
652 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

The Refinement Check of Added Dynamic
Diagrams Based on -Calculus

Zhou Xiang1,2 and Shao Zhiqing2

1College of Computer Science and Technology, Qingdao University, China
2School of Information Science and Engineering, East China University

of Science and Technology, China

Abstract: As the semi-formal modeling tool, UML has semantics defaults which may cause confusions or even mistakes in
refinement of models. -calculus is a formal specification based on process algebra, which can give strict semantics
description for system behaviors. We seek to clearly define the semantics of refinement to a model through - calculus and thus
we are able to propose a formal verification method of the refinement. Employing this method, we can improve the efficiency of
the consistency verification while decreasing the mistakes in the refinement process.

Keywords: -calculus; UML; sequence diagram; state chart diagram; weak open bisimulation.

Received January 21, 2014; accepted December 22, 2014; Published online December 23, 2015

1. Introduction

UML is by far the most popular diagram-based
modeling tool. UML uses static diagram to describe the
static characters of a system and uses dynamic diagram
to describe the behaviors of the system [15]. Thus,
mainly employing diagrams, UML is straightforward
and easily apprehensible. However, UML is a semi-
formal modeling tool, which can cause inaccuracy in
semantics. Right now most software development
involves the collaboration from multiple developers.
However, developers may not share the same
perspective on the system and thus, discrepancies may
occur in the modeling. Such discrepancies mostly
occur in the dynamic diagrams that describe the
system’s behaviors. Thus, it is vital to provide a precise
formal semantics description for the dynamic diagrams
in order to assure the consistency in developing,
assembling and refining the system.

For large-scale systems, developers often need to
modularize the development tasks, that is, developers
will first establish the basic model and then focus on
the specific details according to the demand and refine
the model level by level [5]. Because it involves
relatively less information regarding objects, states,
messages, transitions at very early stage, the
establishment of the basic model is relatively easier
and it is also easier to verify the consistency in
semantics. However, in the later stages, descriptions
will be added to the model or revised in every stage
and the diagram will become more and more complex,
which makes it increasingly difficult to verify the
semantics. The traditional method of semantics
verification is to submit all diagrams for verification,
even for minor revisions. Thus, the traditional method
involves much redundant work and severely decreases

the efficiency and accuracy of software development
and revisions.

In software and system development process, the
most important task is to detect errors at early stages of
their life-cycles. There are many works for the
correctness of software development: In the literature
[3, 17] implemented UML models with OCL, which is
too complex and reducing the model readability;
Model-driven can transform models flexibility but the
specification isn’t critical [10]. Formal semantics can
provide reliability for models. Literature [2] focused on
the interaction semantics; literature [1, 18] defined the
semantics for executable models, but lacks the refined
verification. In the literature [6, 16], refining the
behavior of state chart and activity diagram but the
consistency between different diagrams was ignored.

Milner [13] proposed -calculus. -calculus is a
process algebra method that is based on Calculus of
Communicating Systems (CCS). However, different
from CCS, -calculus allows pass names on channel.
Through the name-passing, -calculus enables the
process that receives channel names to use these names
to communicate with other processes. -calculus grants
the system the capability of dynamically creating and
destroying channels and allows the “mobility” to be
expressed in a implicit manner. -calculus is a formal
specification, which can specifically define all types of
activities. -calculus can transform the behavior
equivalence of a system to the weak open bisimulation
between processes to verify this equivalence.
Therefore, we propose that employing -calculus and
take advantage of the weak open bisimulation, we can
verify the additions to a model to assure the
consistency in the dynamic diagrams in the refinement
process and give the proof of relevant semantics.

The Refinement Check of Added Dynamic Diagrams Based on -Calculus 653

Previous literature [4] has given the formal
verification approach of UML that is based on design
calculus. However, compared with -calculus, design
calculus does not have the automatic verification tool.
Literature [14] has detected errors in UML sequence
diagrams using Labeled Transition System Analyzer
(LTSA), it focuses on the integration of multiple
sequence diagrams. Previous literature [11] has defined
a variety of bisimulations and given the appropriate
contexts for employing these bisimulations. However,
the literature does not provide the specific application
method for current dynamic diagrams.

