
644 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

A New Model for Software Inspection at the
Requirements Analysis and Design Phases of

Software Development
Navid Taba and Siew Ow

Department of Software Engineering, University of Malaya, Malaysia

Abstract: Software inspection models have been remarkable development in over the past four decades, particularly in the
field of automatic inspection of software codes and electronic sessions. A small number of improvements have been made in
the field of system analysis and design. The amount of using formal inspection model which is based on single check lists and
physical or electronic sessions shows the decrease in interest in it. As inspection, in system analysis phase, is a man-cantered
issue, inspectors support using electronic tools will lead to higher efficiency of the inspection process. This paper proposes a
comprehensive web-based tool aimed to accelerating the inspection process in the early phases of software development. In
order to evaluate the efficiency of the proposed tool, two case studies were conducted to inspect the artifacts from six software
projects of two software companies. Comparing the statistics related to the defects detected using this tool with those detected
using the formal method shows the efficiency of the used tool.

Keywords: Software inspection, software test, software engineering improvement, web-based solution, software inspection
tool, inspection metrics.

Received September 2, 2013; accepted September 29, 2014; Published online December 23, 2015

1. Introduction

The software testing methods which are being used in
software development life cycle cannot detect all
defects [16]. Researchers have shown that when
software inspection is conducted in at all phases of
software development, many artifacts are uncovered
[1]. Therefore, using appropriate and professional
methods for inspecting software, can lead to
improvement in software.

In the past four decades, several methods have been
proposed for inspecting software. Each method has its
own domain, advantages and disadvantages. Most of
the proposed inspection methods are based on the
formal method proposed by Fagan [6]. In this method,
inspectors personally inspect the software and the
related documents. Participants in each inspection
session include the product producer, an announcer,
document reviewers, and the chairman of the session.

Improvements made in software inspection process
in recent years have made it possible to carry out
electronic inspection after than doing it manually.
Several software programs have been proposed for
inspecting the program codes automatically. Few
researches, however, have been conducted to improve
the inspection method, especially in the early phases of
software development.

Researches show that defects which are not
corrected in the early phases of software development
are transferred to the later phases and could result in a
100% increase in expenses. In the early phases, most

tasks are developmental in nature, and mainly involve
human input (human ware). Therefore, software
inspectors have crucial roles in every software
inspection process [8].

2. Problem Background

According to Suma et al. [17], one of the key
challenges to the IT industry is in engineering a
software product that will have minimum post-
deployment defects. Defect detection, especially in
requirements analysis and design phases of software
development life cycle dramatically reduces the quality
costs [13]. Armour [2] stated that inspection is a way
to produce high quality software. Tyran [18] stated that
a software inspection is one of the most effective ways
to promote quality and productivity in software
development. He emphasized that the correction of a
defect found early in development can result in the
reduction of between 10 and 100 times of the cost to
remove defects at the later stages [12].

3. Research Methodology

This section presents the methods used to carry out
research. It also explains the research activities; the
criteria used to evaluate the proposed software
inspection model and discuss the internal and external
validity to be satisfied. The research in this article aims
to propose a new software inspection model, and its
efficiency will be compared to the conventional model.
The evaluation will be made based on the data

A New Model for Software Inspection at the Requirements Analysis and Design Phases of Software Development 645

collected through case studies. Figure 1 show the
activities involved in this research.

Figure 1. Research design.

A new software inspection model was proposed
after conducting a thorough review of the literature
pertaining to software inspection. The proposed model
was implemented using agile technique in the
development of a tool Artifacts and Sessions Control
System (ArSeC). ArseC was used to collect data in two
case studies. The criteria and metrics used to evaluate
the proposed model were also defined for the case
studies. The following sections explain the research
activities in detail.

3.1. Activity 1: Proposing A New Software
Inspection Model

While In the formal software inspection method, the
defects detected are not classified, and the causes and
effects of recognized defects are not documented in a
structured manner [9]. A new and more efficient
software inspection model is proposed to overcome the
shortcomings of existing formal software inspection
methods.

