
250 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

A Hybrid Approach for Providing Improved Link

Connectivity in SDN

Muthumanikandan Vanamoorthy1, Valliyammai Chinnaiah1, and Harish Sekar2
1Department of Computer Technology, Madras Institute of Technology, Anna University, India

2Endurance International Group, India

Abstract: Software-Defined Networking (SDN) is a unique approach to design and build networks. The networks services can

be better handled by administrators with the abstraction that SDN provides. The problem of re-routing the packets with

minimum overhead in case of link failure is handled in this work. Protection and restoration schemes have been used in the

past to handle such issues by giving more priority to minimal response time or controller overhead based on the use case. A

hybrid scheme has been proposed with per-link Bidirectional forwarding mechanism to handle the failover. The proposed

method makes sure that the controller overhead does not impact the flow of packets, thereby decreasing the overall response

time, even with guaranteed network resiliency. The computation of the next shortest backup path also guarantees that the

subsequent routing of packets always chooses the shortest path available. The proposed method is compared with the

traditional approaches and proven by results to perform better with minimal response time.

Keywords: Open flow, SDN, link failure, protection and restoration.

Received October 12, 2018; accepted January 21, 2019

https://doi.org/10.34028/iajit/17/2/13

1. Introduction

Software-Defined Networking (SDN) is

revoultionalizing the way to architecture networks. It

provides numerous advantages in terms of automated

load segregation, traffic monitoring and virtualization.

It has 2 major planes-control plane and data plane.

Control plane is the centralized unit which is

programmed to direct the routing process in the data

plane. SDN allows easy reconfiguration since the

intelligence of the network is centralized. The end to

end connectivity among the nodes is monitored by the

SDN controller. It is also capable of computing and

monitoring the overall throughput and response time.
Open flow is an open source implementation of the

protocol and acts as an interface between switches and

controllers. The centralized control over the network is

handled by open flow by remotely controlling the

forwarding table of all the switches. There are three

main components in the openflow architecture namely

data plane, control plane and a secure communication

channel to link them.
Each open flow switch has three tables to manage

the process of forwarding the packets. These are flow

table, group table and meter table. Flow table has a list

of entries based on which it reacts to the incoming

packet and takes the action to forward it accordingly.

There can be multiple entries/rules to control the

forwarding process and these rules will be sorted on

based of the priority of the rules. The secure channel

will be used to pass packets to the controller when none

of the forwarding rules match with the packet. Some

algorithms may even choose to drop such packets.

Headers, counters and action are the three

important fields of a flow entry. The duration of active

links, count of received packets and count of

transmitted packets are among the frequently

encapsulated fields in counters. The action field

chooses the forwarding path of the matched packet. To

handle multiple flows, group table can be used.
Group table is organized in buckets which have

more than one rule per incoming packet. Meter table is

used to control the performance of a switch.

Virtualization of a network can optimize the

computation and storage capacity of the network.

These features play an important role in automating

the network functionalities, thereby reducing

functional costs.
 Fault tolerance of a network can be defined as the

capability to swiftly respond and handle an

unexpected failure. Network protection to handle link

failures and reroute the packets to the destination is

significant. This requires the network to maintain the

active links so that the backup paths are computed

accordingly to forward the packets.
SDN provides the ability to control the bandwidth

based on the requirements. The underlying network is

managed by the controller to enhance the network

performance. SDN applications can be operated in

multiple variations like Software Defined Mobile

Networking (SDMN), Software Defined Local Area

Networking (SD-LAN) and Software Defined Wide

Area Networking (SD-WAN). Server virtualization in

large data centres provided by SDN is seen as a

A Hybrid Approach for Providing Improved Link Connectivity in SDN 251

primary advantage to handle large networks. These

features of SDN make sure that it reduces operational

costs and enhances network visibility.
The paper is partitioned into seven sections. The

second section covers the literature survey of the

mechanisms used so far in the past works, the third

section explains the proposed work, the fourth section

details on the mathematical justification, the fifth

section briefing the experimental setup followed by the

sixth section which shows the results and the final

section covers the conclusion and future work.