Lam and Padget [7, 8, 9] gave the -calculus
semantics definitions of most sequence diagrams and
State chart Diagrams. They also adopted MWB [19]
for the automatic verification of the semantics in
dynamic diagrams. Based on their works, the literature
[21] added operation semantics of each operator to
dynamic diagrams. Based on the above works, we
propose a method to verify the consistency among the
refinement parts in a model as well as the consistency
of the integration of the refinement parts and the
original diagrams.

The paper is structured as follows: Section 2
reviews related works. Section 3 introduces the basic
semantics and syntax of -calculus. Section 4 gives the
rules and definitions of -calculus, as well as the
translation from the sequential diagram and the state
chart diagram into processes and channels. Section 5
introduces the check of the added dynamic diagrams;
the definition of the largest weak open bisimulation set
and related the substitution rule and proof. The last
section is conclusions and suggested future research.

2. -Calculus

2.1. Syntax of

-calculus is a formal method that is based on process
algebra. Thus, it is very suitable to describing the
concurrent system. There are two essential elements in
-calculus: Processes (ranged over by P, Q, R) and
names or channels (ranged over by x, y, z, w, v, u). The
syntax and semantics of -calculus is given as follows:

1. ().x y P

: Input prefix, which receives channels along
channel x and continues as process P with y1, y2,
…, yn replaced by the received channels. The input
prefix x().P is abbreviated as x.p.

2. .x y P

: Output prefix, which sends channels along

channel x and continues as process P. The output
prefix .x P is abbreviated as .x P.

3. ().v x P

: Restriction, which creates new channels x1,
…, xn for communications in processes P.

4. P|Q: Concurrent processes P and Q which execute
in parallel.

5. P+Q: Non-deterministic choice, represents

proceeding process P or Q. 1
1

n

i n
i

P P P

 Represents

proceeding one of the n processes.
6. [x=y]P: Matching construct, which proceeds as

process P if the matching condition is true,
otherwise continues as null process.

7. .P : Internal prefix, which execute internal action τ
then proceeds process P.

8. 1, ,
def

nA x x P : Process identifier A, which behaves

like process P.

In the three prefix representations, the channels y

in
input prefix ().x y P

and x

in restriction operator

().v x P

are bound names; the channels y

in output
prefix .x y P

are free. The bound names and free

names of P are defined as bn(P) and fn(P). According
to logic, all the free names in the same -calculus are
regarded as the same variable. Thus, the scope of free
names is the whole formula, i.e., fn(P, Q)=
fn(P)fn(Q).

2.2. Actions of

Precisely as in CCS, a transition in the -calculus is of
the form a

P Q .
Intuitively, this transition means that P can evolve

into Q and in doing so perform the action α. In our
calculus there will be four kinds of action α as follows:

1. The silent action. As in CCS, tP Q means that P

can evolve into Q and doing so requires no
interaction with the environment. Silent actions can
naturally arise from agents of form .P, but also
from communications within an agent.

2. A free output action y. The transition xy
P Q

implies that P can emit the free name y on the port
x . Free output actions arise from the output prefix
form xy.P .

3. An input action x(y). Intuitively, x(y)P Q means
that P can receive any name w on the port x and then

evolve into wQ y . Note that, this departs slightly

from CCS, where an input action contains the actual
received value. Here, y instead represents a
reference to the place where the received name will
go; y is enclosed in brackets in order to stress this
fact. Input actions arise from the input prefix form
x(y).p.

4. A bound output action ()x y . This kind of action has
no counterpart in CCS. Intuitively,

x(y)
P Q means that P emits a private name on
the port x and y is a reference to where this private
name occurs. As in the input action above, y is
enclosed in brackets to emphasize that it is a
reference and does not represent a free name. Bound
output actions arise from free output actions which
carry names out of their scope, as e.g., in the agent

654 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

() .y xy P .
There are two reasons to choose -calculus as the
execution semantics definition language. Firstly,
transitions can be easily described as the internal
structure of the process evolution; secondly, the
bisimulation in the -calculus can be used as a tool to
verify the dynamic behavior equivalence.

