
 246                                                                    The International Arab Journal of Information Technology, Vol. 14, No. 2, 2017 

 

 

Enhanced Constrained Artificial Bee Colony 

Algorithm for Optimization Problems 

Soudeh Babaeizadeh and Rohanin Ahmad 

Department of Mathematical Sciences, Universiti Teknologi Malaysia, Malaysia 

Abstract: Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence algorithm that has attracted great deal 

of attention from researchers in recent years with the advantage of less control parameters and strong global optimization 

ability. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but 

poor at exploitation. This drawback can be even more significant when constraints are also involved. To address this issue, an 

Enhanced Constrained ABC algorithm (EC-ABC) is proposed for Constrained Optimization Problems (COPs) where two new 

solution search equations are introduced for employed bee and onlooker bee phases respectively. In addition, both chaotic 

search method and opposition-based learning mechanism are employed to be used in population initialization in order to 

enhance the global convergence when producing initial population. This algorithm is tested on several benchmark functions 

where the numerical results demonstrate that the EC-ABC is competitive with state of the art constrained ABC algorithm.  
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1. Introduction 

Global optimization deals with optimization problems 

that might have more than one local minimum. 

Therefore, finding global minimum out of a set of local 

minima solutions in a certain feasible region can be 

challenging. While these problems can even be more 

challenging when constraints are also involved. In real-

world, most of the problems in science and engineering 

are Constrained Optimization Problems (COPs).  

In general COPs can be formulated as following 

Problem. 
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Where x=[x1, x2,…, xn]R
n
 is an n-dimensional decision 

vector and each xi is bounded by lower and upper 
bounds as [xmin, xmax]. The objective function f(x) is 
defined on S and is an n- dimensional search space in 
R

n
. 
Optimization methods to solve COPs can be 

classified into two main categories: derivative-based 
methods and derivative-free methods. 

There have always been many real world problems 

with non-differentiable constraints, and disjoint 

feasible domains. These difficulties can make it very 

challenging for derivative-based methods to find even 

a feasible solution, let alone an optimal solution. 

Furthermore, if derivative-based methods can obtain 

solutions they are usually only locally optimal. 

Derivative-free methods in contrast utilize a population 

of individuals in a search domain. Moreover, they only 

use the evaluations of the objective function to direct  

 

the search. Therefore, they do not usually pose 

limitations related to derivative-based methods, and 

they do not easily fall into local optima.  

Population based algorithms as significant branch of 

derivative-free methods capture much attention in 

recent years in solving COPs. The most prominent 

Evolutionary Algorithms (EAs) suggested in the 

literatures are Genetic Algorithm (GA) [17, 18], 

Particle Swarm Optimization (PSO) [19], Ant Colony 

Optimization (ACO) [15], Differential Evaluation (DE) 

[12, 20] and Artificial Bee Colony (ABC) algorithm 

[21]. 
Among these population-based algorithms ABC is 

an effective algorithm proposed for global 
optimization. Numerical performance demonstrated 
that ABC algorithm is competitive to that of other 
population-based algorithms with the advantage of 
employing fewer control parameters and the need for 
fewer function evaluations to arrive at an optimal 
solution [22, 24, 25]. Due to its simplicity and ease of 
implementation, ABC has captured much attention and 
has been employed to solve many numerical as well as 
practical optimization problems since its inception [2, 
11, 16, 28, 31]. 

In general, most of the optimization algorithms have 
been initially introduced to address unconstrained 
optimization problems. Therefore, constraint handling 
techniques are employed to direct the search towards 
the feasible regions of the search space. 

 In recent years, a variety of constraints handling 
techniques have been developed. These methods were 
categorized into four groups by Koziel and 
Michalewicz [20]: 
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1. Methods based on penalty functions which penalize 

constraints to deal with constrained problem as an 

unconstrained one, 

2. Methods based on reservation of feasible solutions 

by transforming infeasible solutions to feasible ones 

with some operators,  

3. Methods that separate feasible and infeasible 

solutions, 

4. Other hybrid methods. 
 

ABC algorithm was originally introduced by Koziel 

and Michalewicz [20] to tackle unconstrained 

optimization problems. Later on, this method was 

extended by Karaboga and Bastruck [22] to solve 

COPs. In recent years there have been many efforts to 

develop a constrained ABC algorithm possessing 

balanced exploration and exploitation behavior. 

However, based on the No Free Lunch (NFL) theorem 

[36] none of the available algorithms is entirely 

efficient for every problem.  

In this paper an Enhanced Constrained-ABC (EC-

ABC) algorithm is proposed to solve COPs by 

employing two new search equations for employed bee 

and onlooker bee phases. Moreover, chaotic search 

mechanism and opposition-based learning method are 

applied to initialize population with the aim of 

preventing algorithm from getting stuck at local 

minima.  

 The rest of this paper is organized as follows. 

Section 2 describes the original ABC algorithm. 

Section 3 includes brief review on constrained ABC 

algorithm, while section 4 details proposed method. 

After that, in section 5 experimental results are carried 

out to test the performance of EC-ABC algorithm on 

solving COPs. Finally, some conclusions are drawn in 

section 6. 

2. Artificial Bee Colony 

ABC is a relatively new population-based algorithm 

developed by Karaboga [21] emulating the foraging 

behaviour and waggle dance of honey bee swarm.  

Artificial bee colonies are classified into three 

groups, employed bees, onlooker bees and scout bees. 