2. Literature Survey

Optimization of the flow restoration process has been

handled in the past [1]. Two cases of handling the flow

operation were studied-1) Add and Remove, 2) add-

only. The proposed algorithm was targeted to find the

near to optimal solution. But, the technique did not

focus on minimizing the response time.
Bidirectional Forwarding Detection (BFD) had been

closely associated to handle node and link failures

effectively in the past [12, 18]. It involves a three-way

handshake process for establishing the session. It was

concluded that BFD can be used as an efficient

Operation, Administration and Maintenance (OAM)

mechanism for IP RAN networks to serve the needs of

node and link fault tolerance with minimum overhead.
Fast failover had been handled using Proactive

mechanisms [8, 10, 15] in software defined networks.

Controller was frequently involved in the failover

process using the protection scheme. Flow aggregation

had been used as its main principle using the Virtual

Local Area Network (VLAN) tag id in order to provide

fast failover. The recovery time was low in this process,

thereby enabling this mechanism to be feasible for

carrier grade networks.
The issue of robust multicasting had been treated

with the open flow framework [2]. Reactive and

Proactive are two major ways of handling fault

tolerance. To provide proactive fault tolerance, a

multicast tree was involved which connected one

publisher to a set of subscribers to provide resilience.

The packet information was carried using the VLAN

tags. The scope of the work did not involve the reactive

mechanism to handle failover and switchover.
Load balancing and congestion control are the two

other important aspects of network performance in data

center networks [9, 11]. Software defined networking

provides an additional advantage of handling dynamic

load balancing and multipath forwarding to solve the

problem of congestion control. Effective traffic control

had been done using the notification mechanism among

the switches. It was an economical approach to handle

the increasing network loads in data center networks.
SDN switches and traditional IP routers can co-exist

in a hybrid mechanism which can be used to solve the

issue of single link failure and guarantee traffic

reachability [5]. IP tunnelling protocols were used to

implement this approach. Computed results had shown

that the number of SDN switches required for this

approach were comparatively lesser. The approach

was better in terms of performance when compared to

the shortest path recalculation approach.
Failover mechanism was introduced with per-link

BFD [16]. Group tables and BFD were combined to

provide superior link failure detection. The recovery

time of this approach was independent of the size of

network and length of path.
A framework for Open State had been used to

handle both node and link failures [3]. It made use of

the protection scheme using pre computed alternate

paths. Mixed Integer Linear Programming (MILP)

process was formulated to optimize fast-failover

reroutes and path calculation for all potential link

failures. The ways in which link failure would arise

were not considered in this approach.
Multiple link failures frequently seen in carrier

networks have also been solved in the past [14]. The

authors proved that for any small number of edge k,

the network design, related protocol, and backup path

reconfiguration scheme could handle k arbitrary link

failures and provided no loss of connectivity and

congestion. The existing link-based restoration using

FRR is fast but forms congestion which leads to

packet loss for sensitive applications by overloading

edges.
A novel network protection mechanism, called

Independent Transient Plane (ITP) was proposed

where there were two uncorrelated planes -working

and transient planes [7]. The transient plane was used

to route the packets to overcome the disadvantages of

segment protection [13]. The design managed to

reduce the flow table entries by 60% and used

minimal number of configuration messages. But, the

mechanism was designed only for OpenFlow based

networks. Mechanisms designed for providing fault

tolerance were also focussed on particular types of

networks such as grid [6] to improve the application

turnaround time.

Congestion-Aware Local Fast Reroute (CALFR)

had been designed by leveraging flexible flow

aggregation in fast reroute to balance failure recovery

time and forwarding rule occupation [4]. The problem

was formulated as an integer linear programming

model. In node failure of SDN, Bellman Ford and

Dijikstra algorithms were used for providing

resolution for loop confrontation and bandwidth

allocation of nodes respectively [17].

The literature survey can be summarized as

follows:

1. Restoration and Protection schemes are two

frequently used failover mechanisms.
2. Protection method is focussed on adding the entries

in the flow table beforehand, thereby avoiding the

252 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

controller overhead in case of a link failure.
3. Restoration method involves the controller call

whenever there is a link failure. This ensures smaller

flow table but there is a overhead involved in the

controller call affecting performance.
4. BFD is an effective algorithm for detecting the status

of links.
5. Numbers of configuration messages, size of flow

table and response time are the most important

factors in determining the performance of a network.

