
686 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

Test Case Prioritization for Regression Testing
Using Immune Operator

Angelin Gladston1, Khanna Nehemiah1, Palanisamy Narayanasamy2, and Arputharaj Kannan2

1Ramanujan Computing Centre, Anna University, India
2Department of Information Science and Technology, Anna University, India

Abstract: Regression testing is a time consuming, costly process of re-running existing test cases. As software evolves, the
regression test suite grows in size. Test case prioritization techniques help by ordering test cases such that at least the test
cases which cover the changes made in the software are executed amidst resource and time constraints. Genetic Algorithm
(GA) has been widely used for test case prioritization problem, however it has low convergence problem. In this work, the
Immune Genetic Algorithm (IGA) is applied for test case prioritization, so that test case prioritization converges earlier. Our
contributions in Immune Prioritization Algorithm (IPA) include a method for vaccine selection, zero drop function and
probability selection function. The prioritized result of IPA is evaluated against GA and the statement coverage, decision
coverage and block coverage of the test cases prioritized using IPA are found to have improved. Further, IPA showed
improved average fitness value as well as optimal fitness value compared to genetic algorithm.

Keywords: Immune operator, vaccine, test case prioritization, regression testing, GA, IPA.

Received July 3, 2012; accepted April 29, 2013; Published online December 23, 2015

1. Introduction

Changes to software are inevitable. Evolving software
needs to be tested after the incorporation of changes.
Hence, regression testing is carried out by re-running
all test cases in order to test the software. With limited
resources and time, the re-execution of all test cases is
not possible. Hence, test case prioritization is used to
make regression testing more meaningful. This is
accomplished since test case prioritization rearranges
the test cases so that, the test cases which cover the
newly incorporated changes can be brought first for
further execution.

In search based software engineering, the software
engineering problems are modeled as optimization
problems. Hence, for test case prioritization problem,
metaheuristic search techniques which find optimal or
near optimal solutions for optimization problems can
be applied [4]. The application of metaheuristic search
techniques namely, Hill climbing [13], Tabu Search
[11] and Genetic Algorithm (GA) [13] to test case
prioritization were already carried out. In this work, the
application of Immune Genetic Algorithm (IGA) for
test case prioritization problem is examined. An
Immune Prioritization Algorithm (IPA) which employs
a vaccine selection function to select vaccines for
every chromosome is proposed. It utilizes a zero drop
function to retain the chromosomes that are fit enough
and prioritizes them using the probability selection
function.

The purpose of using immune concepts in GA is to
make use of the local characteristic information to
arrive at an optimal solution. In test case prioritization

problem, the test cases of maximum coverage are
expected to come first. To attain that every
chromosome is expected to accommodate test cases
which will maximize its fitness value. This is
accomplished by having a test case which comes
earlier in order rather than a test case which comes late
in order of same coverage. This local characteristic
information is used, to avoid repetitive work and to
overcome the blindness in action. Immune concept
helps restrain from the degeneration arising from
evolutionary process. This results in steady increase of
fitness value. The immune concept [7] was realized
using two steps: Vaccination and immune selection.
Vaccination is a process of modifying genes on some
bits according to some prior knowledge so as to gain
higher fitness with improved probability. The
correctness of the information used in selecting a
vaccine plays a vital role in the performance of the
algorithm. Immune selection ensures whether the
offspring is having improved fitness value compared to
parent or not. If the offspring is having low value then
the parent is retained for next generation.

The organization of the paper is as follows: Section
2 describes works related to the test case prioritization
problem and works related to the application of IGA.
Section 3 describes the proposed IPA. Section 4
presents the implementation details and experiments
conducted. Section 5 reports the results and discussion
and section 6 concludes the work.

2. Related Works

Application of heuristic algorithms namely, Greedy
algorithm, Additional Greedy algorithm, 2-Optimal

Test Case Prioritization for Regression Testing Using Immune Operator 687

algorithm, Hill climbing and GA were assessed by
Zheng et al. [13]. Five ‘C’ programs were used.
Average Percentage Block Coverage (APBC), Average
Percentage Decision Coverage (APDC) and Average
Percentage Statement Coverage (APSC) were the
coverage metrics used. The data analysis indicated that
GA and additional greedy algorithm outperformed
greedy algorithm. Results show that APBC for genetic
is 93%, Additional Greedy is 92% and that of greedy is
90%. A pareto approach to prioritize test suites based
on multiple objectives, such as code coverage,
execution cost and fault detection history was
described by Yoo and Harman [12]. The objective was
to find an array of decision variables (test case
ordering) that maximize an array of objective
functions. The pare to efficient GA produces subsets of
test cases that can be executed in fewer than 200 units
of cost, something for which the additional greedy
algorithm was not capable.

