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Abstract: Now a day’s cancer has become a deathly disease due to the abnormal growth of the cell. Many researchers are 

working in this area for the early prediction of cancer. For the proper classification of cancer data, demands for the 

identification of proper set of genes by analyzing the genomic data. Most of the researchers used microarrays to identify the 

cancerous genomes. However, such kind of data is high dimensional where number of genes are more compared to samples. 

Also the data consists of many irrelevant features and noisy data. The classification technique deal with such kind of data 

influences the performance of algorithm. A popular classification algorithm (i.e., Logistic Regression) is considered in this 

work for gene classification. Regularization techniques like Lasso with L1 penalty, Ridge with L2 penalty, and hybrid Lasso 

with L1/2+2 penalty used to minimize irrelevant features and avoid overfitting. However, these methods are of sparse 

parametric and limits to linear data. Also methods have not produced promising performance when applied to high 

dimensional genome data. For solving these problems, this paper presents an Additive Sparse Logistic Regression with 

Additive Regularization (ASLR) method to discriminate linear and non-linear variables in gene classification. The results 

depicted that the proposed method proved to be the best-regularized method for classifying microarray data compared to 

standard methods. 
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1. Introduction 

In the area of genome research, the most important task 

is the classification of cancer based on the gene 

expression. The most popular classification technique 

is Logistic Regression provides an emphatic statistical 

depiction on cancer data. In the gene expression 

research, the number of genes under this study is more 

than the sample size. This is known as High 

dimensional-low sample size problem. To handle such 

kind of problem, applied technique which is 

regularization method with penalty. A popular 

regularization method is the penalty [15] which is, 

Least Absolute Shrinkage and Selection Operator 

(LASSO). This method can do reduction of features 

and gene selection at the same time. The other method 

related to this Adaptive Lasso (ALASSO) [26], assigns 

dynamic weights to the coefficients in the penalty. In 

the Logistic regression [10], may lead to bias with 

absence of future selection at predicting parameters. 

Another method [21] introduced penalty which could 

be considered as a symbol penalties. This is 

advantageous with respect to its sparsity and also 

computationally more efficient. The main 

characteristics of penalty are unbiasedness and oracle 

properties [23]. The penalty fails in the process of 

dealing with data, which consists of dependent 

features. It cannot identify the correlation between the 

features. Another drawback is penalty can select a 

single variable from a group of variables in which the 

pair wise correlations are high. Due to this, task 

relevant necessary data may lose which causes the 

improper classification. Many authors published their 

work on sparse regularization methods like Group 

Lasso [17], and Elastic Net [25]. But all the above 

stated techniques were restricted to the dimensionality 

reduction and feature selection based on the parametric 

methods. This paper focuses on regularization penalty 

with additive models. This model helps to smoothen 

the regression parameters. It could also discriminate 

the linear and nonlinear variables for removing the 

irrelevant variables. The proposed method tested over 

real microarray data sets and results are promising 

compared to the standard regularized methods. The rest 

of the article is organized as follows. In section 2, 

described about related work, section 3, defined the 

approach and presented an efficient algorithm for 

solving the logistic regression model with the penalty. 

In sections 4 and 5, we evaluated the performance of 

our proposed approach on the simulated data and five 

public gene expression datasets. We presented a 

conclusion of the paper in section 6. 

2. Related Work 

The popular Regularized logistic regression is applied 

to cancer classification and is support both large and 

small features [3, 12]. However, such methods fails to 
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reach oracle and smoothing properties. An additive 

model [16] with regularized method for feature 

selection produces the properties of both the sparsity 

and smoothness. [6]. Introduced the Component 

Selection and Smoothing Operator (COSSO) method, 

used feature selection on basis of nonparametric 

regression models. The Wang et al. [18] make use of 

both Group Lasso and Smoothly Clipped Absolute 

Deviation (SCAD) methods for model selection. 

