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correlated impulsive noise environments.  
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1. Introduction 

The Least-Mean-Square (LMS) algorithm [9] is one of 

the well-known adaptive algorithms due to its 

simplicity and ease of analysis. One of the main 

drawbacks of the LMS algorithm is the drifting problem 

[9, 17]. The drifting problem is a situation where by the 

weight update of the LMS algorithm diverges as a result 

of inadequate information in the input sequence [14]. 

For example, inadequacy of excitation in the input 

sequence can result in unbounded parameter estimates 

[17]. This behaviour can cause numerical problems due 

to overflow as well as degraded performance as a 

consequence of possibly unbounded prediction error. 

Introducing a leakage term in the LMS algorithm 

stabilizes the system. It can be also seen as a situation 

where the LMS algorithm generates unbounded 

parameter estimates for a bounded input sequence [4]. 

The Leaky Least-Mean-Square (LLMS) algorithm is an 

improved version of the LMS algorithm [9, 13]. It was 

proposed to mitigate the drifting problem in LMS 

algorithm. LLMS-type algorithms have been applied to 

several application areas [2, 15, 16, 18] and have shown 

significant performances. Another method of mitigating 

the drifting problem was proposed in [10]. 

This paper is organized as follows: In section 2, 

problem statement and motivation is given. In section 3, 

the proposed algorithm is derived. In section 4, the 

convergence analysis of the proposed algorithm is 

presented. In section 5, the computational complexities 

of the proposed algorithm, LLMS and Modified Leaky 

Least-Mean-Square (MLLMS) algorithms are 

calculated. In section 6, a normalized version of the 

proposed algorithm is presented which improves the 

step-size selection criteria. Experimental results are 

presented and discussed in section 7. Finally, the 

conclusions are drawn. 

2. Problem Statement and Motivation 

Despite the fact that the LLMS algorithm mitigates the 

drifting problem in the LMS algorithm, its 

convergence rate is similar to that of the LMS 

algorithm. In order to improve this convergence rate, 

we propose a new LLMS based algorithm. The 

proposed algorithm employs a sum of exponentials [3] 

in the cost function of the conventional LLMS; which 

in turn provides a higher performance in terms of 

convergence rate. 

3. The Proposed Algorithm 

For a system identification setting, the output of a 

linear system with input signal ( )x k is given by: 

                        
( ) ( ) ( )

T
d k = h x k +v k  

Where h is the impulse response of the unknown 

system, x(k) is the tap-input vector, v(k) is an additive 

noise and [.]
T
 is the transposition operator. The cost 

function of the proposed algorithm is given by: 

     
 

2

( ) ( ( )) ( ( )) ( ) ( )
T

J k exp e k exp e k w k w k      

Where w(k) is the filter-tap weight vector, γ is the 

leakage factor (0< γ< 1) and e(k) is the instantaneous 

error and defined by: 

                      
( ) ( ) ( ) ( )

T
e k d k w k x k   

Where d(k) is the desired response of the adaptive 

filter. Deriving Equation 2 with respect to w(k) gives: 

(1) 

(2) 

(3) 
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( )
4 ( ) sinh( ( )) 2 ( )

( )

J k
x k e k w k

w k



  


    

The tap-update is given by [9]: 

                     

( )
( 1) ( )

2 ( )

J k
w k w k

w k

 
  


 

Substituting Equation 4 in Equation 5 and rearranging; 

the update equation of the proposed algorithm becomes: 

         
( 1) (1 ) ( ) 2 ( ) ( ( ))w k w k x k sinh e k      

In Equation 6, replacing the error e(k) by its 

sinh guarantees faster convergence especially at the 

beginning where e(k) is relatively high.  

Table 1 below shows a summary of the proposed 

algorithm. 

Table 1. A summary of the proposed algorithm. 

initialize the parameters µ, γ and initialize w=0 

for k=1, 2, ... 

w(k-1)=(1-γµ)w(k)+2µx(k)sinh(e(k)). 

Where 

e(k)=d(k)-wT(k)x(k). 