Half of the colony includes employed bee and the other 

half consist of onlooker bees. In ABC, the position of 

food source denotes a possible solution to the 

optimization problem and the nectar amount of food 

source represents fitness value of the associated 

solution. The number of employed bees or the 

onlooker bees is equal to the number of Solutions (SN) 

in the population. Each solution xi (i= 1, 2, ..., SN) is a 

d-dimensional vector and xi={xi1, xi2, ..., xid} represents 

the i
th
 solution in the population. 

At initialization step, ABC generates a randomly 

distributed initial population of SN solutions using 

following Equation 2. 

        
(0,1)( )

ij min, j max, j min, j
x = x + rand x - x                   (2)   

Where each solution xi, i=1, 2, ..., SN is d-dimensional 
vector for j=1, 2, ..., d. In addition, x min, j and x max, j are 
the lower and upper bounds for the dimension j 
respectively. These food sources are randomly 
assigned to SN number of employed bees and their 
fitness are evaluated.  

After initialization, the population of the solutions is 

subjected to repeat the search processes for employed 

bee, the onlooker bees and the scout bee phases. The 

process continues until the algorithm reaches the 

Maximum Cycle Number (MCN). In employed bee 

phase each employed bees produces a modification on 

the solution xi 
where only one dimension of this 

solution is changed using Equation 3 and the rest keep 

the same as xi. 
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Where k{1, 2, ..., SN} and j{1, 2, ..., d} are 

randomly chosen indexes and k  has to be different 

from i. Φij is a random number in the range [ 1,1] . 

After vi is obtained its fitness value is evaluated and a 

greedy selection mechanism is applied comparing xi 

with vi. If the fitness value of the new solution vi is less 

than the current solution then, the solution is replaced 

with the xi, otherwise the current solution remains.  

After the employed bee phase, the solution 

information is transferred to the onlooker bee phase. In 

this phase a solution is chosen depending on the 

probability value pi associated with that solution 

calculated using the following equation: 
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The fit(xi) is defined as following Equation 5. 
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Where f(xi) is the objective value of solution xi. Once 

the onlooker has selected solution xi a modification is 

done on this solution similar with employed bee using 

Equation 3. Then, fitness values of generated solutions 

are evaluated and greedy selection mechanism is 

employed. If new solution has better fitness value than 

current solution, the new solution remains in the 

population and the old solution is removed. 

In the scout bee phase, if solution xi cannot be 

improved further through a predetermined number of 

cycles (limit), then that solution is abandoned and 

replaced with a new solution generated randomly by 

using Equation 2.  

According to the abovementioned description, ABC 

main procedure can be summarized in Algorithm 1. 

Algorithm 1: Original ABC algorithm. 
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Initialize the population of solution 

Evaluate the initial population 

cycle=1 

Repeat 

Employed bee phase  

Apply greedy selection process  

Calculate the probability values for  

Onlooker bee phase 

Scout bee phase 

Memorize the best solution achieved so far i= 1, 2, ..., SN  

cycle=cycle+1 

until cycle=maximum cycle number 

3. Constrained ABC 

ABC algorithm has been originally suggested to deal 

with un-COPs [20]. This algorithm is then adapted to 

tackle COPs. The presence of various constraints and 

interferences between constraints makes COPs more 

difficult to tackle than unconstrained optimization 

problems. In this section we present the available 

constrained ABC algorithms in the literature.  

ABC algorithm for the first time was adapted by 

Karaboga and Bastruck [22] to solve COPs. To cope 

with constraints, Deb’s mechanism [14] is employed to 

be used instead of the greedy selection process due to 

its simplicity, computational cost and fine tuning 

requirement over other constraint handling methods. 

Because initialization with feasible solutions is very 

time consuming and in some situation impossible to 

generate a feasible solution randomly, the constrained 

ABC algorithm does not consider the initial population 

to be feasible. As an alternative Deb’s rules are 

employed to direct the solutions to feasible region of 

search space. In addition, scout bee phase of the 

algorithm provides a diversity mechanism that allows 

new and probably infeasible individuals to be in the 

population. In this algorithm, artificial scouts are 

produced at a Scout Predetermined Period (SPP) of 

cycles for generating new solution randomly. The 

numerical performance of proposed ABC algorithm is 

evaluated and compared with the constrained PSO and 

DE algorithms and results show that ABC algorithm 

can be effectively applied for solving COPs. 

Mezura-Montes et al. [29] presented Smart Flight- 

ABC (SF-ABC) algorithm to improve the performance 

of constrained ABC. In this algorithm to direct search 

towards the best-so-far solution, smart flight operator 

is applied in scout bee phase instead of uniform 

random search in ABC. Based on this method, if the 

best solution is infeasible, the trial solution has the 

chance to be located near the boundaries of the feasible 

region of search space. However, if the best solution is 

infeasible, the smart flight will generate a solution in 

promising region of search space. In addition to 

aforementioned improvement on ABC, the 

combination of two dynamic tolerances are also 

applied in SF-ABC as constrained handling 

mechanism, to transform the original CNOP into 

unconstrained optimization. The numerical results 

demonstrate the competitive performance of SF-ABC 

with original ABC. 

Babaeizadeh and Rohanin [6] applied chaotic search 

mechanism to initialize population for constrained 

ABC where numerical results indicate that the 

proposed method is competitive with the ABC [22]. 

