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Abstract: Radix-Tree is a space optimized data structure that performs data compression by means of cluster nodes that share
the same branch. Each node with only one child is merged with its child and is considered as space optimized. Nevertheless, it
can’t be considered as speed optimized because the root is associated with the empty string. Moreover, values are not
normally associated with every node; they are associated only with leaves and some inner nodes that correspond to keys of
interest. Therefore, it takes time in moving bit by bit to reach the desired word. In this paper we propose the KP-Trie which is
consider as speed and space optimized data structure that is resulted from both horizontal and vertical compression.
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1. Introduction

Data structures are a specialized format for efficient
organizing, retrieving, saving and storing data. It’s
efficient with large amount of data such as: Large data
bases. Retrieving process retrieves data from either
main memory or secondary memory. Using data
structures vary depending on the nature or the purpose
of the structure. The main characteristics that use for
assessing the quality of any data structure depending
on the performance or the speed of storing and
accessing data in those data structures. Any current
natural language such as: English, French, Arabic, etc.,
can have number of words up to one million words
although dictionaries couldn’t contain all such words
especially as languages continuously grow to add new
words or borrow words from other languages. Current
versions of Oxford English dictionary may have up to
half million words. As such, a software product or web
application that needs or uses a dictionary should have
efficient data structures for effective: Storage, access
and expansion of data or words.

The concept of data structures such as trees has
developed since the 19th century. Tries evolved from
trees. They have different names such as: Radix tree,
prefix tree compact Trie, bucket Trie, crit bit tree and
Practical Algorithm to Retrieve Information Coded in
Alphanumeric (PATRICIA) [9].

In the existing general form, it is believed that tries
was first proposed by Morrison [14]. Radix tree, prefix
tree compact Trie, bucket Trie, crit bit tree and
PATRICIA those different names may have some
differences in the detail structure. For example, unlike
PATRICIA tree nodes that store keys and words, with

the exception of leaf nodes, nodes in the trie work
merely as pointers to words.

A trie, also called digital tree, is an ordered multi-
way tree data structure that is useful to store an
associative array where the keys are usually strings,
that comes in the form of a word or dictionaries. The
word “Trie” comes from the middle letters of the word
“retrieval” that was coined by Fredkin [7]. Their
structure nature facilitates the process of searching or
retrieving queried words quickly. A common use-case
for tries was finding all dictionary words that start with
a particular prefix (e.g., finding all words that start
with “data”). In tries, keys were stored in the leaves
and the search method involves left-to-right
comparison of prefixes of the keys.

In each trie, nodes form the children that could
further be parents for lower nodes. Nodes contain
letters that represent keys or pointers to words (or the
rest of the words) at the lowest leaf levels. In principle,
each node can contain the searched for word (if it is a
leaf). This can dynamically change if more words are
added. Finding a word in a trie depends on the size of
the tree or the number of words along with its
structure. The depth of the nodes that a query could go
depends on the number of words in the searched for
word. If the word does not exist in the tree, the longest
node sequence is performed.

Certain trie structures nature can facilitate not only
quicker access and retrieval of information; they can
further facilitate smooth expansion of such structures.
In many cases, it is necessary for a dictionary to accept
the addition of new words and hence the structure
should facilitate this expansion smoothly and
dynamically. This can be for either fragmentation or
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for allocation/reallocation [9]. In some other cases, it
may be necessary to compress, encode or encrypt data
in those tree structures.

In computer science, a radix tree also Known as
PATRICIA Trie or compact prefix tree, is a
compressed version of a trie and space optimized data
structure, in which any node that is an only child is
merged with its parent. Unlike regular trees, the key at
each node is compared part-of-bits by part-of-bits;
where the quantity of bits in that part at that node is the
radix r of the radix trie, Instead of compare the whole
keys from their beginning up to the point of inequality.

Insertion, deletion, and searching operations were
supported by radix trees with O(k) where k is the
maximum length of all strings in the set. Unlike in
regular tries, edges could be labeled with sequences of
elements as well as single elements.

