
The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016 627

An Intelligent Water Drop Algorithm for
Optimizing Task Scheduling in Grid Environment

Sornapandy Selvarani1 and Gangadharan Sadhasivam2

1Department of Information Technology, Tamilnadu College of Engineering, India
2Department of Computer Science and Engineering, PSG College of Technology, India

Abstract: The goal of grid computing is to provide powerful computing for complex scientific problems by utilizing and
sharing large scale resources available in the grid. Efficient scheduling algorithms are needed to allocate suitable resources
for each submitted task. So scheduling is one of the most important issues for achieving high performance computing in grid.
This paper addresses an approach for optimizing scheduling using a nature inspired Intelligent Water Drops (IWD) algorithm.
In the proposed approach IWD algorithm is adopted to improve the performance of task scheduling in grid environment. The
performance of Ant Colony Optimization (ACO) algorithm for task scheduling is compared with the proposed IWD approach
and it is proved that task scheduling using IWD can efficiently and effectively allocate tasks to suitable resources in the grid.

Keywords: grid computing, IWD, task scheduling, ACO.

Received January 24, 2013; accepted March 19, 2014; Published online December 23, 2015

1. Introduction

Computation grid technologies [1] are a new trend and
appear as a next generation of the distributed
heterogeneous system. It combines physical dynamic
resources and various applications together. Task
scheduling is a challenging problem in grid computing
environment [2]. If large numbers of tasks are
computed on the geographically distributed resources,
an efficient scheduling algorithm should be adopted to
allocate suitable resources for all the submitted tasks to
compute the tasks within minimum time [6].

Scientist has realized that natural creatures and
systems can be used as valuable sources of inspiration
for developing new intelligent systems and algorithms
[12]. Particle swarm optimization [3], Ant Colony
Optimization (ACO) [4], Artificial neural networks [5]
are some of the highly used technologies, for
proposing new optimization algorithms, which
partially or fully follow actions and reactions that
happen in natural systems.

Among the most recent nature-inspired swarm-
based optimization algorithms is the Intelligent Water
Drops (IWD) algorithm.

It was first introduced by Kennedy and Eberhart
[7], in which it was used to solve Travelling Salesman
Problem (TSP). IWD algorithm also has been
successfully applied to solve multiple knapsack
problem [8] and to solve the n-queen problem [9].

In this paper we propose an algorithm based on IWD
technique for allocating suitable resources to the
submitted tasks in a grid environment. IWD algorithm
is based on the dynamic of river systems, actions and
reactions that happen among the water drops in rivers
It can be used for either maximization or minimization

problems. The solutions are incrementally constructed
by IWD algorithm. So, it is a population-based
constructive optimization algorithm.

IWD algorithm has been used for optimizing task
scheduling in grid environment and it is called as
IWDGS. Set of tasks are submitted to available
resources in the grid. The problem is to allocate the
submitted tasks to suitable resources that are available
in the grid. So that, the execution time and cost of
execution is minimized.

The next section discusses about how ACO
algorithm is used for task scheduling in grid. Section 3
discusses about some natural actions that happen in
rivers and gives how ideas of natural water drops are
used to develop IWD algorithm and it also gives the
mathematical modelling of IWD. Section 4 introduces
IWD algorithm, which is used for solving our
scheduling problem. How IWD algorithm is used for
solving task scheduling in grid is discussed in section
5. Section 6 presents experimental results and
discussions. Section 7 concludes the paper and
suggests future works.

2. ACO Technique for Task Scheduling in
Grid

Generally, when the jobs are submitted to the grid
system at different times, they have different time
steps. Therefore, they consume different resources.
Therefore, processing is performed within different
execution times. ACO algorithm is used to solve the
above problem by considering the requirements of
each job which is independent from other jobs and
where only one of the job process in any unit times
[11].