Another modification on ABC algorithm was 

introduced by Karaboga and Akay [26]. What makes 

this algorithm different from the original ABC [22] is 

related with the probability selection mechanism and 

parameter setting process. In this algorithm a new 

probability selection mechanism is presented to 

enhance diversity by allowing infeasible solutions in 

the population where infeasible solutions are 

introduced inversely proportional to their constraint 

violations and feasible solution defined based on their 

fitness values. In addition, in this algorithm appropriate 

value for each parameter is obtained. To recognize this 

algorithm throughout this paper the abbreviation 

Modified-ABC (M-ABC) is used to refer to this 

algorithm.  

A modified constrained ABC algorithm (mcABC) 

was proposed in which chaotic mechanism as well as 

opposition based method was applied for population 

initialization to enhance the global convergence of 

algorithm. The numerical results have shown the 

effectiveness of the proposed method [6]. 

In mcABC algorithm, three new solution search 

equations are introduced respectively to employed bee, 

onlooker bee and scout bee phases. In addition, both 

chaotic search method and opposition-based learning 

mechanism are applied to initialize population in order 

to enhance the global convergence [7]. 

Multiple Onlooker bees-ABC (MO-ABC) was 

developed in [33] to improve constrained ABC [22]. 

The numerical performance demonstrates comparative 

results with original ABC. 

M-ABC introduced four modifications related with 

the selection mechanism, the equality and boundary 

constraints, and scout bee operators to improve the 

behaviour of ABC in constrained search space. The 

numerical results show that M-ABC provides 

comparable results with respect to the algorithms under 

comparison [30]. 

A Genetically Inspired ABC algorithm (GI-ABC) 

was presented for COP. In this algorithm uniform 

crossover and mutation operators from GA are applied 

to scout bee phase to improve the performance of ABC 

algorithm [10]. 

An efficient constrained ABC (eABC) algorithm 

was suggested in [5] where two new solution search 

equations was introduced to be used for employed bee 

and onlooker bee phases to enhance the exploitation of 

algorithm. 

Stanarevic et al. [34] introduced a M-ABC 

algorithm in a form of Smart Bee-ABC (SB-ABC) to 

solve constrained problems which applies its historical 
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memories for the solution. The numerical experiments 

show efficiency of the method. 

An improved constrained ABC (iABC) algorithm 

was suggested to address COPs. The modifications 

included a novel chaotic approach to generate initial 

population and two new search equations to enhance 

exploitation ability of the algorithm. In addition, a new 

fitness mechanism, along with an improved probability 

selection scheme was devised to exploit both feasible 

and informative infeasible solutions [9].  

ABC-BA is a hybrid algorithm presented by Tsai 

[35] that integrates ABC and Bee Algorithm (BA). In 

this algorithm individuals can perform as an ABC 

individual in ABC sub-swarm or a BA individual in 

the BA sub-swarm. In addition, the population size of 

the ABC and BA sub-swarms change stochastically 

based on current best fitness values achieved by the 

sub-swarms. Experimental results demonstrate that 

ABC-BA outperforms ABC and BA algorithm. 

Constrained ABC algorithm was also applied to 

solve many real-world engineering problems in recent 

years. Brajevic et al. [4] proposed a Constrained ABC 

(SC-ABC). This method was tested on several 

engineering benchmark problems which contain 

discrete and continuous variables. The numerical 

results were then compared with results obtained from 

Simple Constrained PSO algorithm (SiC-PSO) which 

show very good performance.  

Akay and Karaboga [1] used ABC to solve large 

scale optimization problems as well as engineering 

design problems. The numerical results show that the 

performance of ABC algorithm is comparable to those 

of state of the art algorithms under consideration.  

Upgraded ABC (UABC) algorithm for COPs was 

presented by Brajevic et al. [13] to improve 

modification rate parameter and applying modified 

scout bee phase of the ABC algorithm. This algorithm 

was tested on several engineering benchmark problems 

and the performance was compared with the 

performance of the Akay and Karaboga algorithm [1]. 

The numerical results show that the proposed 

algorithm produces better results. 

For latest survey on constrained ABC please refer to 

[8]. 

 

4. Enhanced Constrained ABC 

According to the literature in most of the constrained 

ABC algorithms the role of population initialization is 

ignored. However, in order to have a powerful 

algorithm the initial solutions must be diversified on 

almost all over the search space. This scheme helps to 

generate at least some points in the neighbourhood of 

global solution. In this paper we employed both 

chaotic mechanism and opposition-based learning 

method into population initialization to enhance 

diversity. 

Among available chaotic method, logistic is selected 

to be used in initialization step which can be 

formulated as 

                             ck+1=4(1-ck)                                  (6) 

Where ck is the k
th
 chaotic number, c(0, 1) and ck 

cannot get numbers from set {0.0, 0.25, 0.75, 0.5, 1.0}. 

The initialization process based on chaotic search 

mechanism and opposition learning method is coded in 

Algorithm 2.  

Algorithm 2: Initialization approach. 

Consider the maximum number of chaotic iteration K=300, 

the population size SN and the counter i=1, j=1 

for i=1to SN/2 

   for j=1 to d 

     Randomly initialize variables c0, j(0, 1) and set 

iteration counter k=0 

     for k=1 to K 

        ck+1, j=α(1-ckj) 

      end 

         xi, j= x min, j+cj,k (x max, j- xmin, j)   

   end 

 end 

Set the individual counter i=1 and j=1 

for i= SN/2 to SN 

   for j=1 to d 

       opi, j= x min, j+ x max, j- xmin, j   

   end 

end 

After initialization the main loop consists of employed 

bees, onlooker bees and scout bees is subjected to 

repeat until the stopping criterion is met. 