Hyunsook et al. [5] has evaluated the effects of time
constraints on the costs and benefits of prioritization
techniques. Metrics like Average Percentage Faults
Detected (APFD) was not sufficient to assess time-
constrained techniques. Further, rather than
considering the costs of applying techniques and of
utilizing them on single system releases, the costs
across entire system lifetime were considered by the
metric. Their proposed evolution-aware economic
model for regression testing captured the above factors.
This model helped to select testing processes and
prioritization techniques that are most appropriate for
their organizational and process contexts. Five Java
programs were used and kruskal-wallis tests showed
that faultiness levels, FL1, FL2, and FL3 have
significant effects in all cases. Faultiness level, FL1
involves cases in which mutant groups contain 1 to 5
faults. Faultiness level, FL2 involves cases in which
mutant groups contain 6 to 10 faults. Faultiness level,
FL3 involves cases in which mutant groups contain 11
to 15 faults. As faultiness levels move from FL1 to
FL2 benefit of the prioritization technique improve in
12 out of 20 cases. As faultiness levels move from FL2
to FL3 benefit of the prioritization technique improve
in all 20 cases.

Jiao and Wang [7] introduced IGA based on the
theory of immunity in biology which constructs an
immune operator accomplished by vaccination and
immune selection. IGA restrains from the degeneration
phenomena effectively during the evolutionary
process. It was shown that IGA improves the searching
ability and adaptability, greatly increasing the
converging speed using travelling salesman problem.
As a comparison between IGA and GA, 20 initial
populations were generated and vaccines were
produced. Distribution of individuals without vaccine,
with vaccine, variation of optimal fitness with the
reproduction of the offspring and variation of average
fitness with the reproduction of the offspring were

observed. They conclude that IGA finds the global
optimum (f(x)max=19.8949; xoptimal=0.1275) after 12
iterations, while GA finds the local optimum (f(x)=
19.8903; x=0.1273) after 53 iterations, where f is the
fitness function on x and x is the search space.

Bouchachia [2] incorporated IGA as an advanced
method for solving the test data generation problem.
Immune filtering operator is used after the genetic
mutation operator. The application of IGA in the
context of software test data generation was
investigated using some benchmark programs. Three
input programs were used. On an average, testing
coverage for IGA is 98.95% but for GA it is 94.58%.
Test case generation problem and use of metrics for
extensive generation is studied by Izzat and
Mohammed [6]. Liu and Peng [9] proposed an Immune
Particle Swarm Optimization (Immune-PSO)
Algorithm which solves prematurity problem in PSO
because of the decrease of swarm diversity. PSO is a
widely used [3] meta heuristic algorithm. PSO
algorithm is combined with Immune clone selection
algorithm. The typical benchmark functions are
performed. The numerical simulation results showed
that the improved algorithm maintains swarm’s
diversity, speeds up convergence speed, and also
escapes from local extreme. Results show that
Immune-PSO algorithm outperforms GA. The mean
squared error of GA is 0.009 while that of Immune-
PSO is almost 0. Further the running time of GA is six
times as much as the Immune-PSO.

IGA has been used for random test pattern
generation by Azimipour et al. [1] for testing Very
Large Scale Integrated (VLSI) circuits. The problems
with GA are that they may drop into local optimal
solutions, or they may find the optimal solution by low
convergence speed. To overcome these problems IGA
is used. Calculating test vector density, activating test
vectors and suppressing test vectors based on density
are the various immune operations used. The
application of few main characteristics of IGA to GA
for test pattern generation improved the test size with a
factor of about 25% in comparison with Non-Immune
algorithms.