3. Translation of State Chart Diagrams and
Sequence Diagrams Into the -Calculus

UML uses activity diagrams to describe the execution
and parallel order of the logic workflow in the system,
use cases, and program models. Therefore, UML
models the actual work process of human world, which
helps to understand the high level of the execution
behavior of a system. The sequence diagram is a type
of the interaction diagram and interaction diagrams are
models that describe how groups of objects collaborate
in some behavior. The sequence diagram thus
emphasizes the sequence of time and messages and it
describes the dynamic aspect of a system. The state
chart diagram describes the states of objects as well as
the events and conditions of these states to transit
among each other. The state chart diagram reveals the
life cycle of objects. The activity diagram can be
viewed as a special case of the state chart diagram.
This section will briefly introduce how to use -
calculus to describe the sequence diagram and the state
chart diagram.

From the execution perspective, the semantics of the
state chart diagram includes event queues, transition
conflicts, priority schemes and so forth. These
semantics can be categorized into two important
entities: State and transition. In UML 2.0, a state is
denoted by a rounded rectangle; a state includes the
basic state and the composite state. Depending on
whether concurrence is supported, composite state can
be further classified into: Non-concurrent composite
state, that is, only one of its substates is active at any
point of execution, and concurrent composite state,
which has a number of orthogonal areas and substates
in different orthogonal regions, can be active at the
same time. A transition is denoted as an arrow labeled
with events, guard-conditions, or actions. Assume
defining ST as a set of states ranged over S, T, V, W,
as a set of events, as a set of transitions, GCond as a
set of guard conditions in the state diagram; Ain and
Aout describe the set of input and output activities,
respectively. Then, we can use processes and channels
of -calculus to describe all the above elements of a
state diagram. The translation is defined as follows:

 Φ: The function set map each element of dynamic
diagram to the -calculus.

 Rule 1: :event N maps each event in a state
chart diagram to a channel in the -calculus.

 Rule 2: :state ST A maps each state in a state
chart diagram to a process in the -calculus and
returns a unique process identifier. For the
process identifier ()A event , e ,

, e

stands for the
events sequence 1 ne e , event x gives the
definition of action taken for different events.
Meanwhile, in order to ensure the consistency of
execution semantics, ()evente ran

 , that is the
range of event function.

 Rule 3: :guard outGCond A , Maps each guard
condition to an output action. The guard
condition is a Boolean, so only true and false are
two options on the output action, that is,

 .g x x true x false

 Rule 4: : 2 2ST A
ST translates a state chart

diagram into a set of process identifiers, which
are all the processes evolved from the one
corresponding to the initial state.

Another important dynamic diagram of UML,
sequence diagram is composed of two basic
elements: Object and message. We use rectangle to
represent objects. Objects that take part in the
interaction will be arranged horizontally at the top
of a sequence diagram. The dotted line below each
object represents the life cycle of the object. In
UML2.0, we added some operators, such as refer,
option, parallel, etc., suppose we use OBJ to
represent objects in a sequence diagram and MES
for messages; similarly, we can use the process and
the channel of to describe these elements of a
sequence diagram.

 Rule 5: :mes MES N maps each message to a
channel.

 Rule 6: : 2A
obj OBJ translates each object of a

sequence diagram into a set of process identifiers
of -calculus, where are derived from the initial
process of the object.

As a result, employing -calculus, we can convert two
independent dynamic diagrams in UML to similar
semantics formulas by the rules as listed above.
Furthermore, we can prove the consistency in
semantics of the sequence diagram and the state chart
diagram to make up for the lack of semantics caused
by the semi-formality.

4. Consistency Check of the Refinement by
-Calculus

It is well known that it is virtually impossible to satisfy
all demands at the beginning of designing a model.
Most of the time, the process of designing a model
starts with a preliminary framework. Based on this
framework, developers will add new details to the
model or revise existing parts of the model, which is

The Refinement Check of Added Dynamic Diagrams Based on -Calculus 655

called the refinement of the model. Based on the -
calculus formulas provided in section 3, we will apply
the weak bisimulation equivalence to the consistency
verification of the model, which gives the method to
verify the consistency of the dynamic diagrams in
refinement.