4. Convergence Analysis 

In this section the convergence analysis is presented and 

the stability criterion of the proposed algorithm is 

derived. Starting from Equation 6 and using the Taylor 

series expansion of sinh(e(k)) we get: 

      

2 1

0

( )
( 1) ( ) ( ) 2 ( )

(2 1)

l

l

e k
w k w k w k x k

l



 





    
 

 

We define the translated weight vector δw(k)=w(k)-w0, 

where w0=R
-1

p is the optimal weight vector, 

R=E[x(k)x
T
(k)] is the autocorrelation matrix of the tap-

input and p is the cross-correlation vector defined as 

p=E[d(k) x(k)]. Subtracting w0 from both sides of 

Equation 7: 

  

2 1

0
0

( )
( 1) (1 ) ( ) 2 ( )

(2 1)

l

l

e k
w k w k w x k

l
    






     
 

  

The optimal error 0 ( )e k can be defined by: 

                      0 0
( ) ( ) ( )

T
e k d k x k w   

And from Equation 3: 

                   0
( ) ( ) ( ) ( )

T
e k e k x k w k    

Substituting Equation 10 in Equation 8 and simplifying 

by neglecting the high powers of the Taylor series due 

to small step-size assumption: 

                

0

0

( 1) (1 ) ( )

2 ( ) ( ) ( ) ( )
T

w k w k w

x k e k x k v k

   



    

 
 

 

Defining the rotated vectors, Q
T
δw(k)=δw'(k), 

Q
T
x(k)=x'(k)

 
and Q

T
w0=w'0, where Q is the 

eigenvectors matrix of R, we get:  

             

0

0

( 1) (1 ) ( )

2 ( ) ( ) 2 ( ) ( ) ( ))
T

w k w k w

x k e k x k x k w k

   

  

       

    
 

Taking the expectation of Equation 12 yields: 

       

0

0

[ ( 1)] (1 ) [ ( )] [ ]

2 [ ( ) ( ) ( ))] 2 [ ( ) ( )]
T

E w k E w k E w

E x k x k w k E x k e k

   

  

      

     
 

By the independence assumption [9] of x'(k) and 

δw'(k) and also assuming E[x'(k)x'
T
(k)]=Ʌ yields: 

    0
[ ( 1)] [ ( 2 )] [ ( ))]E w k I I Λ E w k w             

In order to find the convergence criterion, our concern 

will be in finding the bound when Equation 14 is 

bounded for all modes. Solving Equation 14 gives: 

          
[ ( 1)] [ ( 2 )] [ (0)]

k
E w k I I Λ E w          

From Equation 15 it is noted that, E[δw'(k+1)]→ 

constant value if |1-μγ-2μγi|<1, which shows that the 

coefficients converge to their optimum solution in the 

mean sense and hence:  

                           max

2
0

2


 
 


 

Where λmax is the maximum eigenvalue of R. A more 

practical way of calculating λmax could be [9]: 

                   

2

1

( )
N

max i x
i

Tr R N  


    

Where tr(.) denotes trace of a matrix and 2

x
 is the 

power of the input signal. 

 2
0

x
N


 


 

 

    

(18) 

Following the derivation of the convergence in the 

mean sense, the convergence in the mean-square sense 

is derived in this section. The mean-square-error 

(mse) is given by:  

               
( ) ( )

T

min
E w k Λ w k       
   

Where εmin is the minimum mse. It is necessary that 

the diagonal elements of E[δw'
T
(k)Λδw'(k)] to 

converge. Therefore, the convergence condition of
 E[δw'

T
(k)Λδw'(k)] is obtained by post multiplying both 

sides of Equation 12 by δw'
T
(k+1) and taking the 

expectation provides: 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(19) 

(17) 

(16) 

(15) 

(14) 

(13) 

(12) 

(11) 
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2 2 2

2

2

2

[ ( 1) ( 1)] [ ( ) ( )]

                   2 2 2

                2 2 [ ( ) ( )]

                8 [ ( ) ( )]

                4 [ ( )

T T

T

T

E w n w n E w n w n

I I Λ I Λ

Λ Λ E w n w n

ΛE w n w n Λ

Λtr ΛE w n w

   

    

   

  

  

      

     

     

  

  
2 2

2 2 1 1

2

2 1

2 2 1

( )]

                [ ( )]

                [ ( )]

                2 [ ( )]

                2 [ ( )]

                

T

T T

T

T

T

T

n

E w n p Λ p Λ

Λ p Λ p E w n

ΛE w n p Λ

Λ p E w n Λ

Λ p p

   

   

 

 

 

 







      

      

  

  