GLMNET (Lasso and elastic-net regularized 

generalized linear models) with L1 penalized 

regression introduced [22] resolve problems of 

standard penalized methods. [1, 24] Designed methods 

for gene classification using Logistic Regression with 

L1/2 penalty [11, 19]. A new algorithm with Group 

Lasso using multinomial logistic regression solves 

multi-class classification. 

3. Regularized Methods and Model 

Framework 

3.1. Lasso Regularization 

Consider a dataset X with n samples where 

x={(x1,y1),(x2,y2),…,(xn,yn)}.. These n samples are 

labelled with two class names. xi={xi1,xi2,…xin} 

indicates the ith instance with p dimensions in X. In the 

case of genome data, xij
 

represents the value of ith
 

sample jth gene. The class label of ith instance or ith
 

sample is Yi which holds a value of 0 or 1. As there are 

two classes in the dataset, if Yi=0 then ith instance 

represents class 1 otherwise Yi
 

then ith instance 

represents class 2. The Lasso model is shown as:  
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In the recent study, many regularization methods were 

proposed L1 regularization is the one identified as a 

well-organized method by many researchers. In this 

extension methods are SCAD regularization, the 

adaptive Lasso, Elastic Net, and Elastic SCAD. But in 

the analysis of gene expression data, the L1 type 

regularization methods are not sufficient for drawing 

the conclusions. The real dataset which is collected 

through microarray-sequence consists of many 

predicates. But all these are not informative genes. 

There is a necessity of selecting required number of 

informative genes from the dataset. Other than this, L1 

regression is asymptotically biased [6, 10]. To enhance 

the accuracy of classification technique, use the Lq 

(0<q<1) regularization technique [21] which is more 

accurate than L1 and L0 regularizations. Consider the 

L1/2 regularization penalty to be represented as Lq 

(0<q<1). In the consideration of the high dimensional 

problem L1/2 penalty with logistic regression works as 

an efficient method [2]. The unbiased and oracle 

properties are the main characteristics of L1/2 penalty 

[20]. However, this method selects only one variable 

from the all highly correlated data and form 

corresponding group. This was the main problem with 

L1/2 regularization method. Next, extension is Lq 

(0<q<1) regularization with robustness which can offer 

better theoretical characteristics and also employed 

high performance in maximum applications [5, 7]. The 

sparse logistic regression technique with the 

combination of Least Absolute Deviation (LAD) and 

Lq (0 < q < 1) is to be considered as  

 arg min  =
qn pT

i i ji=1 j=1
β Y - x β λ β  

The above combination offers tremendous properties 

like sparsity, unbiasedness, oracle properties and 

uniformity for the selection of a variable. 

3.2. Regularized Lasso to Additive Models 

In the process of analyzing the high dimensional 

datasets, the most preferred statistical tool is the 

additive nonparametric regression. This model is stated 

as (2): 
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From Equation (3), it is known that Xj- predictor 

variable, ε -errors. These errors are not depending 

on the predictor variables. The other predictor 

variables are E(ε)=0, Var (ε)=2, ƒj-univariate 

smoothening function,
o
f -Constant and Y-response 

variable. the flexibility and interoperability of this 

additive nonparametric regression model made 

more popular. But it suffers with curse of 

dimensionality. To overcome this problem [7, 8, 

14, 21], the Lasso technique is associated to this 

Additive model. Due to this adoption, the additive 

model could handle high dimensional data. The 

advantage of this method is to generate low 

dimensional data with equivalent high dimension. 

Consider the solution for constrained optimization 

problem which is represented in Equation (4): 
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Where is a τ -predefined value. First apply the Cubic 

Smoothing spline on nonlinear data by extending the 

above equation in the following way: 
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The value of ƒK
 
is estimated by considering the values 

ranging from ai to bk. The interval between ai and bk is 

completely unreliable for the data. This equation 

consists of a smoothing parameter k
λ which is used to 

smoothing the errors. The second smoothing spline is 

B-spline. The equation for B-spline is: 
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In Equation (6), 
k

N is bias which is evaluated at xik. 