The design of the propose model is based on the
recommendations made by prominent researchers in
the area of software inspection. The proposed model is
designed to detect and remove the defects in the first
two phases of software development the requirements
analysis phase and the design phase. The main reason
for doing this is that defects in these two phases, if not
detected and removed, could adversely affect the later

phases of software development, especially in the
coding phase. Another reason is that existing software
inspection models cannot detect defects from the
documents of these two phases [4].

The proposed model provides a database to store
and keep track of defects found in the two phases.
Thus, more defects can be detected as compared to the
formal software inspection model. It can detect defects
in the atrifacts in the requirements analysis phase and
the design phase regardless of the type of development
method, tools, and technologies used.

The artifacts in the requirements analysis phase are
usually the specification documents of the system [15].
In the design phase, the artifacts include the design
specifications together with various design graphs and
diagrams. The most significant feature of the proposed
inspection model is that defects detected can be
classified and stored in a database, and the information
can be accessed using ArSeC. Inspectors can inspect
the artifacts by focusing on the list of classified defects
using checklists generated by ArSec. The database also
includes the causes and effects of a defect, and this
facilitates the software inspection process as well as
the Defect Removal (DR) process. The ability to add
new defects into the classified defects database makes
the database dynamic and up-to-date.

The database, which also stores frequently
encountered defects, can be very useful to software
inspectors to help them to detect defects easily and
quickly. As ArSeC generates the inspection checklists
and the defects found in the inspected software are also
recorded using the tool, this reduces the inspection
time and at the same time increases the productivity of
competency of the inspectors.

3.2. Activity 2: Developing A Tool for
Implementing the Proposed Model

The proposed software inspection tool, ArSeC can
facilitate the software inspection process and improve
the productivity of the inspectors. ArSec was
developed using agile development technique under
the .NET environment.

3.3. Activity 3: Evaluating the Proposed
Software Inspection Model

To evaluate the proposed model, two case studies were
conducted in two companies. The first case study
conducted in a software company and the second one
in an industrial company. Six software projects were
inspected in each of the two companies. In each
project, 48 artifacts in the requirements analysis phase
and the design phase were inspected. The formal
inspection process was first used to find the defects in
the artifacts. The defects detected and the inspection
times taken were recorded using ArSeC. The
inspection process was then repeated using the
proposed inspection model. Similarly, the inspection

646 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

data were collected and recorded using ArSeC. These
two sets of data were compared to determine which of
the two models is better at finding defects, reducing the
inspection time and increasing the productivity of the
inspectors.

To avoid bias and to ensure validity and reliability
of the research, both inspections were done by the
same group of three inspectors under the same
environment and on the same artifacts. These
inspection processes were repeated by another group of
inspectors. This approach is used to prevent any bias
that could result because of knowledge and
experiences in software inspection among the software
inspectors. Figure 2 shows the evaluation process of
the proposed software inspection model.

Figure 2. Research roadmap.

4. Internal and External Validity

In any academic research, it is crucial to control the
intervening variables in the results to make better
interpretations [3]. Thus, the conditions must be
prepared to ensure that different factors cannot threaten
the internal and external validity. In this way, the
researcher will be able to prevent or minimize adverse
impact caused by any unexpected factors. The most
significant factor in internal validity is compatibility
and sustainability tools to measure the metrics. Using
ArSeC, a common database is provided and this
eliminates the need for this intervening variable. Also,
having trained inspectors to conduct the case studies
will ensure the internal validity of the study. Common
artifacts whish are inspected by formal and proposed
model support internal validity from another aspect.
Finally, the case studies conducted the a same period
time and the same conditions, so the time factor which
might impact on the results.

The findings of the research can be generalized, if
more case studies and more software projects are
considered. This invariably involves more different
more settings and to a larger number of variables,
thereby, the research will have higher external validity.
The Implementation of the proposed model in the
different projects satisfies the external validity of the
research. The external validity of the study can be
further enhanced by choosing different artifacts in each
project.