The branching factor was an essential in compute
the time complexity of the searching tree, the
branching factor is the number of children in each node
of the tree, where usually every node had the same
branching factor, but the difficulty occurs when
different nodes at the same level of the tree have
different numbers of children. In this situation, branch
factor with a given depth of the tree could be defined
by computing the ratio of the number of nodes at that
depth with the number of nodes at the next
insignificant depth.

The time complexity also depends on solution
depth. Solution depth is the length of a shortest
solution path. Computing the branch factor and
solution depth depends on the given problem instance.

The rest of this paper is organized as follows:
Section two presents’ related studies to the paper
subject, section three shows the proposed KP-Trie,
section four presents evaluation and experimental
results, Last section presents the conclusions.

2. Related Works

Some recent researches suggested that new data
structures such as: Hash tables or linked structures can
be suitable alternatives for tries in terms of flexibility
and performance.

Askitis and Sinha [1] suggested that HAT-Trie is
better alternative for trie representation, this is based
on the previous approach: Bucket-trie where Buckets
are sectioned using B-tree splitting. This research tends
to improve Burst-tries through caching and using hash
tables. Programmers used several datasets of texts for
the comparison of their data structure with some
known ones (i.e., known design structures for tries)
and proved well in performance and memory size.
Askitis and Zobel [2] declared efficient optimizing of
data structures such as: Hash tables and burst tries
using caching. Authors assumed that storage can be
significantly reduced. Bando and Chao [3] claimed
also to use trie compression for enhancing IP lookup,

the proposed Flash trie data structure followed
compression techniques to minimize the total size of
the Trie. Behdadfar and Saidi [4] applied Trie search
for IP routing table, search optimization where they
tried to adjust tries to deal with large size data
structures such as those of IP addresses. They tried to
arrange nodes through encoding their addresses with
numbers which can be reached faster based on the
numbers encoded. They concluded that some methods
can be optimized for search or query whereas similar
methods can be optimized for an addition or update
process to the Trie table.

Bodon and Ronyal [5] prepared a more modified
version of trie for solving frequent itemset mining
which is assumed to be the most important data mining
fields. Experiments proved that the performance of
tries is close to the performance of hash-trees with
optimal parameters at high support threshold; however,
at lower threshold the trie-based algorithm does better
than the hash-tree. Moreover, tries are mainly suitable
for useful implementation of candidate generation
because pairs of items that produce candidates have the
same parents. Thus, candidates can be easily obtained
by a simple scan of a part of the trie. It gives simpler
algorithms, which are faster for a range of applications
and escapes the need of fine tuning by employing a
self-adjusting method. Ferragina and Grossi [6]
introduced the string B-Tree that is link between some
traditional external-memory and string-matching data
structure. It’s a combination of B-Trees and Patricia
Tries for internal-node indices that is made more
helpful by adding extra pointers to accelerate search
and renovate operations.

Fredkin [7] described the Trie structure. Fredkin
said “As defined by me, nearly 50 years ago, it is
properly pronounced “tree” as in the word “retrieval”,
at least that was my intent when I gave it the name
“Trie”, the idea behind the name was to combine
reference to both the structure (a tree structure) and a
major target (data storage and retrieval)”. Fu et al. [8]
introduced a modified LC-Trie lookup algorithm in
order to enhance its performance. The idea depends on
expansion and collapsing of the routing prefixes which
turns them into disjoints, complete and minimal set.
Subsequently, the base and prefix vectors are removed
from the data structure. This result in a smaller data
structure and less number of executed instructions,
which in turn improves the performance, a technique
called prefix transformation. Thereafter, the LC-Trie’s
performance is analyzed for both the earliest and
modified algorithm using real and synthetically
produced traces.