628 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

ACO is inspired by a colony of artificial ants
cooperate in foraging behavior. This behavior enables
ants to find the shortest paths between food sources
and their nest. In fact, they deposit a chemical
pheromone tail on the ground after they walk from the
nest to food sources and vice versa. Hence, they
choose the way with higher probability paths, which
are marked by stronger pheromone concentrations. [10,
15]. Procedure for ACO algorithm as shown in
Algorithm 1:

Algorithm 1: Procedure for ACO algorithm.

Procedure ACO
Begin

Initialize parameters, the pheromone trails
While (stopping criterion not satisfied) do
Each ant position starts at starting machine

While (stopping when every ant has build a
Solution) do

For each ant do
Chose next machine by applying
The state transition rate

End for
End while
Update the pheromone

End while
End

3. Basics of IWD

3.1. Concept of Natural Water Flow in Rivers

In natural rivers we can see flowing of water from one
place to another through a path. The paths of water
flow have been created by a swarm of water drops. It’s
also observed that the constructed path seems to be an
optimal path in terms of distance travelled by the water
[7].

One of the important properties of flowing water is
its velocity. Water drops flowing from one place to
another will carry some amount of soil along with it.
The soil is usually transferred from fast parts of the
path to slow parts of the river. The carried soils will be
unloaded in the slower beds of the river.

The following properties are assumed for a flowing
water drop in a river:

 A high velocity water drop removes more soil than a
low velocity water drop.

 The velocity of a water drop increases more on a
path with low soil than a path with high soil.

 Water chooses an easier path with less soil than a
harder path with more soil.

3.2. Mathematical Modelling of the Actions and
Reactions of IWD

Based on the properties discussed above Niu et al. [13]
suggested an intelligent water drop which possesses a
few properties of a natural water drop. Two important
properties of IWD are:

 The soil a water drop carries: SoilIWD.
 The velocity of the water drop: VelocityIWD.

The above properties may change during the flow of
water. From technical point of view, an environment
represents a problem that is to be solved.

The problem here is to find an optimal path for the
flow of water in the river. IWD is assumed to flow
from a source to a desired destination. From a given
source to a desired destination there will be multiple
paths. In case the desired destination is known, the
solution to the problem is to find the shortest path from
the source to the destination. If the destination is
unknown the shortest path is obtained based on a
desired measure like cost, time etc.

An IWD moves in discrete finite- length steps in its
environment. An IWD moves from current location i to
a new location j and the velocity VelocityIWD is
increased by an amount of ∆VelocityIWD which is
nonlinearly proportional to the inverse of the soil
between i and j.

1

()
N L

IW DV elocity
soil i , j

One possible formula is given in Equation 2 in which
the velocity of the IWD denoted by ∆VelocityIWD(t) is
updated by the amount of soil soil(i, j) between the two
locations i and j.

2
()

()
v

IWD

v v

a
Velocity t

b c .soil i , j

Here, the av, bv and cv and αNL are user-selected
positive parameters. Moreover, the IWD’s soil,
soil(IWD), is increased by removing some soil of the
path joining the two locations i an j. The amount of soil
added to the IWD, Δsoil(IWD)= Δsoil(i, j) is inversely
(and nonlinearly) proportional to the time needed for
the IWD to pass from its current location to the next
location denoted by time(i, j, IWD).

1
() ()

()
NLsoil IWD soil i , j

time i , j : IWD

One suggestion for the above formula is given in
Equation 4 in which time(i, j, velIWD) is the time taken
for the IWD with velocity velIWD to move from location
i to j. The soil added to the IWD is calculated by:

2
()

()
s

IWD
s s

a
soil i , j

b c .time i , j : vel

Where the parameters as, bs and cs and θ are user-
selected positive numbers. The duration of time for the
IWD is calculated by the simple laws of physics for
linear motion. Thus, the time taken for the IWD to
move from location i to j is proportional to the velocity
of the IWD, velocity (IWD) and inversely proportional
to the distance between the two locations, d(i, j). More
specifically:

(1)

(3)

(4)

(2)

An Intelligent Water Drop Algorithm for Optimizing Task Scheduling in Grid Environment 629

1
()

()
Ltime i , j ; IWD

velocity IWD

Where αL denotes linear proportionality. One such
formula is given below, which calculates the time
taken for IWD to travel from location i to j with
velocity velIWD:

()
()

IWD

HUD i , j
time i , j ; IWD

vel

Where a local heuristic function HUD(i, j) has been
defined for a given problem to measure the
undesirability of an IWD to move from one location to
the next. Some soil is removed from the visited path
between locations i and j. The updated soil of the path
denoted by soil(i, j) is proportional to the amount of
soil removed by IWD flowing on the path joining i to j,
Δsoil(i, j)= Δsoil(IWD), specifically:

() ()Lsoil i , j soil i , j

One such formula has been used for IWD algorithm
such that soil(i, j) is updated by the amount of soil
removed by IWD from the path i to j.

() () ()o nsoil i , j .soil i , j . soil i , j

Where ρo and ρn are often positive numbers between 0
and 1. The soil of IWD denoted by soilIWD is added by
the amount soil(i, j) as shown below:

()IWD IWDsoil soil soil i , j

Another mechanism that exists in the behaviour of an
IWD is that it prefers the paths with low soils on its
beds to the paths with higher soils on its beds. To
implement this behaviour of path choosing, a uniform
random distribution is used among the soils of the
available paths such that the probability of the IWD to
move from location i to j denoted by p(i, j, IWD) is
inversely proportional to the amount of soils on the
available paths.

() ()Lp i , j ; IWD soil i , j

The lower the soil of the path between locations i and j,
the more chance this path has for being selected by
IWD located on i. One such formula based on Equation
10 has been used in which the probability of choosing
location j is given by:

(())
()

(())
k

f soil i , j
p i , j ; IWD

f soil i , j

Where 1
(()

(())
f soil i , j

s g soil i , j

.

The constant parameter εs is a small positive number to
prevent a possible division by zero in the function f (.).
The set vc(IWD) denotes the nodes that IWD should
not visit to keep satisfied the constraints of the
problem. The function g(soil(i, j)) is used to shift the

soil(i, j) of the path joining nodes i and j toward
positive values and is computed by:

()

()

(() 0) ()
(())

(()) () (())
l vc IWD

l vc IWD

if min soil i, j soil i, j
g soil i, j

else g soil i,j soil i, j min soil i, j

Where the function min() returns the minimum value
of its arguments. The IWDs work together to find the
optimal solution of a given problem. The problem is
encoded in the environment of the IWDs and the
solution is represented by the path that the IWDs have
converged to. In the next section, the IWD algorithm is
explained.

4. IWD Algorithm for Task Scheduling in
Grid

4.1. IWD Algorithm

The IWD algorithm is represented in the form of a
graph with N number of nodes and E number of edges.
Each IWD begins by constructing its solution gradually
by travelling on the nodes of the graph along the edges
of the graph until IWD finally completes its solution,
which is denoted by TIWD. Each solution TIWD is the set
of edges that IWD has visited.

One iteration of IWD algorithm is finished when all
IWDs complete their solutions. After each iteration, the
iteration best solution is found based on a quality
function among all solutions obtained by IWDs in the
current iteration and it is denoted by TIB. The TTB is the
total-best solution which is the best solution since the
beginning of IWD algorithm, which has been found in
all iterations.

The quality of solution of IWD can be denoted by
QUL(TIWD). Therefore, the iteration-best solution TIB is
given by:

(())IB forallIW Ds IW DT arg max QUL T

Where arg() returns its argument. The total-best
solution TTB is updated by the current-best solution TIB

as follows:

() ()TB IB TB
TB

IB

if QUL T QUL T T
T

Otherwise T

At the end of each iteration of IWD algorithm, the
amount of soil on the edges of the iteration-best
solution TIB is reduced based on the quality of the
solution. Shah-Hosseini [13] suggested a method to
update the soil(i, j) of each edge of the iteration-best
solution TIB.