5. Pioneer Inspection Model
The proposed software inspection model performs
defects removal as an important task of inspection. It
also exploits the capabilities of a collaborative system
ArSeC. There is continuous process improvement due
to the creation of swap iteration in the inspection
model kernel. Making and modifying some rules
related to defects, adds intelligence and learning
capabilities to the model. In order to validate the
model, it is implemented in a real software inspection
project. The model consists of four important phases
preparation; defect plan design; generative inspection
procedures; and inspection process evaluation as
shown in Figure 3.

Figure 3. Pioneer inspection model.

To execute this conceptual model, inspectors,
developers and users have to communicate during the
process using a proper tool. Also, those involved in the
inspection process should have good technical
knowledge and expertise on tools, methods, and
inspection of artifacts. In order to assess the effects of
defects property, the model suggests designing and
using a comprehensive database. The phases of the
aforementioned model are explained as below.

5.1. Preparation

The initial stage of the inspection process involves
preparation of the environment, and appointing the
inspectors. In this phase, the inspectors are selected
based on the required skills, and the specifications of
the inspected artifacts. The inspection team and the
team organization structure are then arranged in a
centralized, decentralized or distributed structure. The
responsibilities, roles, and duties of each member of
the team are also identified. Following this, the
specifications and, in some cases, the artifacts are
distributed among team members or to the inspection
team. Finally, quick flash test is conducted to ensure
that the inspectors are conversant with the situations,
and knowledgeable to respond accordingly.

5.2. Designing Defect Plan

Proper resource allocation, scheduling and goals
determination are crucial to the success of an

A New Model for Software Inspection at the Requirements Analysis and Design Phases of Software Development 647

inspection process [7]. In this phase, the first step is to
define the profile and access right of the inspectors.
The next steps Include defining an appropriate
schedule, and a complete charter that is includes
provisions for: Collaboration method, resolving
possible disagreements, determining milestones and,
collaboration protocols.

5.3. Generative Inspection Procedures

This phase involves repeating of the two
complementary sets:

5.3.1. Detect Diagnosis

The first set contains the required actions to identify
and recognize the defects. The main functions of
Detect Diagnosis (DD) are performing inspection
procedures; defect detection; explaining the details of
each defect; sketching the cause and effect diagrams
and updating the defects databases.

5.3.2. Defect Removal

DR is the second routine set, and it is considered the
most specific attribute of the proposed model and
makes the model intelligent and generative, and it also
satisfies the main goal of the inspection process, which
is defect removal. The other supplementary functions
of this phase are: Removing defects from artifacts and
preparing a new version; updating related documents;
defect plan; and creating defect report.

5.4. DD and DR Swapping

As mentioned above, the two sets that constitute
intelligent inspection must be run iteratively and
periodically. The iterative execution feature makes it
possible to remove newly-arisen defects, while
detecting other defects. The key factor is to recognize
when the cycle should be broken, and when to enter
into the last phase. However, this should be considered
in the defect plan as certificate instruction and
termination criteria.

5.5. Defect Database

The actions of the two sets, DD and DR, are carried
out by using a database that contains the related rules
and facts of defects. The potential defects and their
causes are stored in this database, and when a defect is
detected, the inspectors establish, reform or modify the
rules. The use an inference engine may help the
inspectors in their tasks. This inference engine could
alert the inspectors about the possible defects and
shows the possible causes (if any defect is found).

5.6. Inspection Process Evaluation

As there is a specific plan for each inspection, the
evaluation process should be done according to the
plan. Thus, the first step of the last phase is to

customize the evaluation metrics. The second step is to
finalize the evaluation formulas according to pre-
defined criteria. The next step is to put data into the
related formula and to analyse them. The results of
these evaluations can be useful for future inspection
plan designing and for improving the methods used in
evaluation. It adds the learning feature to the system,
which is the special attribute of an intelligent model.