   2 2

0
4 [ ( )]Λ E e n Λ

 

 

Defining w'0 as w'0=Ʌ
-1

p' where p'=Q
T
p and employing 

the Gaussian moment factoring theorem [9] to simplify 

the expression E{x'(k)x'
T
(k)δw'(k)δw'

T
(k)x'(k)x'

T
(k)}, 

Ψ1(k) can be defined as an 1N  second moment vector 

whose components are the diagonal elements of 

E[δw'
T
(k) δw'(k)], and Ψ2(k)=E[δw'(k)], a state vector 

matrix is constructed as: 

                   

1

2

( 1)
( 1)

( 1)

Ψ n
Ψ n

Ψ n


 



 
 
 

 

Using Equations 14, 20, and 21 can be expressed as: 

                      ( 1) ( )Ψ n KΨ n C    

Where: 

                            0

A   B
K =

    D

 
 
 

 

And: 

  

2 2 2 2 2[1 2 ] 4 [ ] 8 4 TA I Λ I I Λ ΓΓ              

                 
2 2 1 2[(2 2 ) 4 ]B Λ I Y       

                          [ 2 ]D I I Λ     

Where, Y=diag{p'1, p'2, …, p'N} and Γ=[λ1, λ2, …, λN]
T
. 

Since C is bounded, we may neglect it in the rest of the 

analysis. Furthermore, aj is defined as: 

      
2 2 2

1 2 ( 2 ) (( 2 ) 4 )
j j j

a j             

Where aj is the jj
th
 element of A. 

In order to study the convergence of 

E[δw'
T
(k)δw'(k)], it should be noted that Equation 12 is 

exponentially stable if the roots ρj 
of det[K-ρI] lies 

inside the unit circle [8]. Therefore:  

              [ [ ] [ ]det K - ρI] = det D - ρI det A - ρI  

Where from Equation 25: 

             
1

[ ] (1 ( 2 ) ).
N

j
j

det D I    


      

Equations 28 and 29 show the first convergence 

condition for convergence of Ψ(k) is the same as the 

condition found for the convergence in the mean. Also 

knowing that det[ΓΓ
T
]=0, then by [7]: 

      

 

 
1 2

2 1

1 2

2

2

11

[ ] [ { , ,..., }]

      1 4 { , ,..., }

              = ( ) 1 4

N

T

N

N N
j

j
jj

j

det A I det diag a a a

Γ diag a a a Γ

a
a

   

   


 







    

   

  
          



 

 

Following the approach in [6] it can be shown that the 

necessary and sufficient conditions for the roots of 

det[A-ρI] to be inside the unit circle are: 

       -1<aj<1  j=1, 2, …, N   

And: 

                           

2

2

1

1 4 0
N

j

j
j

a






 


 

From the definition of aj in (27) as a function of µ, it 

can be seen that it is a convex function and is greater 

than zero    and γ since it has a minimum non-

negative value of: 

                        

2

2 2

4

( 2 ) 4

j

j j



   
 

 

At: 

                   
2 2

( 2 )

( 2 ) 4

j

j j

 


  




 
 

This changes the condition to: 

                     
1,     1, 2, ...,

j
a j N   

And: 

                     

2

2

1

1 4 0
1

N
j

j
j

a






 


 

The condition in Equation 35 results in:  

          
2 2

( (( 2 ) 4 ) 2( 2 )) 0
j j j

          
                  

 

Using Equation 16, µ>0; then from Equation 37 we 

get: 

          
2 2

( 2 )
0      1, 2, ...,

( 2 ) 4

j

j j

j N
 


  

 
  

 
 

Equation 36 leads to the second condition on μ for 

convergence in the mean square: 

         

2

2 2
1

4
1 0

2( 2 ) (( 2 ) 4 )

N
j

j
j j j



     

 
   

 

In order to convert this condition into a direct bound 

on  we denote the left hand side of Equation 39 by 

χ(μ) knowing that χ(μ) is a monotonically non-

decreasing function of μ since: 

(20) 

(21) 

(22) 

(23) 

(24) 

(26) 

(27) 

(28) 

(29) 

(30) 

(32) 

(35) 

(36) 

(34) 

(37) 

(38) 

(39) 

(25) 

(33) 

(31) 



A New Leaky-LMS Algorithm with Analysis                                                                                                                                327 

 

          