() ()ssoil i , j .soil i , j

1
()

(1)
IWD

IWD IB IB

IB

. .soil i , j T
N

Where IWD
IBsoil represents the soil of the iteration-best

IWD. The iteration-best IWD is the IWD that has
constructed the iteration-best solution TIB at the current

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

630 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

iteration. Number of nodes in the solution TIB is
denoted as NIB. ρIWD ranges from 0 to 1 which is the
global soil updating parameter and ρs=(1+ρIWD) The
whole process is repeated with new IWDs but with the
same soils on the paths of the graph. The algorithm is
terminates when it completes all its iterations or when
it achieves the expected quality measure.

IWD algorithm involves a number of parameters
both static and dynamic.

The parameters which remain constant throughout
the execution of the algorithm are assumed to be static
and those parameters whose values changes
dynamically during its execution are said to be
dynamic parameters.

The values of the static parameters used in this
paper are the same used by Niu et al. [14]. IWD
algorithm as shown in Algorithm 2:

Algorithm 2: IWD algorithm.

1. All the static and dynamic parameters used in the algorithm
are initialized as follows:

a. Initialization of Static Parameters:

 The graph (N, E) of the problem is given to the
algorithm, which contains Nc nodes.

 The quality of the total-best solution TTB is initially set
to the worst value: QUL(TTB)= −∞.

 The maximum number of iterations itermax is specified
by the user and the algorithm stops when it reaches
itermax.

 The iteration count itercount, which counts the number
of iterations, is set to zero.

 The number of water drops NIWD is set to a positive
integer value. This number should at least be equal to
two. However, it is usually set to the number of nodes
Nc of the graph.

 Velocity updating parameters av and cv==1 and
bv=0.01.

 Soil updating parameters as and cs==1 and bs= 0.01.
 The local soil updating parameter is ρn= 0.9.
 The global soil updating parameter is ρIWD= 0.9.
 The initial soil on each edge of the graph is denoted

by the constant InitSoil such that the soil of the edge
between every two nodes i and j is set by soil(i,
j)=InitSoil. Here, InitSoil=10000.

 The initial velocity of each IWD is set to InitVel.
Here, InitVel=200

b. Initialization of Dynamic Parameters:

 Every IWD has a visited node list Vc(IWD), which is
initially empty: Vc(IWD)={ }.

 Each IWD’s velocity is set to InitVel.
 All IWDs are set to have zero amount of soil.

2. Spread IWDs randomly on the nodes of the graph as their
first visited nodes.

3. Update the visited node list of each IWD to include the
nodes just visited.

4. Repeat steps 5.1 to 5.4 for those IWDs with partial solutions.
5. 5.1. For IWD residing in node i, choose the next node j,

which doesn’t violate any constraints of the problem and is

not in the visited node list Vc(IWD) of IWD, using the

following probability IWD
ip (j) .

(())
()

(())()

IW D
i

f soil i , j
p j

f soil i , jk vc IW D

Such that:

1
(()

(())s

f soil i , j
g soil i , j

And

()

()

(() 0) ()
(())

() (())
l vc IWD

l vc IWD

If min soil i , j soil i , j
g soil i , j

else soil i , j min soil i , j

Then, add the newly visited node j to the list Vc(IWD).

5.2. For each IWD moving from node i to node j, update its
velocity velIWD(t) by:

2
(1) ()

()
v

IWD IWD

v

a
vel t vel t

b c .soil i , jv

Where velIWD(t+1) is the updated velocity of IWD.
5.3. For IWD moving on the path from node i to j, compute

the soil Δsoil(i, j) that IWD loads from the path by:

2
()

((1))
s

IWD
s s

a
soil i , j

b c .time i , j ; vel t

Such that:

()
((1)

(1)
IWD

IWD

HUD j
time i , j ; vel t

vel t

Where the heuristic undesirability HUD(j) is defined
appropriately for the given problem.