4.1. Telephone Dialing System

Figure 1 shows the initial sequence diagram of a
telephone dialing system, which simply describes two
objects: Caller and phone, with three messages
between them.

Figure 1. Initial sequence diagram.

Based on the semantics given in section 2 and
section 3, we can give the -calculus of phone in
Figure 1. Firstly, according to the rule 6, the object can
be translated into a set of process S={S1, S2, S3, S4, St}
in which S1 is the initial process and St is the final
process. Assume the message sequence is translated
into the channels with same names
 , ,m lift dial tone hang up

 by rule 5, then:

1

2 1

2

3

3

3

p c

p c p c

p c c

p c

p c

t p c

p c

S mes ,m ,mes mes x .(x lift .p

S mes ,m ,mes x lift .S mes ,m ,mes

S mes ,m ,mes mes dial tone .

S mes ,m ,mes

S mes ,m ,mes mes x . x hang up .p

S mes ,m ,mes x hang up .

S mes ,m ,mes

Figure 1 corresponds to the state chart diagram as
shown in Figure 2.

Figure 2. Initial state chart diagram of phone.

Map each state of Figure 2 into the process with
same name by Rule 2 and map the event sequence
 , ,e lift dial tone hang up

 into the channels with same

names; then the -calculus of Figure 2 is:

1

2 1

2

3

3

(

)

p c p

p c p c

p c c

p c

p c p

t p c

T ev en t ,e ,ev en t ev en t x . x lif t .

T ev en t ,e ,ev en t x lif t .T ev en t ,e ,ev en t

T ev en t ,e ,ev en t ev en t x . d ial to n e .

T ev en t ,e ,ev en t

T ev en t ,e ,ev en t ev en t x .

x h an g u p .T ev en t ,e ,ev en t

x h an g u p

 3 p c.T ev en t ,e ,ev en t

Obviously, employing either the observation method or
the -calculus formula, we can easily verify the
consistency of the model. However, this model lacks
enough details; it only describes the case of normal
dial-up. In the following, we will refine this model by
adding the timeout analysis during the period of
dialing. The refined sequence diagram is shown in
Figure 3. Because of the possibility of timeout, we
append an alt-operator into Figure 1. Then, the
semantics of phone is:

Figure 3. Refined sequence diagram.

1

2

1

2

3

3

4

(

)

(

p c p c

p c

p c

p c c

p c

p c p

c p c

S mes ,m ,mes mes x x lift .mes

dial tone .S mes ,m ,mes

x lift .S mes ,m ,mes

S mes ,m ,mes mes dial tone .

S mes ,m ,mes

S mes ,m ,mes mes x timeout T .

mes cancel .S mes ,m ,mes timeout F

.

4

3

4

(

)

(

)

p p c

p c

p c p

t p c

t p c

mes x . x number .S mes ,m ,mes

x number .S mes ,m ,mes

S mes ,m ,mes mes x . x hang up .

S mes ,m ,mes x hang up .

S mes ,m ,mes

(3)

The process set of phone and the channels of message
are changed into {S1, S2, S3, S4, St} and
 , , , ,m lift dial tone number cancel hang up

 respectively.

The state chart diagram focuses on describing the
behavior of a single object, while the sequence

(1)

(2)

656 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

diagram describes the message passing among
different objects. Therefore, the state chart diagram can
be viewed as the refinement or the detailed description
of the sequence diagram. A model can function
normally only when the semantics of these two
diagrams are consistent, According to the messages
added in Figures 3 and 4 indicates the refinement of
Figure 2.

Figure 4. Refined State chart diagram of phone.

The added state and transition of the refined state
chart diagram corresponds to the added messages in
the sequence diagram. Thus, the semantics can be
revised as:

1

2 1

2

3

3

4

, , .(.

, , . , ,)

, , . .

, ,

, , . . .

,

p c p

p c p c

p c c

p c

p c c

p

T event e mes event x x lift

T event e event x lift T event e event

T event e event event x dial tone

T event e event

T event e event timeout T event x cancel

T event e

4

3

4

4

, .

. , ,

. , ,

, , .