5.7. Involved Professionals in Inspection Model

Users, software developers, independent and internal
inspectors are the people involved in the inspection
process. The use of web-based distributed tools and
collaboration framework not only facilitates the
inspection process, but also prevents gaps and overlaps
in the task carried out. Another advantage of using this
kind of environments is that it involves the inspection
process employers from different time zones, different
geographic locations. Finally, it can be said that the
integrated environments supported by a relational or
networking database are more suitable for conducting
the experiments of the projects, when compared to
some traditional document-based approaches.

6. Comparison the Proposed Model With
the Current Similar Models

The features and characteristics of the current software
inspection model are compared with the capabilities of
the proposed model as shown in Table 1. None of
previous model has a systematic policy, mechanism, or
procedure to provide learning for the model. Putting
the finding the defects with corresponded cause and
effect schema, provide learning to the system that after
each execution empowers the inspectors through
providing more classes, instances and cause-effect
relations.

Table 1. Comparison of the proposed model features with the
current models.

Inspection Method Team Size Multiple Sessions Meeting Detection Method Learning
Proposed Model Small ✓ ✓ Dynamic Checklist ✓
Two-Person Small X ✓ Ad-hoc X
Ftarm Large X Opt. Ad-hoc / Checklist X
Phased Small ✓ ✓ Ad-hoc X
Gilb Large X ✓ Checklist X
Verification Based
Inspection

Small ✓ ✓ Reading X

Structured
Walkthroughs

Large X ✓ Ad-hoc X

Fagan Large X ✓ Ad-hoc X

N-Fold Small ✓ ✓ Ad-hoc X
Meeting-Less Large X X Variety X
Simplified Software
Ins. Process

Small X ✓ Checklist X

7. ArSeC an Automated Inspection Tool for
DD

ArSec is an automated software inspection system was
developed to detect potential defects in the early
phases of software development, as well as to facilitate
the process of recording the defects. It has a database
to store defects frequently detected in the requirements

648 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

analysis phase and design phase. The database also,
stores information on the potential causes of each
defect, thus preventing such defects from occurring.
Figure 4 shows a snapshot of the ArSeC tool in
accelerating and supporting the inspection process of
software. In addition to, defining the phases of each
project, this tool provides facility for classifying the
defects. The tool can also generate various checklists
that are related to inspection of each artifact.

Figure 4. Web-based software inspection tool ArSeC.

Some capabilities of the ArSeC is presented in
Table 2. The capabilities and services of the ArSeC
compared with the characteristics and capabilities of
the other inspection tools [11]. Although, “sending
emails” is supported by most of current inspection
tools, only compass and EMS, plus ARSeC provides
scheduling as an important feature for managing the
inspection sessions. The most important point here is
that except ArSeC that is designed to work under web,
only two inspection tools are web-based and other at
last work on a network. Authorization and
authentication is another unique feature of ArSeC. The
inspection in ArSeC is assumed as a formal process.
Therefore, every user despite of his role have to be
defined by an authorized person and investigated for
validation through an authentication process includes
passcodes (changes regularly), security questions and
IP checking. Automated analysis is another important
service that is available in ArSeC and before is
presented by CSI and ICICLE inspection tools before
in a limited form. ArSeC analyses the corresponded
inspection data and draw a chain of cause and effect
relations in form of a graph. Although, voting facilities
are provided by most of current inspection tools, for
the first time weighted voting is supported by ArSeC.
In a fuzzy logic schema, each get a rank based on his
experiences s well as skillfulness. So weighted voting
could be assumed as a supporting for such a schema.
Finally, only EMS inspection supports an inspection
process among current inspection tools, while ArSeC,
developed to support the Pioneer inspection process
and deliver the necessity requirements of that.

Table 2. Comparison of ArSeC capabilities over current inspection
tools.