3. Proposed Work

3.1. Architecture

The proposed system architecture is drawn in Figure 1.

The SDN controller which acts as the centralized base

of intelligence encapsulates three components. It

collaborates between the three units and accomplishes

the rerouting process. The three components are namely

real time controller, link failure handler and link failure

detector.
The SDN controller communicates using the

OpenFlow protocol with the switches. Each open flow

switch is associated with a flow table and a group table.

There is a bidirectional interaction described in the

figure to demonstrate the interaction between the

switches and controller. This is due to the fact that the

switch informs about the failed packet delivery using

the faulty link to controller and the controller installs

the new flow entries after the computation of the new

shortest paths.

Figure 1. Proposed hybrid system architecture.

The real time controller is the centralized component

of the SDN controller and it functions to collaborate

between the link failure detector and handler. When a

faulty link is notified by a switch via the secure control

channel, the real time controller establishes

asynchronous BFD switches to detect the status of other

links. The source switch sends a control message and

waits for the acknowledgement in a particular

timeframe. Once the status of the links are figured out

by the link failure detector, it transfers the control to the

real time controller which proceeds forward to handle

it using the link failure handler.
The link failure handler proceeds to compute the

shortest path in the current topology using the

configured algorithm and sends the computed details

to the real time controller. The real time controller

sends messages to the switches to install the new flow

and group entries. The group entries make sure that

the protection part of the process is covered, to make

sure that the packets can again be forwarded without

controller intervention when there is a similar link

failure in the future.

3.2. Network Protection Against Link Failure

Link failure detection is the first step of the hybrid

approach. It is significant to detect the status of all

links from the source switch that reported the failure.

It is because of the fact that subsequent routing should

be optimized for the topology at that point of time. It

uses BFD for this process. It is operated in two modes-

Asynchronous or demand. Here, asynchronous model

is used and the source switch sends an asynchronous

control message. Timers are set and the source switch

waits for the response from all of its immediate

neighbours to detect the link availability. Based on the

results obtained from this process, the current

topology is determined.
Fault handling is handled in a hybrid manner

including both the restoration and protection schemes.

The process involves two steps. The switch uses the

pre installed backup entries to determine the path for

the delivery of the current packets. However, to make

sure that the future path remains optimized, it makes

the controller call and the controller computes shortest

path using Dijikstra’s algorithm in the second step and

transmits the flow entries to the corresponding switch.

It can be used in case of future link failures and thus it

is the entry that we make use of in the first step. If

there is no backup entry configured in the group table

of the switch, it traces back the packet to the source to

check if there is any path from it and this process

keeps repeating recursively.
Consider the topology in Figure 2. There are a

couple of hosts and six switches. Assume an use case

where the packet transmission is from host ‘src’ to

host ‘des’. The flow and group entries are pre

configured in the switches along with the backup

entries to handle the failure in the primary path. In the

normal scenario, the packets will be transmitted in the

primary shortest path 1-2-3. However, keeping link

failures in mind to provide fast failover, there are

group entries in all the switches to its corresponding

destination node. For example, switch 6 has two group

entries pertaining to port 2 and 3 which acts as

primary and backup entries for the potential failure in

link 6-3. Therefore the switch will transmit the packets

in the 1-6-4-3 path if the link 6-3 fails.

A Hybrid Approach for Providing Improved Link Connectivity in SDN 253

Figure 2. The Topology of a sample network.

The failure of the link 2-3 is shown in Figure 3.

Using the group table entries, the packets start flowing

in 1-2-5-4-3.

Figure 3. Fast failover process using group table.

Even though fast failover is provided using the

group entry, the path used for the transmission might

not be the most efficient path for future packets to flow.

Here, the path 1-6-3 is up and hence the shortest, once

the link 2-3 goes down. Thus the controller takes the

responsibility to figure out the least distance path once

it gets the notification from the switch 2. The path 1-6-

3 is found to be optimal and the controller proceeds to

install the new entries as shown in Figure 4.
The controller also adds the backup entries for each

failed link in the new primary path. Therefore to

account for failure in link 1-6, the transmission 1-5-4-3

is identified and similarly to account the failure of link

6-3, the transmission 6-4-3 is identified. Hereby, we

guarantee the most optimal path in the future

transmissions while providing instant fast failover.