5.4. Update the soil soil(i, j) of the path from node i to j
traversed by that IWD, and also update the soil that
IWD carries soil IWD by:

() (1) () ()

()

n n

IWD

soil i , j .soil i , j soil i , j

IWDsoil soil soil i , j

6. Find the iteration-best solution TIB from all the solutions
TIWD found by IWDs using:

()IWDIB IWDT
T arg max QUL T

Where function QUL(.) gives the quality of the solution.
7. Update the soils on the paths that form the current iteration-

best solution T IB by:
1

() (1) () ()
(1)

IWD
IWD IWD IB IB

IB

soil i , j .soil i , j . .soil i , j T
N

Where NIB is the number of nodes in solution TIB.

8. Update the total best solution TTB by the current iteration-
best solution TIB using:

() ()TB IB TB

TB
IB

IfQUL T QUL T T
T

Otherwise T

9. Increment the iteration number by Itercount= Itercount+1.
Then, go to step 2 if Itercount< Itermax.

10. The algorithm stops here with the total-best solution TTB.

(17)

(18)

(19)

(20)

(21)

(22)

(23)

An Intelligent Water Drop Algorithm for Optimizing Task Scheduling in Grid Environment 631

5. Task Scheduling in Grid using IWD
Algorithm

The aim of the proposed algorithm is to use a new
technique to select optimal resources from the grid
which can find out the optimal resources to process the
tasks and to improve the overall performance of the
system in terms of execution cost and tardiness time.

The approach is to develop a scheduling algorithm
within the objective to minimize the total execution
cost and total tardiness time of the tasks based on IWD
algorithm.

The problem is stated as follows: A set of n tasks
are available for processing on available set of m
resources. Each jth task has a processing time Pj, an
arrival time aj, a release time rj and expected time Ej.
All the above values are assumed to be positive
integers.

Let Cij be the completion time of the operation of
job j on machine i. It is denoted as:

ij j j ijC a r P

The tardiness of the jth task in machine i is given as:

((),0)i , j ij ijT max C E

The objective is to minimize the maximal total
tardiness time:

1 1()n
i ji , j i , j
mT T

The grid scheduler architecture is shown below in
Figure 1.

Figure 1. Architecture of grid scheduler.

5.1. The Proposed Scheduling Algorithm
IWDGS

Generally, when the tasks are submitted to the grid
system at different times, they have different time
steps, therefore they use different resources. Therefore,
the processing is performed within different execution
times. The tasks are submitted dynamically to the grid
system.

This paper proposes a scheduling algorithm based
on IWD algorithm. IWD algorithm can be applied to
solve both static and dynamic combination
optimization problems.

IWD algorithm has the ability to search and modify
the environment of the given problem. By doing this it

constructs a solution incrementally. The problem is
presented in the form of a graph and IWD’s travel one
node to another node through the edges of the graph.

A swarm of IWD’s flows in the graph and they find
the optimal solution using the local heuristic. In the
proposed method IWD algorithm is applied to solve the
scheduling problem in grid environment, Let M be a
set of machines {m1, m2, m3, ..., mm} and let J be a set
of jobs {j1, j2, j3, ..., jn} and n>m. Therefore, the graph
G={M, {CTij}mxn}. The objective is to find the optimal
resources for the jobs. It can minimize the total
execution time and cost.

Each job has a sequence of operations OPk={OPk|
k= 1, 2, ..., n} and these ‘n’ jobs (all operations) have
to be processed on ‘m’ machines. Job splitting is not
allowed and the operations are non-premptable. Each
machine only performs one operation at a time and
each operation is performed only once on one machine.
The algorithm is to find a feasible assignment of all
operations on the given machines with optimized
machine.