. , ,

. , ,

c p

p c

p c

p c p

t p c

p c

event timeout F event x

x number T event e event

x number T event e event

T mes e mes event x

x hang up T event e event

x hang up T event e event

In the above formulas, channels are changed to
 , , , ,e lift dial tone number cancel hang up

 mean while, a

process is added to corresponds to the state T4.
By comparing the -calculus in the refinement

models of Figures 3 and 4, we can tell that the revision
of these two models is roughly the same. Thus, how to
determine whether Figures 3 and 4 are consistent based
on the verification of whether the two semantics
equivalent?. Lam proposed to submit the complete
specification of each diagram and re-import MWB for
verification. But with rounds of refinement, the model
will become increasingly complicated. The efficiency
will be greatly reduced and unnecessary mistakes will
be likely increased if each time we need to verify the
semantics that corresponds to the whole model. Thus,
we propose a substitution rule to combine the logic
verification with MWB. We can only verify the added
or the revised parts in a refinement model after
verifying the -formula of the initial model by MWB.

Our method can be applied to the modularity
development and the integration of the modularities,
which greatly simplifies the verification process and
improves the efficiency.

4.2. Weak Open Bisimulation

First, we introduce the operational semantics of
processes and actions in -calculus:

 P P : The execution of action α and process P

becomes P .
 P P : Process P becomes P after zero or more

internal actions.

 P P

 : 'P P is equivalent to 'P P .

ˆ

: P P ifP P
P P if

When triggered by a series of events, two states will
generate the same behavior sequence. Similarly, when
triggered by the same message, two objects will
produce the same behavior sequence. Under this
circumstance, we can say that these states or objects
are bisimulation or observation equivalence. This
concept is useful in studying the behaviors of complex
systems. Milner [12] proposed bisimulation relation
which is often used to describe the mutual imitation
between two systems. Bisimulation can be viewed as
the behavior equivalence of a system. Similar concepts
include homomorphism and isomorphism. However,
homomorphism allows a source structure to be
embedded in a target structure. Thus, the similarity
between the two structures is only one-way, that is, the
target structure can be similar to the source structure,
while it may not be the case the other way around.
Isomorphism requires two algebra systems are the
same or equipotential, which can be too strict. The
bisimulation relation is in between. It allows bi-
directional behavior simulations, while does not
require the strict equipotential assumption. According
to different demands, researchers have proposed a
variety of bisimulation relations, such as: The
difference between the strong and the weak
bisimulation is whether the internal action τ and the
action α (input, output action) are treated equally [20].
In the UML modeling, the inter-process
communication is more important than the internal
action. Regardless what the internal structure of the
two dynamic diagrams is these two diagrams are
equivalent as long as both have the same output for a
series of external actions. Therefore, the weak open
bisimulation is more suitable to verify structural
congruence. The semantics and syntax of the weak
open bisimulation are defined as follows.

The weak open bisimulation is a symmetric binary
relation ～ that is defined in the process set. If ,P Q

holds (()))P Q P P Q(Q Q P Q

 , then P

(4)

The Refinement Check of Added Dynamic Diagrams Based on -Calculus 657

and Q can be viewed as weak open bisimulation or
observation equivalence.

4.3. Equivalence Rules

Equivalence between sequence diagram and state chart
diagram: Assume object O, corresponds to the state
chart diagram F, the message sequence is
 1 km m m

 and the event sequence is 1 ne e e

 ,

O is equivalent to F if their -formula are weak open
bisimulation that is 0 1, ~O event event nS mes m e e F

 ,

abbreviated as () ~ ()O F . 0 ,OS mes m
 is the initial

process of the O’s -formula.
From the observation point of view, equivalence

means that given the stimulation of any message/event,
the sequence diagram and the state chart diagram will
produce the bisimulation behavior. In -semantics, it
can be explained that the processes derived from the
sequence diagram’s initial process through any
message channel is the bisimulation with the processes
derived from the state chart diagram’s initial process
through the event channels that corresponds the above
message channels.

 Substitution Rule: Assume P Q , for any process
A, If , , ,bn A bn P Q fn A fn P Q , then

, | |P A Q A P A Q A .