Heinz et al. [10] claimed that burst-Trie version of
prefix trees is the fastest, this trie tried to further
reduce the number of nodes by breaking up similar
nodes that share same prefixes, the buckets or nodes
were pointed out using linked lists, later papers
claimed that bursts can be further reduced using
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caches. The main goal or enhancement of burst Trie
over traditional Trie is in minimizing the number of
required search cycles to get back subject or query.
Knuth [11] suggested improving performance in tries
through flexible size pointers of array lists in contrast
with original fixed size pointers. This requires non-root
nodes to be highly occupied in order for such substitute
to be competitive, nodes can share keys with neighbors
rather than divide when get full. Leis et al. [12]
produced the Adaptive Radix Tree (ART), a fast and
space-efficient indexing structure for main-memory
database system. A high fan-out, path compression and
lazy expansion reduce the tree height and therefore
lead to excellent performance. The worst-case space
consumption, a common problem of radix trees, is
limited by energetically choosing compact internal data
structures. They compared ART with other state-of-
the-art main-memory data structures. The results show
that ART is much faster than a red-black tree, a cache
sensitive B+ Tree and the Generalized Prefix Tree
(GPT). Even though ART’s performance is
comparable to hash tables, it keeps the data in sorted
order, which allows additional operations like range
scan and prefix lookup. Mihăescu and Burdescu [13]
presented a study usage of an implementation of M-
tree building algorithm, the handling of M-tree
structure for classification of the learners based on
their final marks obtained in their respective courses.
The classical building algorithm of M-tree with an
original accustomed clustering procedure was
implemented. The data that are managed within M-tree
structure are represented by orders.

The main aim of the structure is to provide
information to students and course managers regarding
the knowledge level attained by students. The proposed
clustering process that is used for splitting full M-tree
nodes are designed to properly categorize learners; the
tree manages real data representing the tests are
classified according to their rank of difficulty: Low,
medium and high. Mount and Park [15] presented a
simple, randomized dynamic data structure for storing
multidimensional point sets, called a quadtree. This
data structure is a randomized, balanced variant of a
quadtree data structure. In particular, it defines a
hierarchical decomposition of space into cells, which
are based on hyperrectangles of bounded aspect ratio,
each of constant combinatorial complexity. It can be
considered as a multidimensional generalization of the
treap data structure of Seidel and Aragon. When
inserted, points are assigned random priorities, and the
tree is restructured through rotations as if the points
had been inserted in priority order. Nilsson and
Tikkanen [16] presented a study of order-preserving
general purpose data structure for binary data, level-
and path-compressed trie or LPC-trie. The structure is
a compressed trie, using both level and path
compression. The LPC-Trie is suitable to modern
language applications with efficient memory allocation

and garbage collection. Park et al. [17] presented the
outline of a trie that is a parameter represents the
number of nodes (either internal or external) with the
same distance from the root. It is a function of the
number of strings stored in a trie and the distance from
the root. Patel and Garg [18] explained and compared
different variants of B-tree and R-tree. B-tree and its
variants are support point query and single dimensional
data efficiently while R-tree and its variants support
multidimensional data and range query efficiently. BR-
tree support single dimensional, multi-dimensional and
all four type of query. Reznik [19] studied the
modification of digital trees (or tries) with adaptive
multi-digit branching. That assumes method for
selecting that helps the tries to adjust the degrees of
their nodes that such selection can be accomplished by
examining the number of strings remaining in each
sub-tree and estimating parameters of the input
distribution. This is called class of digital trees
Adaptive Multi-Digit tries (or AMD-tries) and
provides an initial analysis of their expected behavior
in a shorter memory model.

Shafiei [20] presented a new concurrent
implementation of Patricia tries (non-blocking Patricia
trie) for an asynchronous shared-memory system that
store binary strings using single-word Compare And
Swap (CAS). This implementation provided wait-free
find operations and non-blocking insertions and
deletions. Also provide a non-blocking replace
operation that made two changes to the trie atomically.
If all pending updates were at disjoint parts of the trie,
they did not interfere with one another.