Comparing to the works described in the related
work section, the work described in this paper is
different in the following ways: First, for vaccination,
in the related work discussed [7] for all the candidates
the same selected gene was used as vaccine. The
selection strategy used in [7] involves two steps:
Analyzing the pending problem and collecting the
characteristic information and producing vaccines
according to the characteristic information. However,
in this paper, for every chromosome, appropriate
vaccine was selected and used. Since, the purpose of
vaccine is to improve the fitness value of the
chromosome, the test case which comes late in the
order, thereby resulting in low fitness value is replaced
with the vaccine, which is selected to be the test case

688 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

of same coverage criteria, but which comes earlier in
the order. Thus, each chromosome is vaccinated with a
vaccine suitable for that. Further, in the work discussed
in [10] genes are randomly selected from the gene pool
developed and finally inoculated into genes. But in this
paper, rather than randomly selecting gene from gene
pool, the best gene is selected and vaccinated. The
selection and vaccination are discussed in detail in
section 3.

Second, immunization is tailored to incorporate two
additional functions, a zero drop function and another
for probability selection along with the existing
functions namely, immune test and probability
calculation function used in the literature. The zero
drop function checks for any zero as the fitness value
gets calculated and if any zero exists, then drops the
corresponding candidate. The probability selection
function rearranges the chromosomes using the
calculated probability to prioritize test cases better,
thus helps in regression testing. The immunization
process is discussed in detail in section 3.

3. Experimental Design

IGA has already been used for travelling sales man
problem [7], test data generation [2] as well as for test
pattern generation [1]. GA has been extensively used
to solve test case prioritization problem [12, 13].
However, it has delayed convergence problem. Hence,
an IPA, which uses IGA, is used for test case
prioritization problem. IPA utilizes the two steps of
IGA: vaccination and immunization. The
chromosomes are vaccinated first and then the
vaccinated chromosomes undergo immunization that is
immune test. In vaccination, the problem is analyzed
and a vaccine is selected using the characteristic
information collected. Test case of same coverage but
which comes earlier in the order was chosen as vaccine
and vaccination is performed using that. The
immunization process is incorporated with a zero drop
function and a probability selection function along
with existing immune test and probability calculation
function. The zero drop function checks for any zero,
as the fitness gets calculated and drops the
corresponding candidate. The probability selection
function rearranges the candidates, using the calculated
probability.

3.1. Immune Prioritization Algorithm

The purpose of vaccination is to gain higher fitness.
The vaccine selection function is tailored for test case
prioritization problem so that the fitness value of
chromosome can be improved. First the test case
prioritization problem is analyzed and the
characteristic information is obtained. Vaccines are
produced based on the characteristic information. The
theme of test case prioritization problem is to prioritize
the chromosomes based on coverage. The chromosome

with best coverage is to be given first priority, then the
chromosome with next coverage and so on. Here,
condition coverage metric is used and fitness for each
chromosome is computed using that. The ultimate aim
is to ensure that all requirements are tested with
minimum number of test cases chosen from the top of
the prioritized test suite. Hence, the problem is to find
the chromosomes with maximum fitness value, which
satisfies maximum requirements. Consider a
chromosome has six genes, c={t1, t2, t3, t4, t5, t6}. Each
gene is a test case. Consider there are five
requirements, r1, r2, r3, r4 and r5. Suppose, t1, t2 satisfy
r1, r2 respectively, t3 and t4 satisfy r3 whereas t5 and t6

satisfy r5. Analyzing the chromosome shows light that
we have more test cases satisfying same requirements
but not all requirements are satisfied by the
chromosome. Therefore, if we can have a test case
satisfying the requirement, r4, that will help to
overcome the problem. Based on these characteristic
information obtained, vaccines are produced. The
vaccine is chosen such that the test case which comes
late in the order is identified and replaced with a test
case covering same criteria but which comes earlier in
the order. Thereby, the fitness value of the
chromosome is raised further and it is made to satisfy
more number of requirements. Consider an initial
population, T_init={c1, c2, …, ci, ..., cn} where ci is a
chromosome of test cases {ta, tb, tc,…}, for every i from
1 to n, then the vaccine function, V(ci) is applied on all
chromosomes. Chromosome comprises of genes which
are test cases here. Hence, in the process of
vaccination, that is modifying genes, a candidate ti is
identified and vaccinated with another tj resulting in
higher fitness value as shown:

V(ci)={ti ← tj}

where tj comes earlier in order than ti and both tj and ti

satisfy same coverage requirements.
Thus, the selected vaccine helps to improve the

fitness value of chromosomes. The vaccine is selected
for each chromosome and an appropriate vaccine is
selected for each chromosome analyzing the ways to
improve its fitness value. Applying the selected
vaccine makes the chromosome more fit. Further, in
this work the test case which comes earlier in order
with same coverage is chosen as vaccine rather than
developing a pool and randomly selecting from it [10].
This is followed by immunization. The two usual
immune selection operations employed are an immune
test and probability calculation. First, immune test is
applied. Immune test ensures whether the offspring is
having improved fitness value compared to parent or
not. If the offspring is having low value then the parent
is retained for next generation. Thus, degeneration is
avoided. Otherwise, the offspring is chosen for next
generation. In addition to the usual immune selection
functions, two new functions, a zero drop function and
a probability selection function are applied. The zero

Test Case Prioritization for Regression Testing Using Immune Operator 689

drop function works on the candidates, applied with
immune test. As the fitness value gets computed it
searches for any zero. Occurrence of zero indicates that
the particular candidate lacks coverage. Hence, such
candidates are dropped, to yield a test suite with
improved coverage. Then, probability selection
function is applied based on the calculated probability.
The selection function renders the test cases prioritized
based on condition coverage as the operator keeps
selecting test cases based on the probability computed
out of condition coverage.

The steps carried out in IPA are as follows:

 Step 1: Create initial random population, T_init.
 Step 2: Select vaccines using prior knowledge

vaccines for each chromosome are selected so as to
improve its fitness value. Possibilities of increasing
the fitness value of chromosomes are analyzed and a
vaccine is selected such that the fitness value of ci′
is greater than that of ci. (our contribution).

 Step 3: If the current population contains the
optimal individual, then the iteration stops; or else
continues from step 4.

 Step 4: Perform crossover on the kth parent and
obtain the resulting T_cross k.

 Step 5: Perform mutation on T_crossk and obtain the
resulting T_mutatek.

 Step 6: Perform vaccination on T_mutatek and
obtain the resulting T_vacck, vaccination is applied
on all chromosomes of T_mutatek to obtain T_vacck.

Test case with less fitness value is identified and
vaccine is applied, thereby it gets replaced by test
case of higher fitness value. V(ci)={ti←tj} such that:
ti∈ci and tj comes earlier in order than ti as well as
both tj and ti satisfy same coverage criteria.

 Step 7: Perform immune selection on T_vacck and
obtain the next parent and then go to step 3.

 Step 8: Perform zero drop function, fitness is
computed for all chromosomes using the fitness
function used in [8], F(ci)=1-((tc1+tc2+, …, tcj+,
…,+tcn)/nm)+1/2n, where n is the number of test
case sequences, m is the number of conditions in the
input program and tcj is the location of the first test
case in the sequence which covers the jth condition.

Zero drop function checks for any zero, whenever a
tci is zero, it indicates that the corresponding
coverage criteria is not met, hence that chromosome
is dropped (our contribution).

 Step 9: Perform probability selection function to
render the optimal individual prioritized, probability
is calculated using the mathematical model in [1]
for the remaining chromosomes as given by,
probability, P(ci)=F(ci)/∑ F(ci) where i=1, ..., n.

Probability selection function uses Prioritize
function to reorder ci’s based on P(ci) (our
contribution).

Algorithm 1 can be stopped either at the maximal
iterative number or when the fitness begins to remain
steady for a preset number of iterations.

Algorithm 1: Immune prioritization.

T_init={c1, c2,…, cn}
ci is a chromosome of test cases {ta, tb, tc,…}
#Vaccine Selection
for(i=1 to n)
Compute V(ci) such that F(ci′)>F(ci)
ci is chromosome before vaccination
ci′ is chromosome after vaccination
#F(ci) and F(ci′) gives fitness value before and after vaccination
while(not optimal)
{
Crossover (ck, ck+1)
#F(ck) and F(ck+1) are the highest among other candidates
Mutate (ck,ck+1)
#Vaccination
for(i=1 to n)
Apply V(ci) on all chromosomes
#Immune Selection
If F(c_vacck+1)>F(c_mutatek+1) and F(c_vacck)>F(c_mutatek)

then
select offspring to be next parents

else
retain parents for next generation

}
#Zero drop function
for(i=1 to n)