Proof: ,

P if bn P fn P
P A

A if bn A fn A

Q if bn Q fn Q
Q A

A if bn A fn A

P Q

P Q

P A Q A

The same reason as | |P A Q A .

 The Largest Weak Open Bisimulation Set: An
orderly pair set is constructed by all the bisimulation
equivalent processes of object O and its state chart
diagram in the -formula.

 , | , ,i i i i i iM S T S T S O T F

For example, in Figures 1 and 2, as

1 , , pm es x

p cS m es m m es
 is matched with

1 , , p

p c

event x
T event e event

 ,
2 , , pc

p c

mes xmes x
S mes m mes

 is

matched with
2 , , pc

p c

event xevent x
T event e event

 ,

3 , , p

p c

m es x
S m es m m es

 is matched with

3 , , p

p c

event x
T event e event

 , , ,c
t p c

mes x
S mes m mes

is matched with , ,t p c

event xc T event e event
 , so the

largest weak open bisimulation set of Figures 1 and
2 is:

 1 1 2 2 3 3, , , , , , ,t tM S T S T S T S T

 The Equivalence Rule of Refined Model: Assume
object O SD , the corresponding state chart diagram
is F, 1 1, , , , ,m nO S S F T T and M is the

largest weak open bisimulation set between these
two, after the refinement of SD and F, the modified
pairs in M are

i i j jS ,T S ,T , then ~O F while

 ~ ~i i j jS T S T .

Proof: By the definition of the largest weak open
bisimulation set and the substitution rule.

Based on the above analysis, the following gives the
verification method of the refined model:

 First, build the weak bisimulation equivalence set of
the initial model. Furthermore, ensure there are no
messages/events that share the same name in the
refined model (if there are, rename the bounded
variable). Now, the equivalence set
is 1 1 2 2 3 3, , , , , , ,t tM S T S T S T S T .

 Next, find the equivalence pair in the refined model
whose semantics has been modified. In the
equivalence set of 3F and 4F , only the

semantics of 3 3,S T is modified.

 Finally, we can assure that the bisimulation between
 3F and 4F can be maintained by verifying the

equivalence between the modified pair 3 3,S T .

Using the bottom-up approach, because of t tS T ,
by the substitution rule, we can attain 4 4S T .
According to the substitution rule again, 3 3S T is
obtained, 3 4~F F and the weak open

bisimulation equivalence set is
 1 1 2 2 3 3 4 4, , , , , , , ,t tM S T S T S T S T S T .

5. Conclusions and Future Research

As the two most important dynamic diagrams that
describe behaviors, the sequence diagram and the state
chart diagram have a major impact on model
semantics.

In this paper we discussed a semantics consistency
check of UML specifications. We proposed an
approach for the refined sequence and state diagrams.
Employing -calculus as the semantics specification,
we can verify the refinement of these two diagrams in
a level-by-level manner. The main contribution of our
work is the simplification of formal details from the
designers.

Furthermore, we are currently implementing our
verification between single sequence diagram and
single state chart diagram. This paper is a first step
towards the use of formal verification in the current
software modeling. As a prolongation of this
investigation, it would be interesting to extract this

658 The International Arab Journal of Information Technology, Vol. 13, No. 6, November 2016

added verification for other types of multiple UML
diagrams to serve more complex software systems.

References

[1] Bonfè M., Fantuzzi C., and Secchi C., “Design
Patterns for Model-based Automation Software
Design and Implementation,” Control
Engineering Practice, vol. 21, no. 11, pp. 1608-
1619, 2013.

[2] Bouabana-Tebibel T. and Rubin S., “An
Interleaving Semantics for UML 2 Interactions
using Petri Nets,” Information Sciences, vol. 232,
pp. 276-293, 2013.

[3] Cabot J., Clarisó R., and Riera D., “On the
Verification of UML/OCL Class Diagrams using
Constraint Programming,” Journal of Systems
and Software, vol. 93, pp. 1-23, 2014.

[4] Chen X. and Li X D., “Design Calculus Based
Approach to Modeling Use Case,” Journal of
Software, vol. 19, no. 10, pp. 2539-2549, 2008.