Our objective is to minimize the maximal total
tardiness time of the schedules and to minimize the
processing cost of submitted jobs. Maximal total
tardiness time is calculated as defined in Equation 26
in section 4.

A graph with N nodes and E edges can be used to
represent job scheduling in grid environment which
resembles rivers as in IWD algorithm. The IWDGS
algorithm is given below. Algorithm 3 has NIWD_iter
iterations. In each iteration, IWD’s travel from source
node to the sink node in the graph. The path of an IWD
can produce a feasible solution. The soils on the edges
where IWDs pass, soils of IWDs and the velocities of
IWDs are updated during the travelling of IWDs.

After each iteration, the soils on NeliteIWDs paths
are updated. Next, a group of best solutions SBD are
chosen and a combined local search is performed to
further improve these solutions. After local search, a
best iteration solution SIB is identified and the global
best solution STB is updated. After all the iterations,
another local search is performed on STB.

Algorithm 3: IWDGS.

Initialize an IWDs group A ; // A population of IWDs.
initialization ();
while (k < NIWD_iter) do

for (each time step t) do
for (each IWDg A which feasible solution

has not been discovered) do
(i, j) = selectNextEdge(IWDg);

Vel IWDg = updateVelocity(VelIWDg);
∆soil (i, j) = computeDeltaSoil((i ,j), IWD);

soil (i, j)= updateEdgeSoil((i, j),∆soil (i, j));
soil IWDg = updateIWDSoil(soil IWDg,∆soil(i, j);
end for
end for

for (Nelite IWDs) do
globalSoilPropagation();

end for

(24)

(25)

(26)

632 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

SBD= setupBestSolutionGroup ();
SIB= combinedLocalSearch(SBD);

updatePathSoil(SIB);
update(STB);
k++;
end while
STB = combinedLocalSearch(STB).

initialization() //This function initializes the static and dynamic
parameters

 SelectNextEdge(IWDg): For the gth IWD, choose the
next node to visit in the schedule operation list
according to the probability calculation using
Equation 17.

 UpdateVelocity(IWDg Vel): For the gth IWD moving
from node i to node j on the graph, update its
velocity using Equation 18.

 ComputeDeltaSoil((i, j), IWD): For the gth IWD,
moving on the path from node i to j, calculate the
amount of soil that it loads from the path using
Equation 19.

 updateEdgeSoil((i, j), ∆soil(i, j)) and
updateIWDSoil(soil IWDg ∆soil(i, j)) For the gth

IWD, update the soil of the edge it traversed and the
soil contained in the IWD using Equation 20.

 GlobalSoilPropagation(): Update the soil of the
edges included in the current elite IWD’s solutions
(Nelite IWDs).

 SetupBestSolutionGroup(): This is used for local
search; a solution group SBD is set up for recording
the best NBD solutions during the local search
process.

 CombinedLocalSearch(SBD): This is a local search
method which combines breadth search and depth
search schemes in the search neighbourhood. The
input of this function can be a group of solutions or
a single solution and the output is an improved
solution.

 UpdatePathSoil(SIB): To update the soil of the path
associated with the best iteration solution SIB using
Equation 22.

 Update(STB): Update the global best solution STB by
the best iteration solution SIB using Equation 23.

6. Experimental Results

The experimental simulation of IWDGS algorithm is
implemented on an Intel Pentium 4 machine using the
simulation Toolkit GridSim 4.1 which is Java based
simulation toolkit. GridSim toolkit is designed
basically for simulating resource management and task
scheduling problems in grid environment. The
simulation is designed based on grid simulation
architecture described in section 4.

Below Tables 1 and 2 gives various attributes of the
resources used and jobs submitted to the available
resources.

Table 1. Resource attributes.

Attributes Values
Number of Resources 5-10
Processor Speed (MIPS) 25-250
Bandwidth (Mbit) 10
Number of Processing Element in each Resource 1-5

Table 2. Job attributes.