Capabilities

Inspection Tool

A
rs

ec

C
om

pa
ss

W
IP

E
M

S

IC
IC

L
E

In
sp

eq

C
SI

Sc
ru

ti
ny

In
sp

ec
ta

H
yp

er
co

de

Scheduling Support ✓ ✓ X ✓ X X X X X X

Web-Based ✓ X ✓ X X X X X X ✓
Distributed Meeting ✓ X X ✓ X X ✓ ✓ X X

Defect Classification ✓ X ✓ ✓ ✓ X ✓ ✓ X X

Checklists ✓ X ✓ X X ✓ X X ✓ X

Data Collection ✓ ✓ X X ✓ X ✓ ✓ X X

Automated Analysis ✓ X X X ✓ X ✓ X X X

Weighted Voting ✓ X X X X X X X X X

Process Support ✓ X X ✓ X X X X X X

Synchronous Facility ✓ X X X ✓ X ✓ ✓ X X
Authorization and
Authentication ✓ X X X X X X X X X

8. Case Studies
Artifacts in the requirements analysis phase and design
phase of six software projects of two different
companies were inspected using ArSeC tool. Two
groups of inspectors with similar expertise and
experience conducted the inspections.

Researchers recommended a competence evaluation
test to validate the experiments [14]. Therefore, a
competence evaluation test was conducted to confirm
the sameness of the two groups in terms of their
individual capabilities, experiences or artifact type do
not affect the findings of the inspection. Following
tasks ensures the competence evaluation test:

 Criteria 1: Some artifacts of each project were
formally inspected by group A and some by group
B.

 Criteria 2: Some artifacts of each project were
inspected, using the ArSeC, by group A and some
by group B.

 Criteria 3: Chairmen of groups A and B were
continually swapped.

8.1. Data Collection

Table 3 shows the data collected from the two
conducted case studies. This data was collected from
inspecting 84 artifacts in two software projects. The
selected artifacts were the requirement forms including
information required for system analysis obtained
using fact-finding techniques such as interviews,
observation, questionnaires and review recordings. The
Design phase artifacts were the UML diagrams. The
most important defects found by the inspectors in the
requirement analysis phase and the design phases
relate to the system specifications.

Forty eight artifacts were inspected formally by
group A and 48 artifacts were inspected by the same
group using ArSeC tool. Group B also inspected 48
artifacts using the formal inspection method, and 48
using the ArSeC tool. Of the 96 artifacts inspected, 16
are related to each project from A to F. Projects A, B,
and C are conducted in company A and projects D, E
and F are done in company B.

A New Model for Software Inspection at the Requirements Analysis and Design Phases of Software Development 649

Table 3. Data collected from two conducted case studies.

Inspected Artifact
Case Study I

No. of Defects Found by New Tool
(Team A)

No. of Defects Found by Formal
Method (Team B)

Effective
Percentage

Inspected
Artifact

No. of Defects Found by
New Tool(Team A)

No. of Defects Found by
Formal Method (Team B)

Effective
Percentage

Artifact No. 1 10 7 42% Artifact No. 7 7 6 16%

Artifact No. 2 3 2 50% Artifact No. 8 4 5 -20%

Artifact No. 3 4 4 0% Artifact No. 9 2 2 0%

Artifact No. 4 9 5 80% Artifact No. 10 6 3 100%

Artifact No. 5 6 4 50% Artifact No. 11 5 3 66%

Artifact No. 6 11 7 57% Artifact No. 12 7 5 40%

Total 43 29 48% Total 31 24 29%

Inspected Artifact
Case Study II

No. of Defects Found by New Tool
(Team A)

No. of Defects Found by Formal
Method (Team B)

Effective
Percentage

Inspected
Artifact

No. of Defects Found by
New Tool (Team A)

No. of Defects Found by
Formal Method (Team B)