2

2 2 2
1

8 ( 2 )

(2( 2 ) (( 2 ) 4 ))

N
j j

j
j j j

   

      

 
 

   

 

Also, χ(µ) has poles at: 

 
2 2

2( 2 )
,     1, 2, ...,

( 2 ) 4

j

j

j j

j N
 


  


 

 
 

 

And is equal to -1 at µ=0 and ( ) 0lim


 


 . χ(µ)=0 can 

be written as: 

                        
1

( ) ( ) 0
N

i
i   



    

Where µi, i=1, 2, …, N are the roots of χ(µ) and 0< λ 

≤λN-1 ≤ λN-2 ≤…≤ λ1. It can be seen that: 

                           0< μ1< ρ1< μ2< ρ2< …< μN< ρN 
 

In order for the conditions in Equations 35 and 36 to 

hold, μ should be bounded by: 

                                   0< μ< μ1       
 

The condition in Equation 39 provides a more stringent 

bound on μ as given in Equation 44 than in Equation 38 

since µ1<ρ1. A closed-form expression for µ1 cannot be 

found but using the theorem in [11] to obtain a tight 

lower bound on µ1. For Equation 42 where 0< µ1< 

µ2<…< µN, the smallest root μ1 is lower bounded by: 

                    

1 2

1 2 1
( 1)( )

N

s N Ns s


  


  

 

Where, 

                                
1

1

1N

i
i

s





   

And 

               

2 2

2
1 1

1 1 1 1
.

N N N N

i i i j
i i i j

s
   


  

   
       

   

 

Rewriting χ(µ)=0 as: 

                            
1

1 1
0

N

i
i

 

 
  

 

 

And: 

      
1 2

1 2

1 1 1
1 0

N N N

N

N
b b b

  

 

     
         

     
  

Then expanding the first part of Equation 48 and 

comparing it with the second part of the same equation:  

                                 
1

1

1N

i
i

b


   

And: 

                             
2

1 1 1
.

2

N N

i j
i j

b
 

   

Therefore: 

                              
1 1

2

2 1 2
2

s b

s b b







 
 

Comparing the LHS of the second part of Equation 48 

with the LHS of Equation 39, it can be seen after some 

manipulations that: 

                       

 
 

22

1
1

8 2

2 2

N
i i

i
i

b
  

 

 
 


 

And: 

          

     
  

222 2

2

12 2 4 2

8 2 2

i i j jN N

i j
i j

b

     

   

   

 
 

 

Substituting Equation 52 in Equation 45 results in: 

             

1
2 2

1 1 2
( 1) 2 ( 1)

N

b b N b N N
  

   

 

Thus, to ensure convergence in the mean 

square, should be bounded by: 

                               0< μ< μ*  

To make Equation 56 more practical: 

                           1

1

b
   

Then: 

                 

 
 

2
2

1

0
2

2 2

N j j

j
j


  

 


 

  




 

A tighter and more practical bound can be 

expressed in terms of the input signal power 
2

x
 as: 

                         
 2

2
0

6
x

N


 
 



 

5. Computational Complexity 

In this section, computational complexities of the 

LLMS [9], MLLMS in [12] and the proposed 

algorithm are discussed. 

For the proposed algorithm, neglecting the higher 

order terms of the Taylor series expansion of 

exp(e(k)), it can be approximated by: 

   
2 3( ) ( )

( ( )) 1 ( )
2 6

e k e k
exp e k e k     

Table 2 shows that the computational complexity of 

the proposed algorithm is very comparable to that of 

the LLMS algorithm and lower than that of the 

MLLMS algorithm if the filter length is relatively 

high. 

Table 2. Computational complexities of the proposed, LLMS and 

MLLMS algorithms. 

 add./sub. mult./div. 

Proposed   2N+6   3N+6 

LLMS   2N+1   3N+2 

MLLMS   3N   3N+2 

(40) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(41) 

(49) 

(60) 
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6. Normalized Version of The Algorithm 

For the proposed algorithm to converge the step-

size parameter needs to be very small, this small 

step-size is an unfavorable condition that limits the 

application of the proposed algorithm in many 

situations. In order to improve the step-size 

selection range, we proposed a normalized version 

of the algorithm that though does not improve 

convergence nevertheless it improves the stability 

of the proposed algorithm. The normalization is 

given by: 

( 1) (1 ) ( ) 2 ( ) ( ( ))
( ) ( )T

w k w k x k sinh e k
x k x k





   


 

Where δ is a small number to avoid division by zero.  