If any tci=0 in F(ci) then
drop ci from T_vacck

#Probability selection function
for(i=1 to n)

P(ci)=F(ci)/ ∑ F(ci)
ci with maximum probability is ranked first.
Prioritize (T_vacc)
returns prioritized test suite

4. Experiments

A PL/SQL procedure named First_Run utilized for the
study is part of the Pay Roll Management System used
in Anna University. The system which was developed
using Oracle 10g comprises of thirty three relations.
The First_Run procedure populates the
earnings_trial_run relation and deductions_trial_run
relation with new values. The earnings_trial_run
relation is meant for storing the earnings of employees
applicable in a month and deductions_trial_run relation
is meant for storing the deductions of employees
applicable in a month. These two relations are used to
make report generation easy. The earnings_trial_run
relation is populated with earnings from earnings
relation. Deductions_trial_run relation is populated
with various deductions that are drawn from the
sixteen relations, employee_gpf which stores employee
provident fund details, employee_cps which stores
employee contributory pension scheme details,
deduction_specific which covers deduction details of
additional house rent, electricity charge, cooperative
society, vehicle maintenance, as well as employees
recreation club. In addition to these, deductions from

690 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

variable_ded_std which captures details of family
benefit fund, mediclaim, government health insurance
scheme, as well as professional tax, cps_recovery
which stores employee contributory pension scheme
recovery details, spf which stores special provident
fund details, court_recovery, income_tax_deduction,
gpf_loan, house_loan, loan_sanction, rop which stores
recovery of over payment details, bank_loan, licpolicy,
pli which stores postal life insurance policy details and
rec_deposit which stores details of recurring deposits.

Test cases were generated randomly for the input
program, First_Run. The generated test cases were
grouped based on the coverage information of the test
cases. Table 1 provides the details of the program used
for the study. Test cases were grouped into
chromosomes to form the initial population T_init. IPA
is tested with different number of iterations 20, 25, 29,
30, 31, 35, 40, 45, 50, 100, 120, 200, 400, 600, 800,
1000 as well as 1200 and the best average fitness value
is achieved at 100 iterations.

Table 1. Program used for the study.

Program Lines of Code Test Suite Size
First Run 693 520

The test cases generated were prioritized using GA
and IPA. GA used by Zheng et al. [13] for test case
prioritization was used for evaluating IPA.

5. Results and Discussion

To evaluate the performance of the proposed approach,
the results obtained by the IPA were compared with
that of GA. The results were evaluated using three
metrics, APSC, APDC and APBC. Further, different
percentages of the test suite, namely 5%, 10%, 15%,
20% and 25% were considered. That is, 5% means first
5% of test cases were chosen for execution and 10%
means first 10% of test cases were chosen for
execution and so on. For evaluation, the algorithms
were executed 5 times. In the executions, different
orderings of prioritized test cases were obtained and
the results were normalized by calculating the average.

The application for generating test cases and
collecting coverage information along with the test
case prioritization algorithms used in the experiments
were implemented in Java. All applications were run
on eclipse environment.

The results are presented in Tables 2, 3 and 4. Table
2 presents the APSC values for IPA and GA with 5%,
10%, 15%, 20% and 25% of Test suite. Table 3
presents the APDC values for IPA and GA with 5%,
10%, 15%, 20% and 25% of Test suite and Table 4
presents the APBC values for IPA and GA with 5%,
10%, 15%, 20% and 25% of Test suite. Different
percentages of test suite from 5% up to 25% were
chosen for analysis since both the algorithms showed
varying coverage until they achieve 100% statement,
decision as well as block coverage with 25% of test
suite.

Table 2. APSC with various percentages of test suite.

Test Suite GA IPA
5% 87.15 86.86

10% 91.63 92.06
15% 95.09 97.25
20% 97.71 100
25% 99.71 100

Table 3. APDC with various percentages of test suite.

Test Suite GA IPA
5% 95.65 99.81

10% 98.12 100
15% 100 100
20% 100 100
25% 100 100

Table 4. APBC with various percentages of test suite.