In this algorithm the new search equation is 

proposed for employed bee phase using Equation 7 to 

improve the exploitation behaviour of ABC. 
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Where r1 and r2 are two different random integer 

indices selected from {1, 2, …, SN}. γij is a random 

number between [-1,1] and μij is uniform random 

number between [0,1]. Rij is uniformly distributed 

random number and MR  is control parameter in range 

[0, 1]. In addition, xij is the j
th
 dimension of best 

solution found so far. In Equation 6 the second and 

third terms enhance exploration capability.  

After producing a new solution, EC-ABC algorithm 

makes a selection using Deb’s mechanism [14] instead 

of using greedy selection in unconstrained ABC. 

Applying Deb’s rules, the bee either memorizes the 

new solution by forgetting the current solution or keeps 

the current solution.  
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Deb’s method uses a tournament selection 

mechanism where two solutions are compared at a time 

by applying following rules. 

 Any feasible solution is preferred to any infeasible 

solution, 

 Among two feasible solutions, the one having better 

objective function value is preferred, 

 Among two infeasible solutions, the one having 

smaller constraint violation is preferred. 

After completion of the search by all employed 

bees, they share the information of the solutions with 

the onlooker bees. In this probability selection 

mechanism [19] infeasible solutions are also allowed 

to participate in the colony. The probability values of 

feasible solutions are between 0.5 and 1 and for 

infeasible solution between 0 and 0.5.  

The probability method is defined as Equation 8.  
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Where fit(xi) is fitness value of solution xi and J(xi) is 

the constraint violation of solution xi. 

Based on the probability selection mechanism, 

solutions are selected proportional to their fitness 

values if solutions are feasible and inversely 

proportional to their constraint violation values if 

solutions are infeasible.  

After receiving fitness values information from 

employed bees, onlooker bee selects a solution based 

on their probability values. Then, onlooker bees 

produce modification on the position of the selected 

solution using Equation 9. 
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Where r1 and r2 are two different random integer 

indices selected from{1, 2, …, SN}. φij 
and Φij are 

uniformly distributed random real number in the range 

[-1, 1].  

As in the case of employed bees Deb’s rules are 

employed to compare current solution with new 

solution. If the new solution produces better result it 

remains in population and the old solution is removed. 

The employed bee phase is coded in Algorithm 3. 

In Equation 9, the first, term improves the 

exploration ability and the second and third terms, 

enhance the exploitation capability. 

Algorithm 3: Employed bee phase of EC-ABC algorithm. 

for i=1:SN 

   for j=1:d 

    Produce the new solution vi for employed bee using  

     Equation 7 

   end for 

      if no parameter is changed, change one random  

      parameter of the solution using Equation 7 

      Evaluate the quality of vi  

      Apply Deb’s mechanism to select between vi and xi 
 

      if solution vi does not improve 

        triali= triali+1, otherwise, triali=0 

     end if 

After distribution of all onlooker bees, if a solution 

can not improve further through predetermined number 

of cycles (limit) it is abandoned and replaced with a 

new solution discovered by scout bees. The onlooker 

bee phase is coded in Algorithm 4. In EC-ABC 

algorithm a smart flight scout bee is proposed to 

enhance the exploitation ability of algorithm.  

Scout bee phase is defined as the following 

Equation 10. 

                   vij=xij+kij(xkj-xij)-(1-kij)(xbj-xij)                            (10) 

Where kij is uniformly real number in [-1, 1] and xbj is 

the j
th
 dimension of the best solution found so far. 

5. Numerical Experiments and Comparisons 

To evaluate and compare the performance of the 

proposed algorithms, 24 constrained benchmark 

functions from CEC 2006 [27] are applied. EC-ABC 

and other constrained ABC algorithms under 

comparisons are coded in MALAB environment. The 

value of each parameters used are given in Table 1. 

Table 1. Parameters Setting. 

Parameters Symbols Value 

Solutions Number SN 20 

Maximum Cycle 

Number 

MCN 6000 

Modification Rate MR 0.8 

Population Size PS 40 

Limit Limit 150 

Scout Production 

Period 

SPP 150 

Epsilon ε 0.001 

 

Algorithm 4: Onlooker bee phase for EC-ABC algorithm. 

t=0 ,i=1 

repeat 

if random<Pi then 

  t=t+1 

   for j=1:d 

      Produce a new solution vi for the onlooker bee of the 

solution xi using Equation 9 

   end for 

  Apply the selection process between vi and based on Deb’s 

method 

   If solution xi 
does not improve 

  triali= triali+1, 

   otherwise, triali=0 

end if 

i=i+1 

i=i mod(SN+1) 

until t=SN 

The numerical performance of proposed EC-ABC 

algorithm was compared against constrained ABC 

[23], MABC [26], M-ABC [30], SF-ABC [29] and 

MO-ABC [32] algorithms. Each algorithm are tested 

for 24 test function and after 30 independent runs of 

(8) 



Enhanced Constrained Artificial Bee Colony Algorithm…                                                                                                         251 

 

 

each algorithm the average solution is considered 

which as shown in Tables 2 and 3. The Problems g20, 

g21, g22 are not considered because no feasible 

solutions can be found for these problems by the 

algorithms. 

Table 2. Function values obtained by ABC, MABC, M-ABC, SF-
ABC, MO-ABC and EC- ABC. 