7. Simulation Results 

In this section, we compare the performance of the 

proposed algorithm to those of the LLMS [9] and 

MLLMS [11] algorithms in channel estimation and 

channel equalization settings under white Gaussian and 

white and correlated impulsive noise environments. 

7.1. Channel Estimation 

In the channel estimation setting shown in Figure 1, the 

aim is estimate the impulse response of the unknown 

system h. The input signal is created using a first order 

autoregressive model (AR(1)) given by 

0
( ) 0.8 ( 1) ( ),x k x k k    where 

0
( )k  is a white 

Gaussian process with zero mean and variance 
2

0
0.36  .  

+

( )wy k
( )kw

( )kh
( )d k

( )e k

( )x k

+
( )y k

( )v k





 

Figure 1. Block diagram of a channel estimation setting. 

The impulse response of the system is modeled by a 

low pass filter of 16 taps (N=16) with the transfer 

function shown in Figure 2. The convergence rate and 

the mse are considered as the performance measures. 

The simulations were done for stationary signals 

corrupted with white and correlated impulsive noises. 
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Figure 2. Transfer function of the channel’s impulse response h. 

7.1.1. Additive White Gaussian Noise  

In this experiment, the input signal is assumed to be 

corrupted by an Additive White Gaussian Noise 

(AWGN) process with zero mean and 

variance 2 2.25
v

   . The simulations were done 

with: μ=0.007 for all algorithms and γ=0.001 for the 

proposed and LLMS algorithms. Figure 3 shows that 

all the algorithms converge to the same mse=-38.5dB. 

However, the proposed algorithm converges much 

faster than the other algorithms (800 iterations faster). 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

10
1

iterations

m
s
e

MLLMS

LLMS

Proposed

 

Figure 3. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in AWGN, N=16, µ=0.007 for all algorithms and 

γ=0.001 for the proposed and LLMS algorithms. 

7.1.2. Additive White Impulsive Noise 

Noises such as atmospheric noise, under water 

acoustic noise, man-made noise, etc. are not usually 

modeled as Gaussian noises; they are better modeled 

as impulsive noise [1]. An impulsive noise process can 

be generated using the probability density function [5, 

19]:      2 21 0, 0,f G G       , with variance 

 2 2 21
f        . The impulsive noise comprises of 

nominal background Gaussian noise represented by 

 20,G   with zero mean and variance 2

 and an 

impulsive part represented by  20,G   where 

1  and  are the strength and the probability of the 

impulsive components, respectively. In this 

experiment, an Additive White Impulsive Noise 

(AWIN) process with zero mean and variance 
2 2.25

v
    is used with κ=100 and ε=0.2. The 

simulations were done with: µ=0.004 for all 

algorithms and γ=0.001 for the proposed and LLMS 

algorithms. Figure 4 shows that all the algorithms 

(61) 
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converge to the same mse=-25dB. However, the 

proposed algorithm converges much faster than the 

other algorithms (600 iterations faster). 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10
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10
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10
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10
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iterations

m
s
e

Proposed LLMS

MLLMS

 

Figure 4. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in AWIN, N=16, µ=0.004 for all algorithms and γ=0.001 

for the proposed and LLMS algorithms. 

7.1.3. Additive Correlated Impulsive Noise 

In this experiment, the signal created in section 6.1 is 

assumed to be corrupted by an Additive Correlated 

Impulsive Noise (ACIN) process. The ACIN is 

generated by AR(1) process, v(k+1)=ρv(k)+v0(k), where 

v0(k) is an AWIN process with zero mean and variance 
2 4

0
2.25 10

v
   , and ρ is the correlation coefficient 

(ρ=0.7). The simulations were done with: µ=0.007 for 

all algorithms and γ=0.001 for the proposed and LLMS 

algorithms. Figure 5 shows that all of the algorithms 

converge to the same mse=-20dB but with faster 

convergence rate of the proposed algorithm (800 

iterations faster). 