Test Suite GA IPA
5% 73.79 78.62

10% 80.00 90.34
15% 85.51 99.31
20% 96.55 100
25% 100 100

Analyzing the results obtained from the
experiments, which are detailed in Tables 2, 3 and 4,
the following conclusions have been arrived. First, for
all the percentages of test suite analyzed IPA
significantly outperforms GA. This shows the
applicability of Immune operator for prioritization
problem. Further, considering APSC, APDC and
APBC in general, IPA performs better than GA except
5% for APSC.

Second, as the percentage of test suite size increases
from 5%, IPA behaves better than GA with APSC,
APBC as well as APDC. There is a significant increase
in the APSC of IPA from 5% to 20%. When APDC is
considered, IPA outperforms GA with APDC of
99.81% even with 5%. Similarly for APBC, IPA
achieves more than 90% coverage even with 10%. This
is because the candidates having low fitness function
have been vaccinated to get their fitness value
improved. Because of that IPA performs better even
with 10% test suite attaining more than 90% coverage
in all three. Table 3 shows that, when 15% test cases
were chosen for execution, then 100% performance is
achieved with IPA. What we infer here is, when there
are resource constraints and not all test cases can be
executed, then it is where these algorithms play a vital
role and it is where IPA can be opted for. That is, when
only few percentages of test cases can be executed then
IPA can be utilized better.

Figures 1, 2 and 3, demonstrates the performance
comparison of the First_Run among the two
algorithms, IPA and GA for the metrics APSC, APDC
and APBC. The different percentages of test suite used,
namely 5%, 10%, 15%, 20% and 25% are marked
along x axis. The figures clearly show that IPA
performs well compared to GA. Hence, IPA is a better
solution for prioritization problem. Further, the main
issue with regression testing is resource constraint.
This IPA addresses the resource constraint issue nicely.
Figures 1, 2 and 3, show clearly that the immune
prioritization provides 97.25% statement coverage
whereas Genetic provides 95.09% statement coverage
and 99.31% block coverage whereas genetic provides

Test Case Prioritization for Regression Testing Using Immune Operator 691

85.51% when only 15% test cases can be executed
because of resource constraints. In APSC there is
2.29% increase and in APBC there is 13.8% increase,
which shows clearly the performance of IPA. IPA
achieves 100% APSC and APBC even with 20% of
test suite whereas GA needs 25% or more. IPA
achieves 4.16% increase in APDC when compared
with GA and achieves 100% coverage with just 10% of
test cases.

A
PS

C

GA IPA Percentages of Test Suite

Figure 1. APSC with various percentages of test suite.

A
P

D
C

GA IPA Percentages of Test Suite

Figure 2. APDC with various percentages of test suite.

A
PB

C

GA IPA Percentages of Test Suite

Figure 3. APBC with various percentages of test suite.

GA and IPA are executed for different iterations and
the average fitness values and optimal fitness values
are shown in Figure 4. Each generation of IPA is a
little longer because of the vaccination and
immunization operations compared to that of GA, but
still IPA outperforms GA since IPA arrives at average
fitness value of 80.3 in just 4 generations whereas GA
reaches an average fitness value of 79.2 in 45
generations. Moreover, IPA obtains optimal fitness
value of 99 and remains steady. Further IPA attains an
average fitness value of atleast 86.2 in all iterations
whereas GA attains a maximum of 79.2. Thus IPA
helps in achieving better prioritization and the
algorithm converges quickly because of the zero drop
and probability selection functions utilized.

Optimal Fitness Value Average Fitness Value

IP Generation
Figure 4. Optimal and average fitness value with various IPA
iterations.

6. Conclusions
All these experiments have shown improved APSC,
APDC and APBC for IPA compared to GA. The
experiments conducted with different number of
generations clearly shows IPA is capable of achieving
optimal fitness value of 99 and remains steady. IPA
attains the average fitness value of atleast 86.2 whereas
for GA it is a maximum of 79.2. This clearly shows
that IPA needs less number of iterations to reach
steady fitness value compared to GA, which paves way
for arriving at a better prioritized test suite. APSC of
IPA is 2.29% more compared to GA for 15% of test
cases. APDC of IPA is 4.16% more compared to GA
for 10% of test cases and APBC of IPA is 13.8% more
compared to GA for 15% of test cases. Thus, IPA
outperforms GA. Further, the difference between
APSC, APDC and APBC of Immune Prioritization
with that of genetic is excellent for all percentages of
test cases. IPA performs well with incremental changes
wherein we render having an enormous test suite.
Further, it helps ensuring that the test cases with
maximum fitness value and coverage are considered
for testing first. This shows that the applicability of
IPA will be more when more unfit test cases are
involved. Hence, for applications where many test
cases evolve along with software and become unfit as
far as coverage is concerned, this IPA can be best
utilized for prioritizing test cases.