Attributes Values
Number of jobs Submitted 50-300
Length of Jobs (MI) 3000-9500
Number of Processing Element in each Resource 1-5

The values of velocity updating parameters are av

and cv =1.0 bv=0.01 and soil updating parameters are as

and cs=1.0 and bs=0.01. The values of local soil
updating parameter is ρn=0.9 and global soil updating
parameter is ρIWD =0.9

We have tested the proposed IWD algorithm for
solving job scheduling in grid environment. Jobs are
submitted to the available resources in the grid.

We have the experimented the proposed algorithm
by submitting different numbers of jobs to different
number of resources available in the grid. The results
of the above experiment recorded the tardiness time
and processing cost taken for executing different
numbers of jobs submitted to different number of
available resources in the grid.

We have compared the tardiness time and
processing cost of IWDGS algorithm with ACO
algorithm for scheduling jobs in grid environment.
Tables 3 and 4 below show the results of the above
comparisons. From the Tables it can be seen that the
results of IWDGS algorithm is best when compared
with the results of ACO algorithm. The comparison is
proved with line graphs shown in Figures 2 and 3.

Table 3. Results of tardiness time of IWDGS and ACO algorithms
for task scheduling in grid.

Number of Jobs (gridlets) Tardiness Time (in Sec’s)
IWDGS ACO

25 165.19 226.36
50 320 429.8
75 484.87 659.34

100 658 912.53
125 818.04 1140.35
150 982.75 1376.38
175 1137.84 1590.51
200 1271.34 1734.52
225 1453 2041.1
250 1613.87 2270.25
275 1795 2522.02
300 1944.24 2730.12

Table 4. Results of processing cost of IWDGS and ACO algorithms
for task scheduling in grid.

Number of Jobs (gridlets) Processing Cost (in Rs.)
IWDGS ACO

25 347.98 538.09
50 661 1021.86
75 1024.6 1559.85

100 1394 2158.01
125 1732.6 2671.06
150 2081.88 3229.15
175 2407 3721.53
200 2678.3 4153.55
225 3070 4773.30
250 3409.67 5310.76
275 3800 5616.06
300 4110.62 6390.37

An Intelligent Water Drop Algorithm for Optimizing Task Scheduling in Grid Environment 633

T
ar

di
ne

ss
 T

im
e

(R
up

ee
s)

No. of Gridlets

Figure 2. Tardiness time comparison of IWDGS and ACO
algorithms.

Pr
oc

es
si

ng
 C

os
t (

R
up

ee
s)

No. of Gridlets

Figure 3. Processing cost comparison of IWDGS and ACO
algorithms.

We have also compared utilization of resources in
the grid for both ACO algorithm and IWDGS
algorithm. The comparison graph for the above
comparison is shown in Figure 4. The mean utilization
for 10 resources is 70%.

U
ti

liz
at

io
n

(%
)

No. of Resources

Figure 4. Resource utilization comparison of IWDGS and ACO
algorithms.

The standard deviation for IWDGS algorithm is
1.75119 while the standard deviation for ACO
algorithm is 15.3565.

So, we can come to a conclusion that IWDGS
algorithm is keeping track the states of all the
resources at each point in time so that more optimal
decision can be made at each time.

7. Conclusions

This paper investigates an optimization algorithm
named IWDGS. The proposed algorithm is presented
and it is applied to solve job scheduling in grid
environment. The algorithm is developed based on
intelligent water drop optimization algorithm to
allocate the user submitted jobs to the various
resources available in the grid. The algorithm can
select optimal resources to allocate submitted jobs such

that it minimizes the maximal total tardiness time and
processing cost.

The proposed algorithm was compared with ACO
algorithm for scheduling jobs in grid. From the
experimental results obtained we have proved that our
proposed algorithm is much efficient than ACO
algorithm for scheduling jobs in grid.