Problem  ABC MABC M-ABC SF-ABC MO-ABC EC-ABC 

g01 

Best 

Mean 

Worst 

Std.dev 

-15.00000 

-15.00000 

-15.00000 

0.000000 

-1500000 

-1.500000 

-1.500000 

0.000000 

-15.00000 

-15.00000 

-15.00000 

0.000000 

-15.00000 

-14.16321 

-12.52510 

0.923125 

-15.00000 

-15.00000 

-15.00000 

0.000000 

-15.00000 

-15.00000 

-15.00000 

0.000000 

g02 

Best 

Mean 

Worst 

Std.dev 

0.803567 

-0.791744 

-0.752924 

0.013292 

0.803538 

-0.792927 

-0.750302 

0.011052 

0.803614 

-0.799450 

-0.778176 

-0.006440 

-0.708944 

-0.471249 

-0.319535 

0.010832 

-0.803610 

-0.793510 

-0.744582 

0.016124 

-0.803618 

-0.802729 

-0.794662 

0.002675 

g03 

Best 

Mean 

Worst 

Std.dev 

-1.004657 

-1.000096 

-0.979651 

0.005979 

-1.004817 

-1.001941 

-0.989160 

0.000375 

-1.000000 

-1.000000 

-1.000000 

0.0000 

-1.000000 

-1.000000 

-1.000000 

0.0000 

-1.000000 

-1.000000 

-1.000000 

0.0000 

-1.005001 

-1.004975 

-1.004923 

0.000027 

g04 

Best 

Mean 

Worst 

Std.dev 

-30665.542 

-30665.542 

-30665.542 

0.0000000 

-30665.42 

-30665.42 

-30665.42 

0.0000000 

-30665.539 

-30665.539 

-30665.539 

0.00000 

-30665.539 

-30665.539 

-30665.539 

0.00000 

-30665.539 

-30665.539 

-30665.539 

0.00000 

-30665.54 

-30665.54 

-30665.54 

0.000000 

g05 

Best 

Mean 

Worst 

Std.dev 

5126.489 

5177.239 

5307.988 

57.86021 

5127.099 

5236.991 

5802.318 

156.0343 

5126.734 

5178.178 

5317.183 

56.000 

5126.506 

5126.527 

5126.859 

0.0793 

5126.657 

5162.506 

5229.119 

47.8203 

5126.527 

5249.384 

5824.530 

202.4735 

g06 

Best 

Mean 

Worst 

Std.dev 

-6961.814 

-6961.814 

-6961.814 

0.0000000 

-6961.814 

-6961.814 

-6961.814 

0.0000000 

-6961.814 

-6961.814 

-6961.814 

0.000000 

-6961.814 

-6961.813 

-6961.805 

0.0002 

-6961.814 

-6961.813 

-6961.804 

0.0001 

-6961.814 

-6961.814 

-6961.814 

0.000000 

g07 

Best 

Mean 

Worst 

Std.dev 

24.46138 

24.70718 

25.16577 

0.181394 

24.47032 

24.68698 

25.36005 

0.178641 

24.312235 

24.416402 

24.794032 

0.12723 

24.16453 

24.65821 

25.55140 

0.326021 

24.32325 

24.45653 

24.92938 

0.135023 

24.31428 

24.38785 

24.70564 

0.08238 

g08 

Best 

Mean 

Worst 

Std.dev 

-0.095825 

-0.095825 

-0.095825 

0.000000 

-0.095825 

-0.095825 

-0.095825 

0.000000 

-0.095825 

-0.095825 

-0.095825 

0.000000 

-0.095825 

-0.095825 

-0.095825 

0.000000 

-0.095825 

-0.095825 

-0.095825 

0.000000 

-

0.09582504 

-

0.09582504 

-

0.09582504 

0.00000000 

g09 

Best 

Mean 

Worst 

Std.dev 

680.6381 

680.6506 

680.6757 

0.0080749 

680.6371 

680.6515 

680.6760 

0.009610 

680.6331 

680.6474 

680.6768 

0.054310 

680.6325 

680.6450 

680.8584 

0.041251 

680.6312 

680.6350 

680.6363 

0.004215 

680.6318 

680.6487 

680.7362 

0.021534 

g10 

Best 

Mean 

Worst 

Std.dev 

7160.63125 

7364.94034 

7691.30330 

129.8405 

7220.5540 

7347.8433 

7924.1286 

134.14103 

7051.7752 

7233.8101 

7604.1290 

101.325 

7049.5166 

7116.8236 

7362.7406 

82.12450 

7053.3204 

7167.8015 

7418.3340 

83.00825 

7117.8753 

7447.8854 

8034.5068 

236.67822 

g11 

Best 

Mean 

Worst 

Std.dev 

0.7490003 

0.7490022 

0.7490101 

0.0000020 

0.7490001 

0.7490032 

0.7490140 

0.000003 

0.7500000 

0.7500000 

0.7500000 

0.000000 

0.7500000 

0.7500000 

0.7500000 

0.000000 

0.7500000 

0.7500000 

0.7500000 

0.000000 

0.7490000 

0.7499815 

0.7529169 

0.0011032 

g12 

Best 

Mean 

Worst 

Std.dev 

-1.000000 

-1.000000 

-1.000000 

0.0000000 

-1.000000 

-1.000000 

-1.000000 

0.000000 

-1.000000 

-1.000000 

-1.000000 

0.000000 

-1.000000 

-1.000000 

-1.000000 

0.000000 

-1.000000 

-1.000000 

-1.000000 

0.000000 

-1.000000 

-1.000000 

-1.000000 

0.0000000 

g13 

Best 

Mean 

Worst 

Std.dev 

0.5551238 

0.9497812 

1.4929540 

0.1469151 

0.4895965 

0.9576896 

1.4375342 

0.1613582 

0.0538901 

0.1577912 

0.4419785 

0.0172430 

0.0539860 

0.2638542 

1.000000 

0.2162045 

0.4542041 

0.4560438 

0.4891204 

0.0215840 

0.1846375 

0.7331250 

1.0000000 

0.2321268 

Table 3. Function values obtained by ABC, MABC, M-ABC, SF-
ABC, MO-ABC and EC-ABC. 

