
A Metrics Driven Design Approach for Real Time Environment Application 729

A Metrics Driven Design Approach for Real Time
Environment Application

Mahmood Ahmed and Muhammad Shoaib

Department of Computer Science and Engineering, University of Engineering and Technology Lahore,
Pakistan

Abstract: Design of real time environment application is the most exigent task for the designers comparing to non Real Time
Application (RTA) design. The stringent timing requirement for task completion is the problem to handle at design time. The
design complexity is increased manifolds when object oriented design methods are used and task deadlines are introduced at
design stage. There are many design methodologies available for the real time systems but as far as the researcher is
concerned none addresses all the problems of real time system design specially the issues of deadline inheritance and dynamic
behavior of system if deadlines are introduced at early stages of the design. Most of the methodologies leave the task of
handling the timing constraints for the implementation phase at the programming language level. In this paper we have
proposed a design approach incorporated with our novel design metrics verification for measuring the design of real time
environment applications. The metrics are measured for design of a real time weapon delivery system and it is illustrated that
how design quality can be assessed before implementation.

Keywords: Deadlines, timed state statecharts, design metrics, real time systems.

Received November 26, 2011; accepted June 11, 2012

1. Introduction
A Real Time Application (RTA) is one that takes into
consideration the constraints like: strict timing limit on
response of the system, normally it has event driven
scheduling, low-level programming, software highly
coupled to particular hardware, committed dedicated
function, the computing system might be within a
control loop, variables are normally volatile, multi-
tasking is often implemented, scheduling demand is
run-time, environment is also unpredictable,
continuously running system is requirement, and is
used as life-critical applications [18, 34]. RTA design
is challenge due to the difficulty in incorporating
timing information of various tasks in the design
architecture [3, 7, 13, 14]. Most designers left this
deadline management as an extra task for the developer
to handle, in the implementation phase [10]. There are
problem not addressed in these methodologies e.g.,
adding a deadlines to even simple automata makes it
highly complex [21]. Properties of simple automata
become hard to prove when time constraints are
introduced. Most of the methodologies do not support
inheritance of deadlines [10, 13, 23].

2. Related Work
There are many design methodologies proposed for
real time system design. Some of them are briefly
described. Jackson [13] developed Jackson System
Development (JSD) which is a linear software
development methodology. Main goal was to map
progress of the system to be modeled with the progress
in the real world. Timing is considered only at the 5th

step is JSD method. A Real-Time operating System
(ARTS) developed in the ART project at carnegie
Mellon University targets the real time systems and it
is an object oriented [20]. This methodology is based
on the RTC++ which is real time extension of the C++
[12]. Behavior of the objects in ARTS has no clear
understanding that how it is modeled.

Concurrent Object-Based Real-time Analysis
(COBRA) is a mix of concepts of Object-Oriented
Analysis (OOA), JSD [13, 20, 24] and real time
structured analysis [10]. It uses the notation of state
diagram and real time structured analysis. For
distributed environments COBRA has an advantage
due to its support for decomposition approach. One
drawback of COBRA is that it does not consider
deadlines.
HOOD/PNO is another methodology introduced by
[23]. Hierarchical Object-Oriented Design (HOOD) is
defined by European Space Agency [8]. Petri Net
Objects (PNO) is a way to illustrate the behavior and
control structure of objects using Petri nets. The entire
life cycle including design, analysis and
implementation is dealt in this methodology. It covers
the life cycle from requirements to code. The
limitations of this methodology are that it does not
tackle concurrency directly. Deadlines of objects are
not dealt in design but are left as implementation
challenge for the language. Hard Real Time
Hierarchical Object Oriented Design (HRT-HOOD) [4]
is adapted from HOOD for real time environments
[20]. Abstraction is the main focus of this
methodology. Deadlines are better conceptualized due
to abstraction. HRT-HOOD separates the high level
design activity into sections. HRT-HOOD supports

http://en.wikipedia.org/wiki/Michael_A._Jackson
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Software_development_methodology
http://en.wikipedia.org/wiki/Software_development_methodology