References

[1] Abraham A., Buyya R., and Nath B., “Nature's
Heuristics for Scheduling Jobs on Computational
Grids,” available at:
www.buyya.com/papers/nhsjcg.pdf, last visited
2000,.

[2] Cormen T., Leiserson, C., Rivest R., and Stein
C., Introduction to Algorithms, MIT Press,
Cambridge, 2003.

[3] Dorigo M. and Stutzle T., Ant Colony
Optimization, Prentice-Hall, 2004.

[4] Foster I. and Kesselman C., The Grid: Blueprint
for a Future Computing Infrastructure, Morgan
Kaufman Publishers, 1999.

[5] Haykin S., Neural Networks, Prentice-Hall, 1999.
[6] Ijaz S., Munir E., Anwar W., and Nasir W.,

“Efficient Scheduling Strategy for Task Groups
in Heterogeneous Computing Environment,” The
International Arab Journal of Information
Technology, vol. 10, no. 5, pp. 486-492, 2013.

[7] Kennedy J. and Eberhart R., Swarm Interllignece,
Morgan Kaufmann, 2001.

[8] Kirkpatrick S., Gelatt C., and Vecchi M.,
“Optimization by Simulated Annealing,” Science,
vol. 220, no. 4598, pp. 671-680, 2008.

[9] Koza, J., Genetic Programming: On the
Programming of Computers by means of Natural
Evolution, MIT Press, Massachusetts, 1992.

[10] Ku-Mahamud K. and Nasir H., “Ant Colony
Algorithm for Job Scheduling in Grid
Computing,” in Proceedings of the 4th Asian
International Conference on Mathamatical/
Analytical Modelling and Computer Simulation,
Kota Kinabalu, pp. 40-45, 2010.

[11] Mandloi S. and Gupta H., “Adaptive Job
Scheduling for Computational Grid based on
ACO with Genetic Parameter Selection,”
International Journal of Advanced Computer
Research, vol. 3, no. 9, pp. 66-71, 2013.

[12] Michalewicz Z. and Schoenauer M.,
“Evolutionary Algorithms for Constrained
Parameter Optimization Problems,” Evolutionary
Computation, vol. 4, no.1, pp. 1-32, 1996.

[13] Niu S., Ong S., and Nee A., “An Improved
Intelligent Water Drops Algorithm for Achieving
Optimal Job-Shop Scheduling Solutions,”
International Journal of Production Research,”
vol. 50, no. 15, pp. 1-14, 2012.

634 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

[14] Niu S., Ong S., and Nee A., “An Improved
Intelligent Water Drops Algorithm for Solving
Multi-Objective Job Scheduling,” Engineering
Applications of Artificial Intelligence, vol. 26, no.
10, pp. 2431-2442 2013.

[15] Song X., Li B., and Yang H., “Improved Ant
Colony Algorithm and its Applications in TSP,”
in Proceedings of the 6th International
Conference on Intelligent Systems Design and
Applications, Jinan, pp. 1145-1148.

Soarnapandy Selvarani received
her BE degree in Computer Science
and Engineering from Bharathiar
University in 1991, and ME degree
in Computer Science and
Engineering from Manonmaniam
Sundaranar University in 2004.

Currently, She is working toward the PhD degree in
Computer Science and Engineering under Anna
University, Chennai, India. Her research work is in the
area of grid and cloud computing with techniques for
resource management and task scheduling.

Gangadharan Sadhasivam is
working as a Professor in
Department of Computer Science
and Engineering in PSG College of
Technology, Coimbatore, India. Her
areas of interest include distributed
computing, distributed object

technology, grid and cloud computing. She has
published 20 research papers in referred Journals and
32 papers in National and International Conferences.
She has coordinated two AICTE-RPS projects in
Distributed and Grid computing areas. She is also the
coordinator for PSG-Yahoo research on Grid and
Cloud computing.