Yan et al. [21] showed evidence how that a column
is more possible to have sub-regularity than to have
global-regularity. Therefore, they proposed a new
compression scheme, called VParC. Moreover,
evaluation experiments were performed.

3. KP-Trie

This section proposes KP-Trie data structure. We
started with a brief description of indexed trees data
structure and then describe the KP-Trie, its structure,
and operations. Indexed trees are specialized trees data
structure used to arrange data in such a way that is fast
to access. Like binary search trees, indexed trees use
keys to perform their operations. But unlike binary
search trees which use the keys to test the different
branched paths until they get into the desired node,
indexed trees extract traversing path from the key
itself, so the time complexity of indexed trees is
constant corresponding to the length of the key. The
old version of indexed trees is called ‘Trie’. Radix tree
is a variation of indexed trees based on Trie in which
every node with only one child is merged with its child
to the previous level so this will reduce the number of
levels making tree traversal faster and reduce the space
occupied by the tree. Like conventional trie, radix tree
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structure will start with a null root, which is a little
disadvantage of it because this will increase the height
of the tree; increasing the height of the tree results in
decreasing the speed of the process.

Unlike binary search trees family in wich each node
have to keep only up to two pointers to its children
nodes, Indexed trees , tries, nodes have many children
to keep track of, so they have to keep more memory
space to store pointers of their children nodes. In this
paper we introduce a KP-Trie indexed tree data
structure as an innoviative solution for this problem.

KP-Trie is a speed and space optimized trie data
structure, where each node with only one child will be
merged to the parent, like radix tree, also KP-trie
added the concept of level grouping, also could be
called horizontal grouping, where each node with N
children will merge its children into just one child,
which lead to minimize the required space to 1/N
times. In KP-Trie, the space optimization resulted from
both horizontal and vertical compression. Vertical
compression is the result of merging the unique child
of the node to the node itself and the horizontal
compression is the result of merging any N children
into one child node, making them to share the same
memory space occupied by only one child to store
pointers to their children in the next level. This
eventually will lead to shorten the path and lead for
speed optimization. In addition, the root node in KP-
Trie is not null as it in the other variations of indexed
trees; which also leads to shorten the number of tree
level by one level more. The KP-Trie starts with a root
node containing an array of characters with size 26,
which have all the alphabetic from (a-z), the reason of
using this array is when adding a new word to the tree
the letters of the word already present in the array, this
will reduce the time of searching for characters on
other types of trees. KP-Trie considered the
disadvantage of the radix tree.

The complexity of KP-Trie is (B+N+M), when B is
the branching factor, N is the number of children and
M is another needed space to store data and keep track
of keys; Then it’s obvious that the KP-Trie is more
space optimized than radix tree, when the number of
children is equal to the branching factor, then the space
occupied by KP-tree for N children is 2N+M.

In the indexed trees like the variations of the Radix
tree and the proposed KP-Trie; the transformation from
the parent node to which child node would be
deterministic, because it’s indexed by the partition of
key corresponding to the child node and there is no
need for comparison or for testing  different nodes. So
the traversal path length would be as maximum as the
length of the key, in some times would be less as result
of optimization process resulting from vertical
compression by which the number of levels would be
minimized .

The KP-Trie complexity is O(1) as it in the radix
tree [12], because it represents the depth of the tree

which is constant related to the length of the key and
independent of the variable of amount of data in the
KP-Trie or radix tree. Moreover, the number of
iterations for any operation in the KP-Trie is less than
the number of iterations in the radix trie by one;
because the number of levels in KP-Trie is less than
those in radix tree by one resulting slightly in more
speed.

Insert and search operations will be considered in
the following descriptions:

1. Insert: Unlike radix tree the root in KP-Trie is not
empty; it contains an array of 26 characters so, this
resulted in minimizing the memory space. First case
is if the root is empty, insert an array of 26 character
in the root node, so when insert new word there is
no need to initiate new node because the root is
already has all needed characters. KP-Trie starts
searching for the character of the inserted word
begins from the first char, second char and so on,
Figures 1 and 2 refers to example 1 where the word
“romane” is inserted to the root:

Figure 1. Algorithm of first case.