Effective
Percentage

Artifact No. 1 14 11 27% Artifact No. 19 3 3 0%

Artifact No. 2 5 4 25% Artifact No. 20 6 5 20%

Artifact No. 3 3 4 =25% Artifact No. 21 10 7 43%

Artifact No. 4 4 3 25% Artifact No. 22 2 2 0%

Artifact No. 5 8 6 33% Artifact No. 23 4 3 33%

Artifact No. 6 13 11 18% Artifact No. 24 9 7 28%

Total 47 39 20% Total 34 27 26%

8.2. Discussion and Results

As it shown in Table 4, the number of defects detected
by group A using the formal inspection method is less
than 60% of the artifacts detected by group B using the
proposed tool, ArSeC. The number of defects detected
by group B using the formal method is less than 52%
of the artifacts detected by group A using the proposed
ArSeC tool. Therefore, the first finding can be
attributed to the similar level of capabilities of the two
groups of inspectors.

Table 4. Comparison of the proposed model efficiency with the
formal model.

Case
Study

Detected
Defects Found

by
Formal Method

Inspection
Efforts*

Efficiency
Rate**

Defects
Found by
New tool

Inspection
Efforts*

Efficiency
Rate**

Efficiency
Improveme

nt

A 53 1855 35 74 1702 23 35%

B 66 2046 31 81 1539 19 47%

* Person per Minute ** Minutes per Defect

The results show that by using ArSeC tool, the
inspectors were able to detect the defects faster. The
defect detection is 35 minutes for each defect for group
A using formal inspection, but 23 minutes for each
defect for the same group using the ArSeC tool. These
Figures show a 37% improvement in the defect
detection rate when ArSeC is used for inspection.

Defect detection rate is 31 minutes for each defect
for group B using formal inspection. This shows 19
minutes saving for finding each defect, which means a
40% improvement. It is clear that group B is less
efficient in detecting defects. However, considering the
overall performance of both groups and using both
methods, this difference in the detection rate is not
significant and thus, has no impact on the research
findings as shown in Figure 5.

Total Detected Defect

Proposed Model Forma Model

Case Study 1 Case Study 2

Figure 5. Efficiency comparison of formal inspection and the
proposed inspection model.

9. Conclusions

Defects those are not detected in the requirements
analysis phase and the design phase of software
development, will impact on the quality of the software
system and even lead to software failure [5]. This
research proposed a software inspection model with
the aim of improving the inspection process. This
inspection model was established based on the good
features found in other software inspection models.
The key focus of this proposed model is on inspecting
artifacts in the requirements analysis phase and the
design phase of software development.

The proposed model was evaluated by conducting
case studies conducted in a software company and an
industrial company. The data to be used in the
evaluation process was collected from six projects
[10]. The evaluation was based on number of defects
detected in each artifact; defect density; inspection
time; defect finding efficiency; and inspection rate.

One of the objectives of this research is to give
technical and professional support to software
inspectors by providing a comprehensive web-based
tool. Potential DD in previous projects can assist
inspectors in inspecting artifacts. Recording the
information from any inspection minimizes human
errors and avoids repetition. A tool, ArSeC, was

650 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

developed to support the model and to facilitate the
inspection process. The findings of the case studies
show that ArSeC helps to make the software inspection
process more efficient. The defects database is a very
useful feature of ArSeC. As more defects detected in
every project, is added to the database, it becomes
more comprehensive, and the efficiency of software
inspection process will improve from one project to the
next.

Acknowledgment

This research was funded by the University of Malaya
under the Postgraduate Research Grant (PPP), Account
Number: PS027-2012A.

References

[1] Agrawal M. and Chari K., “Software Effort,
Quality, and Cycle Time: A Study of CMM
Level 5 Projects,” IEEE Transactions on
Software Engineering, vol. 33, no. 3, pp. 145-
156, 2007.

[2] Armour P., “The Unconscious Art of Software
Testing,” Communications of the ACM, vol. 48,
no. 1, pp. 15-18, 2005.

[3] Creswell J., Educational Research Planning,
Conducting, and Evaluating Quantitative and
Qualitative Research,. Upper Saddle River, New
Jersey: Pearson Prentice Hall, 2008.