This is applied as a function ƒk(xk) in Equation (5). The 

other function in Equation (5) is ƒk(xk)2 which is 

defined as 
t

k k k
β Ω β . In kΩ , a matrix which is in the 

size of (n+2)2. kβ acts as the coefficient of the 

function. It is known that the given approach is an 

advancement to Lasso regression with the Additive 

models using Cubic Splines. The Equation (6) could be 

optimized and improved by applying a root square 

function to it. The optimized Equation is (7) given 

below:  
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4. Proposed Work 

4.1. Additive L1/2+L2 Regularization (ALR) 

The regularization is hybridized with the combination 

of L1/2 regularization and L2 regularizations [3]. The 

equation helps to handle correlation data. The equation 

for this is as follows: 
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above stated equation the L1/2+2 Regularization LR 

proposes an estimator β̂ which is stated as 

1 2arg min { ( , , )}


 β Lβ λ λ β   

Further to minimize (9), consider another parameter α 

which is defined as 1 2
(1 ) λ λα .It can handle the 

values of 1 2
λ & λ to represent L1/2 Regularization and 

L2 regularization. Apply this α value in the Equation 

(10) and then it turns the equation as follows: 
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The value of α decides the regularization. If α = 0 then 

the above equation turns into L2 regularization. If α = 1 

then the above equation turns into L1/2 Regularization. 

The combination of these two penalties makes efficient 

to produce a concise result. To fit the Equation (8) to 

non-parametric model the equation is modified and 

mentioned 
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Optimize the Equation (11), parameter α is used 
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Similarly mentioned in above α=0 then Equation (13) 

to be considered as additive L2 Regularization and in 

case of α=1 will be considered as Additive L1/2 

Regularization, respectively. Other cases this will be 

treated as ALR. 

4.2. Additive Sparse Logistic Regression with 

ALR method (ASLR) 

Let’s consider a dataset M  with n instances

      
1 1 2 2

x ,y , x ,y ,..., x ,y
n n

M . In this Xi
 
represents 

Xi {Xi1,Xi2,…,Xip} the ith instance with p attributes 

(genes) and target variable to be mentioned as Yi and 

value is 0 or 1. Next, to perform classification popular 

approach (i.e., The Logistic regression) is used and is 

represented as: 
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-set of calculated coefficients β=(β1,β2,…βp) 

representation for p attributes. The regression technique 

represents the estimated coefficients using a simple 

algebra which is give below: 
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Now apply the Lasso Regularization (LR) technique 

with logistic regression model. It offers an optimized 

solution. To handle the fixed nonnegative λ and α, 

apply the sparse logistic regression model which is 

based on the ALR technique is defined as: 
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At end classification to the gene data performed by 

integrating proposed ALR technique with logistic 

regression model. It offers an optimized solution called 

the ALR technique is defined as: 
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5. Results and Discussion 

The performances of regularized methods shown in 

Table 2, are assessed by applying on various real 

microarray datasets [13, 16, 18]. The short 

comprehensive information about each Regularized 

methods used in this work shown in Table 2. This 

paper considers Prostate, Diffuse Large B-cell 

Lymphomas (DLBCL) and Lung cancer gene data sets. 

Table 1 shows the comprehensive information 

associated to these datasets.  

Table 1. Gene data set for classification. 

Short Datasets Samples Genes Classes 

D1 Prostate Cancer 102 12600 2 

D2 
Lymphoma 

Cancer 
77 7129 2 

D3 Lung Cancer 164 22401 2 

The dataset Prostate is ready with enormous 

assortment of 12,600 genes expression profiles. The 

normal (i.e., 50) and abnormal prostate tissues (i.e., 52) 

are present in this dataset. Next, one is Lymphoma, 

which has 77 attributes corresponds to gene expression 

in Microarray Data. From the dataset, identified two 

classes labelled one is DLBCL and other is Follicular 

Lymphomas (FL). The complete gene data sampled 

with 7,129 expression profiles. The last dataset 

considered in this paper is Lung cancer dataset which 

comprises 164 instances and 22,401 genes expression 

profiles. This dataset consists of two classes labeled as 

lung adenocarcinomas which holds 87 samples and 

adjacent normal tissues holds 77 samples [4]. 

