider range of information 

spreading with negative β than with positive β. 

Additionally, the enhancement of information 

spreading on random network is more efficient than 

the other networks when considering the model B. As 

a closing remark, the simulation results also give a 

good indication that rewiring more than three edges of 

random network could yield no significant advantages 

in promoting information spreading. 
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