Figure 4. Computation of the current shortest path.

The immediate fast failover approach and long term

optimal routing are both handled appropriately. The

controller action is described in the following

algorithm.

Algorithm 1:controller_action(packet, switch, link_failed)

Input: Source switch with the failed link

Output: Optimal path installed in the switches

Declare and initialize path [][]={0}

for each interface in switch

{

 Enable multiple BFD async sessions recursively

 Initialize timers and proceed on the sessions

 Pass the control message

 Trace the response within TTL and store in response

 if response

 {

 Insert the link in path[][]

 }

}

shortest_path = dijikstra(path, src, dest)

insert_flow_entries(shortest_path)

for each link in shortest_path

{

 path = path – {link}

 current_path = dijikstra(path,link.src,dest)

 insert_flow_entries(current_path)

 path=path+{link}

}

The switch functions as per the following algorithm.

Algorithm 2: switch_action(packet)

Input: Transmission packet

Output: Invoke controller or transmission of packet

output_port = get_next_hop(flow_table, input_port);

if output_port is up

{

 transmit the packet in output_port

 return

else

 backup_port= get_backup(flow_table, input_port)

 transmit the packet in backup port

 controller_action(packet,this.name,output_port)

}

4. Analysis of Flow Entries

The analysis of flow entries is performed with the

traditional open flow ring topology. Let us assume that

the count of hosts interfaced to each switch is denoted

by M and the number of switches is denoted by N. The

average count of flow entries can be evaluated using

the expression Equation (1).

W = N*(N-1)*M + M*N

The Equation (1) can be equated down into Equation

(2).

W = (N^2) *M

The above expression, as each switch needs to have

entries that matches packets to the hosts connected to

itself, the second term of the expression M*N is the

number of such flows. In order to match other hosts

connected to other switches, each switch must match

the IP address of the destination using a flow entry. As

(N-1)*M denotes the count of number of hosts apart

from those connected to that switch, the total number

of such entries is denoted by the expression N*(N-

1)*M.
The flow entry’s action can be based on the IP

address of the input switch or the port. The above

equation denotes the flow entries when Internet

Protocol address is considered. But, usually the port

number is efficient in terms of lesser flow entries as it

can aggregate many flow entries into a single bucket

in the flow table. The average count of working flow

(1)

(2)

254 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

entries based on the action using port number is

denoted in the expression as Equation (3).

W = 2*N + M*N

As there are only 2 flows required for aggregation

based on the port number in the ring topology, 2*N is

added with the other entries needed to send packets

targeted at the hosts connected directly to itself as seen

in the first case. It must be noted that this equality may

not be the same with respect to any other topology.

5. Experimental Setup

Mininet network simulator and Opendaylight SDN

controller have been used to simulate the algorithm.

The hybrid failover algorithm is implemented using

Python invoking the Opendaylight libraries and

Application Programming Interface (API’s). The

network topology is designed in Mininet in Python.
The Operator Discretization Library (ODL) libraries

primarily used were dlux and l2switch. The Virtual

Machine’s (VM) operating system used to implement

the system is Ubuntu 16.06 on top of the Windows 10

host OS using Oracle Virtual Box. The Random Access

Memory (RAM) allocated for the VM is 2 GB. The

Opendaylight controller operates in the port number

6633.

6. Implementation and Results

The response time of the proposed hybrid fast failover

method is compared with the traditional restoration

scheme. The comparison of the response time is

depicted in Figure 5. As depicted, since the controller is

involved in the restoration approach, the response time

grows with the number of flow entries, but in the

proposed hybrid approach since the failover depends

only on the backup path, there is not a significant rise in

the response time.

Figure 5. Response time.

The number of backup flow entries is plotted against

the number of switches in Figure 6. The segment based

protection method is compared with the proposed

hybrid approach. The experimental result suggests that

restoration method needs more entries than the

proposed method. Backup entries play an important

role while routing the packets in case of a failure in

the primary path. Therefore, number of flow entries is

an important performance attribute. Clearly, the

proposed method overcomes the segment based

approach.

Figure 6. Backup flows entries.

The response time required to forward the packet is

plotted against the number of switches in Figure 7.