Table 2. Regularized methods. 

Short Methods 

M1 Lasso 

M2 SCAD L2 

M3 Elastic Net 

M4 L1/2 

M5 L1/2+L2 

M6 ASLR 

Every classification task divides the given dataset 

into two parts called training dataset and testing 

dataset. The proposed method applied on the above 

discussed datasets.  

Table 3. Optimized genes selected by applying regularizations 
methods. 

Dataset M1 M2 M3 M4 M5 M6 

D1 13 20 14 8 14 17 

D2 13 26 13 11 14 16 

D3 13 28 20 18 16 14 

Before applying classification method, derived 

optimal genes of each data sets with regularized 

methods and results shown in Table 3. This model 

divided the dataset in the ratio of 70:30 for training and 

testing. In addition, 10-fold cross-validation to extract 

the optimal tuning parameters on the training dataset. 

Use the estimated tuning parameters in the sparse 

logistic regression to develop a classification model. 

After building the classification model, use this model 

on test dataset to check the classification accuracy. 

Table 4. Accuracy of training data by different regularizations 

methods. 

Dataset M1 M2 M3 M4 M5 M6 

D1 89.4 92.7 93.4 96.2 97.3 97.6 

D2 90.0 92.9 93.9 96.7 97.7 98.0 

D3 86.7 91.4 92.8 94.7 96.8 97.2 

Table 5. Accuracy of testing data by different regularizations 
methods. 

Dataset M1 M2 M3 M4 M5 M6 

D1 82.2 90.4 91.0 93.4 94.4 95.2 

D2 82.6 90.5 91.9 93.8 94.9 96.1 

D3 81.6 89.6 90.0 94.9 95.4 96.9 

The complete processes done at 500 times with 

random partition [9]. The part of the results shown in 

Tables 4 and 5, where Training and Testing accuracy 

of the classifier modeled from M6 to M1 namely, 

ASLR, L1/2 + L2, L1/2, Elastic Net, SCAD L2 and Lasso 

approaches with average 10-fold Cross Validation 

(CV) on three microarray dataset D1, D2 and D3 

presented. ASLR (i.e., M6) model nominated 16 genes 

with an average accuracy rate of 98.0% and the 

average test accuracy of 96.1%. The classifier modeled 

through L1/2 + L2 (i.e., M5) with average 10-fold CV on 

Lymphoma dataset nominated 14 genes with an 

average accuracy rate of 97.7% and the average test 

accuracy of 94.9% (shown in Tables 4 and 5). The 

classifier modeled through L1/2 (i.e., M4) on 

Lymphoma dataset nominated 11 genes with an 

average accuracy rate of 96.7% and the average test 

accuracy of 93.8%. Elastic Net (i.e., M3), SCAD L2 

(i.e., M2) and Lasso(i.e., M1) approaches with average 

10-fold CV on Lymphoma dataset nominated 13, 26 

and 13 genes with an average accuracy rate of 93.9%, 

92.9% and 90.0 % and the average test accuracy of 

91.9%, 90.5%, and 82.6%.The complete accuracy 

results shown in Figures 1 and 2. After examining all 

the methods on Lymphoma dataset, the ASLR (i.e., 

M6) has proven as the best with respect to both 

training and testing accuracy. The classifiers modeled 

through ASLR with an average 10-fold CV on Prostate 

dataset and Lung cancer dataset were offering nearly 

equal accuracy rate as ASLR on both training and 

testing datasets. 

 

Figure 1. Accuracy of Training Data by different Regularizations 

Methods on Three data sets. 
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Figure 2. Accuracy of testing data by different regularizations 

methods on three data sets. 