[5] Elammari M. and Issa Z., “Using Model Driven
Architecture to Develop Multi-Agent Systems,”
available at: http://itgate.info/elammari/mda.pdf,
last visited 2013.

[6] Heuer A., Stricker V., Budnik C., Konrad S.,
Lauenroth K., and Pohl K., “Defining Variability
in Activity Diagrams and Petri Nets,” Science of
Computer Programming, vol. 78, no. 12, pp.
2414-2432, 2013.

[7] Lam V. and Padget J., “Analyzing Equivalences
of UML State Chart Diagrams by Structural
Congruence and Open Bisimulations,” in
Proceedings of IEEE Symposium on Human
Centric Computing Languages and
Environments, Auckland, pp. 137-144, 2003.

[8] Lam V. and Padget J., “Consistency Checking of
Statechart Diagrams of a Class Hierarchy,” in
Proceedings of the 19th European Conference on
Object-Oriented Programming, Glasgow, pp.
412-427, 2005.

[9] Lam V. and Padget J., “Consistency Checking of
Sequence Diagrams and Statechart Diagrams
using the π-calculus,” in Proceedings of the 5th

International Conference on Integrated Formal
Methods, Eindhoven, pp. 347-365, 2005.

[10] Lano K. and Kolahdouz-Rahimi S., “Constraint-
based Specification of Model Transformations,”
Journal of Systems and Software, vol. 86, no. 2,
pp. 412-436, 2013.

[11] Li Z., Chen H., and Wang B., “The Symbolic
Transition Graphs and the Early Bisimulation
Algorithm of π-calculus,” Science in China
Series E: Technological Sciences, vol. 29, no. 4,
pp. 361-371, 1999.

[12] Milner R., Communication and Concurrency,
Prentice Hall, 1989.

[13] Milner R., Joachim Parrow J., and David

Walker., “A Calculus of Mobile Process,”
Information and Computation, vol. 100, no. 1,
pp. 1-40, 1992.

[14] Miyazaki H., Yokogawa T., Amasaki S., Asada
K., and Sato Y., “Synthesis and Refinement
Check of Sequence Diagrams,” IEICE
transactions on Information and Systems, vol. 95,
no. 9, pp. 2193-2201, 2012.

[15] OMG, available at: http://www.omg.org, last
visited 2013.

[16] Prehofer C., “Behavioral Refinement and
Compatibility of State chart Extensions,”
Electronic Notes in Theoretical Computer
Science, vol. 295, pp. 65-78, 2013.

[17] Queralt A., Artale A., Calvanese D., Teniente E.,
“OCL-Lite: Finite Reasoning on UML/OCL
Conceptual Schemas,” Data and Knowledge
Engineering, vol. 73, pp. 1-22, 2012.

[18] Rajabi B. and Lee S., “Consistent Integration
between Object Oriented and Coloured Petri Nets
Models,” The International Arab Journal of
Information Technology, vol. 11, no. 4, pp. 406-
415, 2014.

[19] Victor B. and Molier F., “The Mobility
Workbench - A Tool for the π-Calculus,” in
Proceedings of the 6th International Conference
on Computer Aided Verification, Stanford, USA,
pp. 428-440, 1994.

[20] Yao C., “Bisimulation Is Going into the Modal
Logic,” Studies in Philosophy of Science and
Techno logy, vol. 27, no. 3, pp. 36-39, 2010.

[21] Zhao Y., Yang Z., and Xie J., “Π-calculus based
Assembly Mechanism of UML State Diagram
and Validation of Model Refinement,” in

Proceedings of International
Conference on Electronic
Computer Technology, Macau,
pp. 604-609, 2009.

Zhou Xiang received her ME degree
in 2000. Currently, she is a lecturer
in Qingdao University and studying

towards PhD degree of Computer Science at East
China University of Science and Technology. She has
been engaged in research on formal semantics and
software modeling.

Shao Zhiqing received his MS
degree in Pure Mathematics from
Institute of Software Chinese
Academy of Science and PhD degree
in Computer Software from
Shanghai Jiao Tong University.
Currently, he is a professor in East

China University of Science and Technology. His
research interests include software verification and
network service.