References

[1] Azimipour M., Bonyadi M., and Eshghi M.,
“Using Immune Genetic Algorithm in ATPG,”
Australian Journal of Basic and Applied
Sciences, vol. 2, no. 4, pp. 920-928, 2008.

[2] Bouchachia A., “An Immune Genetic Algorithm
for Software Test Data Generation,” in
Proceedings of the 7th International Conference
on Hybrid Intelligent Systems, Kaiserlautern, pp.
84-89, 2007.

[3] Fahd M., Mohiy H., Kamel M., and Khalid A.,
“A New Image Segmentation Method Based on
Particle Swarm Optimization,” The International
Arab Journal of Information Technology, vol. 9,
no. 5, pp. 487-494, 2012.

[4] Glover F. and Kochenberger G. Handbook of
Meta Heuristics, Springer, Berlin, Germany,
2003.

[5] Do H., Mirarab S., and Rothermel G., “The
Effects of Time Constraints on Test Case
Prioritization: A Series of Controlled
Experiments,” IEEE Transactions on Software
Engineering, vol. 36, no. 5, pp. 593-617, 2010.

[6] Alsmadi I. and Al-KabiIzzat M., “GUI Structural
Metrics,” the International Arab Journal of
Information Technology, vol. 8, no. 2, pp. 124-
129, 2011.

[7] Jiao L. and Wang L., “A Novel Genetic
Algorithm Based on Immunity,” IEEE

20 25 29 30 31 35 40 45 50 10 200 400 600 800 1000 1200

692 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, vol. 30, no. 5, pp.
552-561, 2000.

[8] Jun W., Yan Z., and Chen J., “Test Case
Prioritization Technique based on Genetic
Algorithm,” in Proceedings of International
Conference on Internet Computing and
Information Services, Hong Kong, pp. 173-175,
2011.

[9] Liu F. and Peng B., “Immune-Particle Swarm
Optimization Beats Genetic Algorithms,” in
Proceedings of the 2nd WRI Global Congress on
Intelligent Systems, Wuhan, pp. 233-236, 2010.

[10] Lu J. and Xie M., “Immune-Genetic Algorithm
for Traveling Salesman Problem,” available at:
http://cdn.intechopen.com/pdfs-wm/12405.pdf,
last visited 2010.

[11] Srivastava P., Vijay A., Barukha B., and Sengar
P., Sharma R., “An Optimized Technique for
Test Case Generation and Prioritization Using
Tabu Search and Data Clustering,” in
Proceedings of the 4th Indian International
Conference on Artificial Intelligence, pp. 30-46,
2009.

[12] Yoo S. and Harman M., “Pareto Efficient Multi-
Objective Test Case Selection,” in Proceedings
of International Symposium on Software Testing
and Analysis, pp. 140-150, 2007.

[13] Li Z., Harman M., and Hierons R., “Search
Algorithms for Regression Test Case
Prioritization,” IEEE Transaction on Software
Engineering, vol. 33, no. 4, pp. 225-237, 2007.

Angelin Gladston is a Research
Scholar in Ramanujan Computing
Centre, Anna University, India. She
is working as an Assistant Professor
in Department of Computer Science
and Engineering, Anna University,
Chennai. Her research interests

include software engineering, software testing and data
mining.

Khanna Nehemiah is working as an
Associate Professor in Ramanujan
Computing Centre, Anna University,
India. His research interests include
software engineering, database
management systems, data mining
and medical image processing.

Palanisamy Narayanasamy is
working as a Professor in
Department of Information Science
and Technology, Anna University,
India. His research interests include
networks, mobile computing and
software engineering.

Arputharaj Kannan is working as a
Professor in Department of
Information Science and
Technology, Anna University, India.
His research interests include
software engineering, database
management systems, data mining

and artificial intelligence.