Though, the proposed ASLR (i.e., M6) technique 

attained its accuracy 97.2 in training and 95.4 in test 

case using only 14 predictors (genes), compared to 18 

genes for the L1/2 (i.e., M4) method and L1/2 +L2 (i.e., 

M5) method with 16 genes with training accuracy of 

94.7 and 96.8. Even though the Lasso or L1/2
 

approaches achieved the sparsest results, the 

performance with respect to these two classification 

approaches were inferior to L1/2 +L2 (i.e., M5) and 

ASLR (i.e., M6) techniques. To regulate the cost, 

choose only few features while conducting a precise 

test for screening and diagnostic claims.  

5.1. Analysis on Gene Expression Data 

Further analysis extended to select top rank genes from 

the individual gene profile data sets. Classification 

accuracy is resulted to be best by extending the number 

of genes which is shown in Tables 6, 7, and 8. In case 

of Lung cancer data set gene expression GSE21933, 

compared accuracy result with top ranks genes range 

from 5 to 20.Among proposed ASLR (i.e., M5), 

produced best accuracy using 20 genes compared to 

standard regularized methods L1/2 +L2 (i.e., M6), 
1/ 2

L

(i.e., M4) and Lasso (i.e., M1).  

 
  

 

 

 

 
 

 

a) Gene Data GSE21933.                       b) Gene Data GSE33532. 

Figure 3. Classification accuracy performance on lymphoma gene 

profiles using proposed method. 

The results of classification method over Lung 

cancer with corresponding genes shown in Table 6. 

The gene profile, GSE21933 produce 94.2 accuracy 

with 20 genes compare to standard methods results 

shown in Figure 3-a). The similar kind of results 

observed in other gene expression data GSE33532 

from the Lung cancer produces better accuracy value 

97.1 using top 20 genes compared to non-sparse 

additive regularized methods and results are shown in 

Figure 3-b). 

Table 6. Performance analysis of classifier methods on lung cancer 

gene data using FS method. 

Genes 
GSE21933 

M1 M2 M3 M4 M5 M6 

3 83.5 80.4 83.5 81.2 85.1 86.3 

5 89.4 87.0 85.4 83.9 88.6 90.2 

10 90.6 89.7 91.4 87.3 92.2 93.1 

20 91.2 90.3 90.1 89.2 91.7 94.2 

Genes 
GSE33532 

M1 M2 M3 M4 M5 M6 

3 87.7 84.6 87.7 85.4 89.3 87.8 

5 93.6 91.2 89.6 88.1 92.8 93.6 

10 94.8 93.9 94.6 91.5 95.4 95.8 

20 92.1 94.2 95.2 93.2 96.4 97.1 

 

From Lymphoma data, it is observed that gene data 

GSE45827 produces better accuracy 97.6 with 20 

genes and in other gene GSE48984 only with 10 genes 

will get accuracy 98.0 and which is not promising 

compared to L1/2 +L2 and it produced 98.2 with 10 

genes. The classification results of gene GSE45827 are 

shown in Figure 4-a). In other gene data GSE48984, 

proposed method results shown in Figure 4-b). 

Table 7. Performance analysis of classifier methods on lymphoma 

cancer gene data using fs method. 

Genes 
GSE45827 

M1 M2 M3 M4 M5 M6 

3 90.9 91.7 88.2 87.6 92.6 92.6 

5 92.6 91.8 89.3 88.5 93.4 93.4 

10 92.9 94.6 93.8 92.9 94.3 96.3 

20 93.3 92.2 94.3 91.3 95.2 97.6 

Genes 
GSE48984 

M1 M2 M3 M4 M5 M6 

3 92.3 93.1 89.6 89.0 94.0 94.0 

5 94.4 93.6 91.1 90.3 95.2 95.2 

10 94.7 96.4 95.6 94.7 98.2 98.0 

20 93.2 95.7 96.2 95.3 97.2 97.0 

 
a) Gene data GSE45827.                       b) Gene data GSE48984. 