Problem  ABC MABC M -ABC SF-ABC MO-ABC EC-ABC 

g14 

Best 

Mean 

Worst 

Std.dev 

-45.11878 

-42.68215 

-40.60165 

1.171236 

-45.32082 

-42.65421 

-40.05962 

1.195831 

-47.64541 

-47.27156 

-46.53698 

0.245762 

-46.66514 

-46.46824 

-43.87123 

0.520124 

-46.450835 

-45.998013 

-45.316798 

0.257106 

-46.06795 

-43.94812 

-41.59548 

0.9756126 

g15 

Best 

Mean 

Worst 

Std.dev 

941.21911 

958.84762 

972.95780 

7.512742 

951.43752 

960.89221 

970.68460 

4.878944 

961.71521 

961.71879 

961.79125 

0.014319 

961.71511 

961.71553 

961.72013 

000.159 

961.71512 

961.88313 

964.33983 

0.54267 

954.23680 

966.58805 

978.00416 

7.6150353 

g16 

Best 

Mean 

Worst 

Std.dev 

-1.905155 

-1.905155 

-1.905155 

0.0000000 

-1.905155 

-1.905155 

-1.905155 

0.0000000 

-1.905155 

-1.905155 

-1.905155 

0.0000000 

-1.905155 

-1.905155 

-1.905155 

0.0000000 

-1.905155 

-1.905155 

-1.905155 

0.0000000 

-1.905155 

-1905155 

-1.905155 

0.0000000 

g17 

Best 

Mean 

Worst 

Std.dev 

8886.685 

9053.597 

9249.174 

123.0898 

 

8879.576 

9053.567 

9215.365 

122.6397 

8866.5986 

8987.4589 

9165.2543 

95.6532 

8927.598 

8928.865 

8938.617 

3.12132 

8939.125 

8946.172 

8956.235 

9.528253 

8860.562 

8982.975 

9249.269 

109.1514 

g18 

Best 

Mean 

Worst 

Std.dev 

-0.8405680 

-0.6895726 

-0.6616021 

0.05082904 

-0.8593651 

-0.7107018 

-0.6613345 

0.06776626 

-0.866023 

-0.795019 

-0.672223 

0.093789 

-0.866025 

-0.740748 

-0.501205 

0.1453562 

-0.865976 

-0.767198 

-0.670714 

0.0960035 

-0.8660236 

-0.8265948 

-0.6713430 

0.07813725 

g19 

Best 

Mean 

Worst 

Std.dev 

36.774012 

39.297845 

42.701610 

1.4571242 

37.580864 

39.834920 

42.427351 

1.1743492 

33.254703 

34.265623 

35.736841 

0.631240 

32.662712 

33.107137 

34.914012 

0.51325 

33.7698315 

35.3147859 

37.3645831 

0.687514 

32.9962520 

33.6537328 

35.5405499 

0.5274753 

g23 

Best 

Mean 

Worst 

- - 

-159.7542 

-35.28473 

109.1275 

-350.12614 

-121.37464 

276.00379 

- 

-1071.627 

-327.1549 

149.2063 

Std.dev 82.7698 157.895 325.5414 

g24 

Best 

Mean 

Worst 

Std.dev 

-5.508013 

-5.508013 

-5.508013 

0.000000 

-5.508013 

-5.508013 

-5.508013 

0.000000 

-5.508013 

-5.508013 

-5.508013 

0.000000 

-5.508013 

-5.508013 

-5.508013 

0.000000 

-5.508013 

-5.508013 

-5.508013 

0.000000 

-5.508013 

-5.508013 

-5.508013 

0.000000 

The simulation results demonstrate that all 

algorithms under comparison obtained the same results 

for problems g06, g12, g16 and g24. The EC-ABC is 

superior to other algorithms in problems g02, g03, g04, 

g08, g11, g17, g18 and g23. The SF-ABC algorithm in 

problems g05, g10, g13, g15, g19 has good 

performance compare with other algorithms. However, 

MO-ABC is outperformed in problems g09, g14.  

The numerical performance showed that EC-ABC 

provided comparable result with respect to other state 

of the art algorithms in comparison to solving COPs. 

In order to, compare the convergence ability of EC-

ABC with the other state of the art algorithms Figures 

1, 2, 3, and 4 are presented, which clearly show that 

EC-ABC is able to converge faster than other 

algorithms. It confirms that the new search equations 

can accelerate the constrained ABC convergence.  

 

Figure 1. Iterations to convergence for problem g02. 

 

Figure 2. Iterations to convergence for problem g03. 

 

Figure 3. Iterations to convergence for problem g11. 
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Figure 4. Iterations to convergence for problem g23. 