Failover and switchover response time play an

important role in judging the performance of an

algorithm. Failover is the time required to forward the

packet to the destination while switchover is the

computation time taken by the controller to compute

the subsequent future path. Thus the graph compares

the failover and switchover time with the increase in

number of switches.

Figure 7. Failover and switchover time comparison.

Figure 8. Number of configuration messages.

The most recent design for providing link fault

tolerance is based on independent transient plane. The

ITP method is compared with the proposed approach

based on the number of configuration messages

(3)

A Hybrid Approach for Providing Improved Link Connectivity in SDN 255

against the number of switches in Figure 8.

Configuration messages are the control messages

transmitted using the secure control channel. These

messages play a crucial role in the coordination

between the switches and controller. This includes the

faulty link notification messages and the flow entry

installation messages.

7. Conclusions and Future Work

A hybrid approach for the delay-less transmission of

on-the-fly packets to the destination with minimal

controller overhead and response time has been

discussed and this method also makes sure that the

future flow of packets would always take the shorter

path if available in the updated topology. The key

features of the method can be summarized as follows.

1. Fast failover is guaranteed in the proposed approach
2. Optimal path in the longer run is assured with on-

the-fly packets delivered using the available backup

path
3. BFD is efficiently used to compute the status of the

links and arrive at the current topology of the system
4. The proposed approach is superior to the traditional

restoration and protection schemes since it provides

the advantages of both of these mechanisms.

The classification of link failure types into permanent

and transient failures can play an important factor in

determining the fast failover approach. SDN protocol

implementations other than open flow can also be

studied and experimented with the proposed approach.

Congestion factor is one factor that can be used to

extend the proposed approach in the re-routing process,

where the new path will depend on the traffic load that

the links are facing. It can be used to prioritize the

backup link when there are multiple options with the

same cost. Packets which are identified to be malicious

can be handled differently during the routing process.

These packets can either be dropped or passed to the

controller via the secure channel for the controller to

make a choice on whether to forward the packet via the

primary path or not.

References

[1] Astaneh S. and Heydari S., “Optimization of SDN

Flow Operations in Multi-Failure Restoration

Scenarios,” IEEE Transactions on Network and

Service Management, vol. 13, no. 3, pp. 421-432,

2016.
[2] Ahmed R., Alfaki E., and Nawari M., “Fast

Failure Detection and Recovery Mechanism for

Dynamic Networks Using Software-Defined

Networking,” in Proceedings of IEEE Conference

of Basic Sciences and Engineering Studies,
Khartoum, pp. 167-170, 2016.

[3] Capone A., Cascone C., Nguyen A., and Sanso

B., “Detour Planning for Fast and Reliable

Failure Recovery in SDN with OpenState,” in

Proceedings of IEEE International Conference

on the Design of Reliable Communication

Networks, At Kansas, pp. 25-32, 2015.

[4] Cheng Z., Zhang X., Li Y., Yu S., Lin R., and

He L., “Congestion-Aware Local Reroute for

Fast Failure Recovery in Software-Defined

Networks,” Journal of Optical Communications

and Networking, vol. 9, no. 11, pp. 934-944,

2017.

[5] Chu C., Xi K., Luo M., and Chao H.,

“Congestionaware Single Link Failure Recovery

in Hybrid SDN Networks,” in Proceedings of

IEEE Conference on Computer

Communications, Kowloon, pp. 1086-1094,

2015.

[6] Khan M., Hyder S., Ahmed G., and Begum S.,

“A Group Based Fault Tolerant Scheduling

Mechanism to Improve The Application

Turnaround Time on Desktop Grids,” The

International Arab Journal of Information

Technology, vol. 13 no. 2, pp. 274-280, 2016.

[7] Kitsuwan N., McGettrick S., Slyne F., Payne D.,

and Ruffini M., “Independent Transient Plane

Design for Protection in OpenFlow-Based

Networks,” Optical Communication Networks,

vol. 7, no. 4, pp. 264-275, 2015.

[8] Kitsuwan N., Payne D., and Ruffini M., “A

Novel Protection Design for OpenFlow-Based

Networks,” in Proceedings of 16th International

Conference on Transparent Optical Networks,

Graz, pp. 1086-1094, 2015.