From the previous experiments, for the channel 

estimation setting in Figure 1, the proposed algorithm, 

always, converges faster than the LLMS and the 

MLLMS algorithms. This shows the achieved 

improvement in the performance by modifying the cost 

function of the proposed algorithm. Also, in ACIN case, 

the convergence rate difference between the proposed 

algorithm and the other algorithms is higher. This 

shows the ability of the proposed algorithm in 

suppressing the noise is prominent when the noise is 

correlated. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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m
s
e
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Figure 5. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in ACIN, N=16, µ=0.007 for all algorithms and γ=0.001 

for the proposed and LLMS algorithms. 

7.2. Channel Equalization 

For the channel equalization setting shown in Figure 

6, the input is generated using a Bernoulli sequence of 

zero mean and unity variance where x(k)= ±1 and the 

impulse response of the channel h(k) is given by: 

             

 
1 2

1 cos 2 , 1,2,3
( ) 2

0                                     , otherwise.

k k
h k W

   
     

    



 

Where W controls the eigenvalue spread χ(R) of the 

autocorrelation of the tap-input sequence. A filter of 

length N=11 is used. W=3.5 is used for the simulations 

in this section. 

 

( )x k

( )v k

( )kh
( )y k







( )d k

( )kw 

1z

 

Figure 6. Block diagram of a channel equalization setting. 

7.2.1. Additive White Gaussian Noise 

In this experiment, an AWGN process with zero mean 

and variance 2 1
v

   is used. The simulations were 

done with: µ=0.01 for all algorithms and γ=0.001 for 

the proposed and LLMS algorithms. Figure 7 shows 

that all the algorithms converge to the same mse=-

30dB with much faster convergence rate of the 

proposed algorithm (3000 iterations faster than the 

other algorithms). 
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Figure 7. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in AWGN, N=11, µ=0.01 for all algorithms and 

γ=0.001 for the proposed and LLMS algorithms. 

7.2.2. Additive White Impulsive Noise 

In this section, the performance of the proposed 

algorithm is compared to those of LLMS and MLLMS 

algorithms in the channel equalization setting shown 

in Figure 6 where v(k) is an AWIN. The noise process 

is generated as in section 7.1.2 with zero mean and 

variance 2 41 10
v

   . The simulations were done with: 

(62) 
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µ=0.01 for all algorithms and γ=0.001 for the proposed 

and LLMS algorithms. Figure 8 shows that all 

algorithms converge to the same mse=-20dB with a 

faster convergence rate for the proposed algorithm than 

the LLMS and MLLMS algorithms (1500 iterations 

faster). 
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Figure 8. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in AWIN, N=11, µ=0.01 for all algorithms and γ=0.001 

for the proposed and LLMS algorithms. 

7.2.3. Additive Correlated Impulsive Noise 

In this experiment, the ACIN generated in section 6.1.3 

is used with zero mean and variance 2 4

0
1 10

v
   . The 

simulations were done with: µ=0.01 for all algorithms 

and γ=0.001 for the proposed and LLMS algorithms. 

From Figure 9, all algorithms converge to the same 

mse=-23dB with the proposed algorithm having a faster 

convergence rate than the LLMS and MLLMS 

algorithms (1500 iterations faster). 

Sections 7.2.1 to 7.2.3 show simulation results, for 

channel equalization setting, with white AWGN and 

white and correlated impulsive noise processes. The 

convergence rate of the proposed algorithm is faster 

than those of the LLMS and MLLMS algorithms (3000, 

1500 and 1500 iterations, respectively, faster). The 

significant performance in all cases shows the 

robustness of the proposed algorithm in AWGN and 

impulsive noise environments. Furthermore, the 

computational complexity of the proposed algorithm is 

very comparable to those of the LLMS and MLLMS 

algorithms as shown in Table 2. 
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Figure 9. The ensemble mse of the proposed, LLMS and MLLMS 

algorithms in ACIN, N=11, µ=0.01 for all algorithms and γ=0.001 

for the proposed and LLMS algorithms. 

8. Conclusions 

In this paper, a new leaky LMS adaptive filtering 

algorithm is proposed. The proposed algorithm 

employs a sum of exponentials in its cost function 

which leads to an improved performance. The 

convergence analysis of the proposed algorithm is 

presented and the convergence criteria are derived. 

Also, a normalized version of the proposed algorithm 

is shown which improves the step-size selection 

range. Simulation results show that the proposed 

algorithm outperforms the LLMS and MLLMS 

algorithms in different experimental settings with 

very comparable computational complexity. 
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