 

6. Discussion 

In this paper, we have introduced an enhanced 

constrained ABC called EC-ABC algorithm to solve 

COPs in which the initial population is generated using 

chaotic search method along with opposition-based 

learning method. In addition, two new search equations 

are proposed for employed bee and onlooker bee 

phases to enhance the global convergence of ABC 

algorithm. Smart flight method is also applied into 

scout bee phases to improve the exploitation behavior 

of algorithm. The experimental results were tested on 

24 benchmark functions and show that EC-ABC is 

competitive with state of the art constrained ABC 

under comparison. 

Acknowledgment 

The authors would like to thank Universiti Teknologi 

Malaysia and Ministry of Education, Malaysia for the 

financial funding through grant RUG 08H47. 

References 

[1] Akay B. and Karaboga D., “Artificial Bee 

Colony Algorithm for Large-Scale Problems and 

Engineering Design Optimization,” Journal of 

Intelligent Manufacturing, vol. 23, no. 4, pp. 

1001-1014, 2012. 

[2] Aydina D., Özyön S., Yaşar C., and Liao T., 

“Artificial Bee Colony Algorithm with Dynamic 

Population Size to Combined Economic and 

Emission Dispatch Problem,” Electrical Power 

and Energy Systems, vol. 45, pp. 144-153, 2014. 

[3] Brajevic I., Tuba M., and Subotic M., 

“Performance of the Improved Artificial Bee 

Colony Algorithm on Standard Engineering 

Constrained Problems,” International Journal of 

Mathematics and Computers in Simulation, vol. 

5, no. 2, pp. 135-143, 2011. 

[4] Brajevic I., Tuba M., and Subotic M., “Improved 

Artificial Bee Colony Algorithm for Constrained 

Problems,” in Proceeding of the 11
th
 World 

Scientific and Engineering Academy and Society 

International Conference On Nural Networks 

and 11
th
 WSEAS International Conference On 

Evolutionary Computing and 11
th 

WSEAS 

International Conference On Fuzzy Systems, Iasi, 

pp. 185-190, 2010. 

[5] Babaeizadeh S. and Ahmad R., “An Efficient 

Artificial Bee Colony Algorithm for Constrained 

Optimization Problems,” Journal of Engineering 

and Applied Sciences, vol.9, no. 10-12, pp. 405-

413, 2014. 

[6] Babaeizadeh S. and Ahmad R., “A Modified 

Artificial Bee Colony Algorithm for Constrained 

Optimization Problems,” Journal of Convergence 

Information Technology, vol. 9, no. 6, pp. 151- 

163, 2014. 

[7] Babaeizadeh S. and Ahmad R., “Modified 

Artificial Bee Colony Algorithm with Chaotic 

Search Method for Constrained Optimization 

Problems,” Journal of Convergence Information 

Technology, vol. 9, no. 6, pp. 151-163, 2014. 

[8] Babaeizadeh S. and Ahmad R., “Performance 

Comparison of Constrained Artificial Bee 

Colony Algorithm,” Research Journal of Applied 

Sciences, Engineering and Technology, vol. 10, 

no. 5, pp. 537-546, 2015. 

[9] Babaeizadeh S. and Ahmad R., “An Improved 

Artificial Bee Colony Algorithm for Constrained 

Optimization,” Research Journal of Applied 

Sciences, Engineering and Technology, vol. 11, 

no. 1, pp. 14-22 2016. 

[10] Bacanin N. and Tuba M., “Artificial Bee Colony 

(ABC) Algorithm for Constrained Optimization 

Improved with Genetic Operators,” Studies in 

Informatics and Control, vol. 21, no. 2, pp. 137-

146, 2012. 

[11] Banitalebi A., Aziz M., Bahar A., and Aziz Z., 

“Enhanced Compact Rtificial Bee Colony,” 

Information Sciences, vol. 298, pp. 491-511, 

2015. 

[12] Banitalebi A., Aziz M., and Aziz Z., “A Self-

Adaptive Binary Differential Evolution 

Algorithm for Large Scale Binary Optimization 

Problems,” Information Sciences, vol. 367-368, 

pp. 487-511, 2016. 

[13] Brajevic I. and Tuba M., “An Upgraded Artificial 

Bee Colony (ABC) Algorithm for Constrained 

Optimization Problems,” Journal of Intelligent 

Manufacturing, vol. 24, no. 4, pp. 729-740, 2013. 

[14] Deb K., “An Efficient Constraint Handling 

Method for Genetic Algorithms,” Computer 

Methods in Applied Mechanics and Engineering, 

vol. 186, no. 2-4, pp. 311-338, 2000. 

[15] Dorigo M. and Blum C., “Ant Colony 

Optimization Theory: A Survey,” Theoretical 

Computer Science, vol. 344, no. 2, pp. 243-278, 

2005. 

[16] Gao W., Liu S., and Huang L., “Enhancing 

Artificial Bee Colony Algorithm Using More 

Information-Based Search Equations,” 

Information Sciences, vol. 270, pp. 112-133, 

2014. 

10
0

10
1

10
2

10
3

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Number of function evaluation

T
h
e
 v

a
lu

e
 o

f 
fu

n
c
ti
o
n

 

 

ABC

MABC

M-ABC

SF-ABC

MO-ABC

EC-ABC

http://www.sciencedirect.com/science/article/pii/S0142061513002809
http://www.sciencedirect.com/science/article/pii/S0142061513002809
http://www.worldses.org/
http://www.worldses.org/
http://www.worldses.org/
https://www.researchgate.net/journal/1975-9320_Journal_of_Convergence_Information_Technology
https://www.researchgate.net/journal/1975-9320_Journal_of_Convergence_Information_Technology
https://www.researchgate.net/journal/1975-9320_Journal_of_Convergence_Information_Technology


Enhanced Constrained Artificial Bee Colony Algorithm…                                                                                                         253 

 

 

[17] Holland J., Adaptation in Natural and Artificial 

Systems: An Introductory Analysis with 

Applications to Biology, Control, and Artificial 

Intelligence, U Michigan Press, 1975. 