730 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

five kinds of objects including passive, active,
protected, cyclic and sporadic. This methodology does
not clarify if concurrency is processors and if threads
are inside an object. supported when objects are
assigned to physical processors and if threads are
inside an object.
OCTOPUS methodology is for handling the embedded
real time systems [33]. OCTOPUS extended the Object
Modeling Technique (OMT) [25] for catering
synchronization, concurrency, interrupts, end-to-end
response time, hardware interfaces and
communication. This methodology uses state charts for
behavior modeling. Concurrency and deadline
management are handled. Just like OMT inheritance is
also supported by OCTOPUS [20]. The drawback is
that it does not support the full life cycle but only
design and implementation phases. OMT is a general
methodology and not a real time methodology. Real
time Object Oriented Modeling (ROOM) methodology
uses two concepts i-e abstraction level and dimension
[3]. Based on the nature of the problem the dimension
model partitions the system. The system is then
partitioned into three levels of abstractions i-e system
level, concurrency level and detail level. Daponte et al.
[6] author claims that Real Time Objects (RTO) is
suited for hard real time programming. This
methodology does not allow concurrency between the
objects. Transnet [26] is another proposed extension to
design methodologies for real time systems. To model
the behavior and for verification this methodology uses
Petri nets as in HOOD/PNO that as uses Petri nets.
This methodology focuses not only on functionality of
design but also concerns about deadlines, message
passing and concurrency of the objects. Measurement
is becoming the most important factor in software
engineering because if you cannot measure you cannot
control the progress of development [1, 9].

3. Proposed Design Method
Most of the methodologies developed are centered
around the philosophy of using formal technique that
are in practice for many years. But as we introduce the
concept of time the simple automata becomes so
complex even for medium size problems [3]. To
measure the design problems associated with timing
constraints or deadlines in real time systems we have
proposed the following design technique shown in
Figure 1. This research paper is extracted from [1].

Start

Decomposition Based
on Inheritance

Object Identification

Deadlines on Transition edges Deadlines inside Times State
Statecharts

Integrated RT Design
using Timed State

Statecharts
VerificationSubsystem Decomposition

Hardware Selection &
Synthesis

Software Selection &
Synthesis

Measurement with Design
Metrics

Deployment

End

No Yes

Implementation

Specification

Figure 1. Proposed design method flow for real time system steps
of the design approach.

3.1. Steps of the Design Approach
System Requirements Specifications (SRS) is the
“what” part (mean what is the problem) which is a
logical document. It specifies the system requirements
without dictating how those requirements must be
implemented. Design is the “how” part (How the
problem should be addressed and how it should be
solved) is the first phase in which we make a transition
towards the solution. The goal during the design phase
is to produce correct designs [15].

3.2. Specification
The specification step/phase shown in Figure 2 is
accomplished two stages i-e problem conception stage
and the decomposition stage [17].

Start

System Level Specification

Soft deadlines functional
requirements

Hard deadlines functional
requirements

Non-real time functional
requirements

Formalize

End

Module Level Specification

Functional & Performance
Requirements

Figure 2. Specification phase.

The real time application to be developed is
described. The operational environments of application

A Metrics Driven Design Approach for Real Time Environment Application 731

and its functionality, constraints and tolerances are
given a formal shape. The functional and performance
requirements for mechanical and electrical hardware,
sensors and actuators and components related to
control and operation of the real time environment
application. Identify all the timing constraints and
separates them into hard, soft and firm timing
constraints. Hard deadline mean that if the constraints
are not met the result is a catastrophic failure or an
accident. Soft deadline mean that the results may be
invalid and the repetition of a task must be done before
the next task can take place. In case of firm deadlines
failure there is no catastrophic failure but it might be
serious.

Identify all of the possible tasks the real time system
needs to perform and categorize them into PERIODIC,
synchronous, asynchronous and sporadic tasks.

3.3. Object Identification
System requirements are broken-down into a group of
appropriate objects and Real-Time Objects (RTOs) and
are distinguished through a decomposition scheme
such as Multi Dimensional Decomposition (MDD)
[17]. From the specifications the objects relating to
sensors, actuators and control are identified shown in
Figure 3. The control objects are placed in-between the
sensor objects and the actuator objects.

Start

Object Identification

Sensor Class
Objects

Actuator Class
Objects

Control Class
Objects

Formalize

End
Figure 3. Object identification phase.

3.4. Decomposition
Decomposition is very crucial in the design because the
decision taken in this step will be the deciding factor
on which technique is based. Identify the objects that
are to be inherited and the objects that are not to be
inherited. If an object is to be inherited, the deadline
must be included inside the state chart. This is to
ensure that there should be no problems when
deadlines are also inherited along with the other
features. If an object is not to be inherited than its
deadline may be indicated in the transition as in regular
formalism methodologies. This will impart the
characteristic of formal design approach. Identify
superstates and substates based on selective
inheritance. To model concurrency inherit all the
concurrent tasks as substates and must be contained in

superstate. Most of the methodologies use the formal
techniques to represent timing conditions on the
transition arcs or edges. The drawback of this
technique is that it is difficult to describe the behavior
of the deadlines when they are inherited. The objects
that are to be inherited will be designed using the timed
state statecharts which is an informal representation of
the dynamic behavior. Identify superstates and
substates based on selective inheritance and design the
hierarchy. To model concurrency inherit all the
concurrent tasks as substates and must be contained in
superstate. The selective inheritance is used to separate
objects so as to use design in two different ways. The
purpose is to take maximum advantage of both the
formal design methodologies and informal
methodologies.