[4] Dumsmore M., Roper M., and Wood M., “The
Development and Evaluation of Three Diverse
Techniques for Object-Oriented Code
Inspection,” IEEE Transaction on Software
Engineering, vol. 29, no. 8, pp. 677-686 , 2003.

[5] Elgammal A., Turetken O., van den Heuvel W. -
J., and Papazoglou M., “Formalizing and Appling
Compliance Patterns for Business Process
Compliance,” Software and Systems Modelling,
vol 15, no. 1, pp. 119-146, 2014.

[6] Fagan M., “Design and Code Inspections to
Reduce Errors in Program Development,” IBM
System Journal, vol. 15, no. 3, pp. 182-211,
1976.

[7] Nagpal G., Uddin M., and Kaur A., “Grey
Relational Effort Analysis Technique using
Regression Methods for Software Estimation,”
The International Arab Journal of Information
Technology, vol 11. no. 5, pp. 437-445, 2014.

[8] Taba N. and Ow S., “Improving Software Quality
Using a Defect Management-Oriented (DEMAO)
Software Inspection Model,” in proceedings of
the 6th Asia Modelling Symposium, Bali, pp. 46-
49, 2012.

[9] Houdek F. Schwinn T., Ernst D., “Defect
Detection for Executable Specifications-An
Experiment,” International Journal of Software

Engineering and Knowledge Engineering, vol. 12
no. 6, pp. 637, 2002.

[10] Hwang S., “Essential Contents for Software
Development Process and Software Quality
Education,” International Journal of Engineering
Systems Modelling and Simulation, vol. 6, no. 1-
2, pp. 44-53, 2014.

[11] Johnson C., “Forensic Software Engineering: Are
Software Failures Symptomatic of Software
Problems?,” Safety Science, vol. 40, no. 9, pp.
835-847, 2002.

[12] Jorgensen M. and Shepperd M., “A Systematic
Review of Software Development Cost
Estimation Studies,” IEEE Transactions on
Software Engineering, vol. 33, no. 1, pp. 33-53,
2007.

[13] Leite J., Doorn J., Hadad G., and Kaplan G.,
“Scenario Inspections,” Requirements
Engineering, vol. 10, no.1, pp.1-21, 2005.

[14] Mishra D. and Mishra A., “Simplified Software
Inspection Process in Compliance with
International Standards,” Computer Standards
and Interfaces, vol. 31, no. 4, pp. 763-771, 2009.

[15] Pressman R. and Maxim B Software
Engineering: A Practitioner's Approach,
McGraw-Hill, 2014.

[16] Ramler R., Wolfmaier K., Stauder E., Kossak F.,
and Natschläger, T.,” Product-Focused Software
Process Improvement, pp. 14-27, 2009.

[17] Suma V., Nair T., and Gopalakrishnan R.,
“Effective Defect Prevention Approach in
Software Process for Achieving Better Quality
Levels,” in Proceedings of World Academy of
Science: Engineering and Technology, pp. 288-
292, 2008.

[18] Tyran K., “A Software Inspection Exercise for
the Systems Analysis and Design Course,”
Journal of Information Systems Education, vol.

17, no. 3, pp. 341-351, 2006.

Navid Taba is PhD candidate at
University of Malaya in Software
Engineering field, since 2009. He
earned his first Doctorate from
Phonies University in field of
Leadership specialization in

Information System and Technology. His areas of
interest are software inspection, system analysis,
project management, expert system and fuzzy logic.

A New Model for Software Inspection at the Requirements Analysis and Design Phases of Software Development 651

Siew Ow obtained her PhD degree
from the University of Malaya in
2000. She joined the university in
1992. Currently, she is an Associate
Professor of the Department of
Software Engineering, Faculty of
Computer Science and Information

Technology. Her research interests include software
testing, software metrics, project management, E-
learning, computer game development, and health
informatics. She has published more than 80 papers in
scholarly journals and conference proceedings, locally
and at international level.