[18] Javidi M. and Hosseinpourfard R., “Chaos 

Genetic Algorithm Instead Genetic Algorithm,” 

The International Arab Journal of Information 

Technology, vol. 12, no. 2, pp. 163-186, 2015. 

[19] Kennedy J., Encyclopedia of Machine Learning, 

Springer US, 2010. 

[20] Koziel S. and Michalewicz Z., “Evolutionary 

Algorithms, Homomorphous Mappings, and 

Constrained Parameter Optimization,” 

Evolutionary computation, vol. 7, no. 1, pp. 19-

44, 1999. 

[21] Karaboga D., “An Idea Based on Honey Bee 

Swarm for Numerical Optimization,” Technical 

Report-tr06 Erciyes university, 2005. 

[22] Karaboga D. and Basturk B., “A Powerful and 

Efficient Algorithm for Numerical Function 

Optimization: Artificial Bee Colony (ABC) 

Algorithm,” Journal of Global Optimization vol. 

39, no. 3, pp. 459-471, 2007. 

[23] Karaboga D. and Basturk B., Foundations of 

Fuzzy Logic and Soft Computing, Springer, 2007. 

[24] Karaboga D. and Basturk B., “On The 

Performance of Artificial Bee Colony (ABC) 

Algorithm,” Applied soft computing, vol. 8, no. 1, 

pp. 687-697, 2008. 

[25] Karaboga D. and Akay B., “A Comparative 

Study of Artificial Bee Colony Algorithm,” 

Applied Mathematics and Computation, vol. 214, 

no. 1, pp. 108-132, 2009. 

[26] Karaboga D. and Akay B., “A Modified 

Artificial Bee Colony (ABC) Algorithm for 

Constrained Optimization Problems,” Applied 

Soft Computing, vol. 11, no. 3, pp. 3021-3031, 

2011. 

[27] Liang J., Runarsson T., Mezura-Montes E., Clerc 

M., Suganthan P., Coello Coello C., and Deb K., 

“Problem Definitions and Evaluation Criteria for 

the CEC 2006 Special Session on Constrained 

Real-Parameter Optimization,” Technical Report 

Journal of Applied Mechanics, 2006. 

[28] Li G., Peifeng N., and Xiao X., “Development 

and Investigation of Efficient Artificial Bee 

Colony Algorithm for Numerical Function 

Optimization,” Applied soft computing, vol. 12, 

no. 1, pp. 320-332, 2012. 

[29] Mezura-Montes E., Damián-Araoz M., and 

Cetina-Domingez O., “Smart Flight and Dynamic 

Tolerances in the Artificial Bee Colony for 

Constrained Optimization,” in Proceeding of 

IEEE Congress Evolutionary Computation, 

Barcelona, pp. 1-8, 2010. 

[30] Mezura-Montes E. and Cetina-Domínguez O., 

“Empirical Analysis of a Modified Artificial Bee 

Colony for Constrained Numerical 

Optimization,” Applied Mathematics and 

Computation, vol. 218, no. 22, pp. 10943-10973, 

2012. 

[31] Mustaffa Z. and Yusof Y., “LSSVM Parameters 

Tuning with Enhanced Artificial Bee Colony,” 

The International Arab Journal of Information 

Technology, vol. 11, no. 3, pp. 236-242, 2014. 

[32] Subotic M., “Artificial Bee Colony Algorithm 

with Multiple Onlookers for Constrained 

Optimization Problems,” in Proceeding of the 

European Computing Conference, Paris, pp. 251-

256, 2011. 

[33] Storn R. and Price K., “Differential Evolution-a 

Simple and Efficient Heuristic for global 

Optimization Over Continuous Spaces,” Journal 

of Global Optimization, vol. 11, no. 4, pp. 341-

359, 1997. 

[34] Stanarevic N., Tuba M., and Bacanin N., 

“Modified Artificial Bee Colony Algorithm for 

Constrained Problems Optimization,” 

International Journal of Mathematical Models 

and Methods in Applied Sciences, vol. 5, no. 3, 

pp. 644-651, 2011. 

[35] Tsai H., “Integrating the Artificial Bee Colony 

and Bees Algorithm to Face Constrained 

Optimization Problems,” Information Sciences, 

vol. 258, pp. 80-93, 2014. 

[36] Wolpert D. and Macready W., “No Free Lunch 

Theorems for Optimization,” IEEE Transactions 

On Evolutionary Computation, vol. 1, no. 1, pp. 

67-82, 1997. 

Soudeh Babaeizadeh received her 

master’s degree from department of 

mathematical sciences, Universiti 

Teknologi Malaysia (UTM). She is 

currently a PhD candidate at the 

same university. Her current 

research interest include global 

optimization, derivative-free optimization and 

evolutionary algorithms. 

Rohanin Ahmad received her 

master’s degree from the Indiana 

State University in 1984, and her 

Ph.D. degree in the field of 

optimal control in 2005 from 

Universiti Teknologi Malaysia 

(UTM). She is currently Associate 

Professor at UTM where she also serves as head 

of Department of Mathematical Science at the 

same university. Her research interest include 

optimization, optimal control, and operation 

research. 

 

 