Figure 2. Representation of example 1.

Second case, the root is not empty in this case KP-
Trie structure has two sub-cases; The first case insert a
new word that has a common characters with an
existing word in the Trie, KP-Trie look at the common
characters and separated them in inner node attached
with the first character that was located inside array,
Figure 3 refers to example 2 where the word “romulus”
is inserted to the trie and it has a common characters
“rom”:

Figure 3. Representation of example 2.



KP-Trie Algorithm for Update and Search Operations 726

The second case is insert a new word that has no-
common characters in the Trie, KP-Trie separates it in
other inner node; In this case KP-Trie doesn’t need to
create new node because all the needed characters are
already exist in the root, Figure 4 refers to example 3
where the word “Jordan” is inserted to the trie:

Figure 4. Representation of example 3.

2. Search: The search operation in KP-Trie starts from
the root node by checking if the letters are matched
together and then check the length of the matching
result if the length is not equal then it will
recursively search the tree again until the length of
the key and the founded sub-key are equal each
other. Figure 5 shows example 4 where the search
operation is performed to find the word “romane”:

Figure 5. Representation of example 4.

4. Evaluation and Results

KP-Trie and Radix tree have been implemented using
java programming language to compare the space
needed for both algorithms, a text file containing
(67044) words was used with the algorithms to
perform the testing process, the following results have
been found out:

Figure 6 and Table 1 shows that radix tree will
consume more memory space than KP-Trie when
insert large amount of data.

Figure 6. Memory usage for KP-Trie and radix tree.

Table 1. Memory usage for KP-Trie and radix tree.

Number of Inserted Data KP-Trie Memory Usage Radix Tree Memory Usage
1 551408 502080

1000 3084112 3758424
5000 5292168 4526976
10000 4551312 4376912
50000 1.39E+07 1.47E+07
67044 1.81E+07 2.00E+07

Also a comparison of the number of nodes that each
algorithm takes has been done, to determine which
algorithm will be more space and speed optimized and
which will reduce the branching factor, Figures 7 and 8
refers to example 5 which shows the final results after
inserting the words (“romane”, “romulus”, “robens”,
“ruber”, “rubicon”, “rubicundus”, “Jordan”) to both
algorithms:

Figure 7. Representation of example 5 (KP-Trie).

Figure 8. Representation of example 5 (radix tree).

It is obvious that radix tree has created more nodes
that KP-Trie. Also a test on large amount of data for
both algorithms has been performed, Table 2 represent
the final result.

Table 2 shows that the number of nodes created in
KP-Trie is much lesser than the nodes created in radix
tree, that’s because KP-Trie does not need to store data
in different nodes; it stores all the children of a parent
in one child which will lead to minimize the space, the
number of created nodes and the branching factor.
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Table 2. Number of created nodes for KP-Trie and radix tree.

Number of Word KP-Trie Node Radix Tree Node
1 1 2

500 275 687
1000 537 1351
5000 2716 6800
10000 5085 13092
15000 7701 19682
20000 10335 26186
25000 12969 32728
30000 15309 39048
35000 18082 45821
40000 20486 52194
45000 22976 58784
50000 25603 65444
55000 28202 71955
60000 30664 78344
65000 33179 84911
67044 34276 87695

5. Conclusions

This paper has introduced the KP-trie, a speed and
space optimized trie data structure for storing a set of
strings, KP-trie is an advanced version of radix tree
that solve the disadvantage of radix tree, and modify it
to be more space optimized. Vertical and horizontal
compressions have been employed. Experiments
proved that performance of the KP-trie is more
efficient than radix tree and more space and speed
optimized. Moreover, KP-trie is particularly more
efficient with large amount of data comparing with
radix tree.
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