Figure 4. Classification accuracy performance on lymphoma gene 

profiles using proposed method. 

The Prostate cancer, gene data GSE55945 with best 

accuracy 93.4 produced by proposed ASLR (i.e., M6) 

with only 10 genes and results shown in Figure 5-a). 

Moreover, in case of gene data GSE26910 retained 

98.5 with 10 genes using ASLR (i.e., M6).  

 

 

 

 



An Additive Sparse Logistic Regularization Method for Cancer Classification ...                                                                     219 

 

 

Table 8. Performance analysis of classifier methods on prostate 
cancer gene data using FS method. 

Genes 
GSE55945 

M1 M2 M3 M4 M5 M6 

3 84.4 81.3 84.4 82.0 85.9 85.9 

5 85.2 84.9 86.3 84.7 89.5 89.5 

10 89.4 90.6 92.2 88.2 93.0 93.4 

20 90.0 90.5 91.2 90.4 92.6 93.3 

Genes 
GSE26910 

M1 M2 M3 M4 M5 M6 

3 89.3 86.2 89.3 87.0 90.9 90.9 

5 91.2 92.8 91.2 89.7 94.4 94.4 

10 92.4 95.5 97.2 93.1 98.2 98.5 

20 93.2 94.2 95.3 94.2 96.3 97.7 

The results of GSE26910 genes shown in Figure 5-

b). The comparison of classification results from non-

sparse regularized to sparse regularized over prostrate 

gene profiles data with optimized genes shows in Table 

8. 

 
a) Gene Data GSE55945.                          b) Gene Data GSE26910. 

Figure 5. Classification accuracy performance on prostate cancer 

gene profiles using proposed method. 

From the Table 9, it clear that the proposed ASLR 

(i.e., M6) method shows better accuracy, sensitivity 

and specificity values than the standard hybrid method 

L1/2 +L2 (i.e., M5) in all three real gene datasets (D1 to 

D3).  

Table 9. Performance analysis of classifier on different datasets 

with FS methods. 

 Metric (%) M5:L1/2+L2 M6:ASLR 

D1 

Features 15 32 15 32 

Accuracy 97.01 96.59 97.98 98.06 

Sensitivity 81.14 77.65 85.71 86.47 

Specificity 92.25 90.03 81.14 77.65 

D2 

Features 16 42 16 42 

Accuracy 97.13 97.09 98.13 98.41 

Sensitivity 81.03 81.16 86.44 89.09 

Specificity 94.19 94.45 93.55 95.49 

D3 

Features 13 42 13 42 

Accuracy 96.86 96.49 97.26 97.18 

Sensitivity 86.95 88.37 74.44 76.16 

Specificity 91.37 95.62 93.09 94.25 

Moreover, the ASLR method produced better 

sensitivity from suitable genes compared to the non-

additive method. In the case of lung cancer (i.e., D3), 

the proposed method retained promising results in 

terms of accuracy: 97.18% associated on 42 genes and 

with good specificity: 94.25% and Sensitivity: 76.16%. 

In lymphoma data (i.e., D2), the proposed method 

retained promising results in terms of accuracy: 

98.41% associated on 42 genes and with good 

specificity: 95.49% and Sensitivity: 89.09%. Similarly, 

in the case of lung cancer (i.e., D1), proposed method 

also produced impressive results compared to the 

standard method shown in Table 9.  

6. Conclusions 

This paper examined a new feature selection approach 

termed ASLR method. It is designed by considering 

the best features from L1/2 and L2 penalties. An 

innovative method is projected in this paper for 

additive function which is applied to the combination 

of L1/2 + L2 Regularization. It helps to optimize the 

calculated coefficients. It has established feature 

selection Additive Lasso Regularization and then 

applied classification using Sparse Logistic method. In 

the end, observed results of the proposed method were 

promising when compared to the standard methods 

including Lasso, L1/2, SCAD-L2 and Elastic Net 

models. Hence, empirical results also show proposed 

one is a best feature selection method for gene data. 
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