[9] Li J., Hyun J., Yoo J., Baik S., and Hong J.,

“Scalable Failover Method for Data Center

Networks Using Open Flow,” in Proceedings of

IEEE International Conference, Krakow, pp. 1-

6, 2014.

[10] Lin Y., Teng H., Hsu C., Liao C., and Lai Y.,

“Fast Failover and Switchover for Link Failures

and Congestion in Software Defined Networks,”

in Proceedings of IEEE Communication QoS,

Reliability and Modeling Symposium, Kuala

Lumpur, pp. 1-6, 2016.

[11] Mallik A. and Hedge S, “A Novel Proposal to

Effectively Combine Multipath Data Forwarding

for Data Center Networks with Congestion

Control and Load Balancing Using Software-

Defined Networking Approach,” in Proceedings

of IEEE International Conference on Recent

Trends in Information Technology, Chennai, pp.

1-7, 2014.
[12] Nordell V., Gavler A., and Skoldstrom P., “BFD

Triggered, GMPLS Based Multi-Layer Ethernet

Access Network Protection,” in Proceedings of

IEEE International Conference Asia

https://ieeexplore.ieee.org/xpl/conhome/6867035/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6867035/proceeding

256 The International Arab Journal of Information Technology, Vol. 17, No. 2, March 2020

Communication and Photonics Conference and

Exibition, Shanghai, pp. 1-6, 2011.
[13] Sgambelluri A., Giorgetti A., Cugini F., Paolucci

F., and Castoldi P., “Open Flow-Based Segment

Protection in Ethernet Networks,” Journal of

Optical Communications and Networking, vol. 4,

no. 9, pp. 1066-1075, 2013.

[14] Sinha R., Ergun F., Oikonomou K., and

Ramakrishnan K., “Network Design for

Tolerating Multiple Link Failures Using Fast Re-

Route,” in Proceedings of IEEE International

Conference on the Design of Reliable

Communication Networks, Ghent, pp. 1-8, 2014.

[15] Thorat P., Challa R., Raza S., Kim D., and Choo

H, “Proactive Failure Recovery Scheme for Data

Traffic in Software Defined Networks,” in

Proceedings of IEEE Netsoft Conference and

Workshops, Seoul, pp. 219-225, 2016.
[16] Van Adrichem N., Van Asten B., and Kuipers F.,

“Fast Recovery in Software-Defined Networks,”

in Proceedings of 3th European Workshop

on Software Defined Networks, London, pp. 61-

66, 2014.
[17] Waleed S., Faizan M., Iqbal M., and Anis M.,

“Demonstration of Single Link Failure Recovery

using Bellman Ford and Dijikstra Algorithm in

SDN,” in Proceedings of International

Conference on Innovations in Electrical

Engineering and Computational Technologies,

Karachi, pp. 1-4, 2017.

[18] Zheng R. and Sun S., “BFD-triggered OAM

Mechanisms for IP RAN Network,” in

Proceedings of IEEE Zheng International

Conference on Electronics Information and

Emergency Communication, Beijing, pp. 286-

288, 2013.

Muthumanikandan Vanmoorthy

is currently working as a Teaching

Fellow at the Department of

Computer Technology, Madras

Institute of Technology Campus,

Anna University, Chennai, India.

He received his B.E and M.E

degree in Computer Science and

Engineering discipline. He received his PhD in CSE

from Anna University. His areas of interests include

Networking, Software Defined Networking and

Network Function Virtualization.

Valliyammai Chinnaiah is an

Associate Professor in the

Department of Computer

Technology, Madras Institute of

Technology Campus, Anna

University, Chennai, India. She

received her Ph.D. in computer

science and engineering at Anna

University. She has 15 years of teaching experience.

Her areas of interest include Cloud computing, Big

Data, Network management, Grid computing and

Mobile agents. She has published around 46 papers in

National and International conferences and journals.

Harish Sekar is a Computer Science

Engineer and he obtained his

Bachelor’s degree from the Madras

Institute of Technology, Chennai

from the Department of Computer

Science and Engineering. He is

currently associated with Endurance

International Group as a Software

Engineer at Bengaluru, India. Harish is an expert

coder and has a lot of passion for algorithms. He has

done many projects and has strong interest in SDN.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=