3.5. Integrated Real Time System Design
3.5.1. Architectural Design

The objective of software architecture is to provide the
mainly elementary foundation for convince about
design decisions and set up important work breakdown
structures [22]. Architectural document makes it
possible to understand a complex system like real time
system. Architecture is an overall perspective of the
system design. Before you go on to detailing the
subsystems you want to grasp or understand the overall
design of the software. The architectural design is
necessary because to grasp the system from bottom up
approach is very difficult with thousands of classes and
components. Architecture also facilitates reuse. Design
the software architecture’s module view, component
and connector view, and allocation view [15].

3.5.2. Detail Design

For detail design of real time system the timing
constraints must be considered at the class and
component level, only then the methodology is
considered as true real time system methodology.

Throughout the design phase we recommend to use
the Harel’s Diagrams (also called the statecharts) [11]
to describe the dynamic behavior of the system
modules. To model the deadlines the theory of timed
automata [3] and the concept of timed state statecharts
is used. Then the design must be integrated showing
links to various modules. If the modules are not related
they are just a collection of library and not a collective
system as a whole.

Consider the design example of the Coolant spill of
nuclear reactor shown in Figure 4. This simple design
is drawn using the Statechart+ solution of the Wang
and Chen [32] along with the Timedstate statechart
solution shown in Figure 5.

732 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

Figure 4. State chart + solution.

Figure 5. Timedstate state charts solution.

The Wang and Chen [32] solution uses both timed
transitions and timed states that leads to upper time
bound ambiguities and the lower bound time
ambiguities. To make it simple just use the timed states
and timer the solution becomes simple and upper and
lower bound time ambiguities are resolved. The same
solution is presented as follows. This simple
modification can resolve the ambiguities that arise due
to inheritance of state chart objects having timing
information on transition edges.

3.6. Hardware Software Selection
Normally in real time system the hardware is tightly
coupled with the software. The single or
multiprocessor architecture determines the true degree
of parallelism [16]. The hardware selection depends on
the requirements specification, e.g., in case of
concurrent processing requirement a single processor
will only give pseudo parallel execution not the true
parallel execution as in case of multiprocessor system
[16]. This phase is also very important because
numerous hardware and software are available in the
markets that claim real time capabilities. It is not
feasible to design the complex real time applications
from scratch. There are dedicated hardware’s for data
acquisition from the real time environment and control
hardware. There are also real time operating systems
available. The very first examples of real-time
operating systems for a large-scale projects were, the
IBM and american airlines’s Transaction Processing
Facility (TPF) which was built for the Sabre. At
present the top most known, real-time operating
systems are Windows CE, OSE, RTLinux, LynxOS,
QNX, VxWorks [33].

There is misconception that high level languages are
not recommended for stringent timing requirements
and low level languages like assembly is
recommended. But it is one of the misconceptions
pointed out in [29, 31]. According to [6] the actual
point of concern should be that if the language you
chose allows access to low level hardware interface
without the extra run time support penalty.

3.7. Verification using Proposed Design Metrics
We have defined the following eight new metrics for
measuring a real time system design [1]. Purpose is to
measure the design before implementation. Object
oriented design metrics [5] but for measuring real time
application design, no metrics are available.

3.7.1. Soft Deadline Cohesion Factor

It is defined as the ratio of the classes having soft
deadlines to the total no. of classes having soft, hard,
overridden deadlines.

Sij

ij ij ij

Cn m

n j s h o
SDCF =

C +C +C
∑∑

Where
n=Total number modules constraint by timing
restriction.
m=Total number classes per module constraint by
timing restriction.
Csij=ith class in the jth module with soft deadlines.
Chij=ith class in the jth module with hard deadlines.
Coij=ith class in the jth module with overridden
deadlines.

This factor tells about how cohesive the modules are
in relation to soft deadlines. Higher the factor mean the
system modules may be given less concentration
because of error tolerance level is more in that module.

3.7.2. Hard Deadline Cohesion Factor

It is defined as the ratio of the classes having hard
deadlines to the total number of classes having soft,
hard, overridden deadlines.

hij

ij ij ij

Cn m

n j s h o
HDFC

C C C
= ∑∑

+ +

Where
n=Total number modules constraint by timing
restriction
m=Total number classes per module constraint by
timing restriction
Csij=ith class in the jth module with soft deadlines.
Chij=ith class in the jth module with hard deadlines.
Coij=ith class in the jth module with overridden
deadlines.

This factor tells about how cohesive the modules are
in relation to soft deadlines. Higher the factor means

 (1)

 (2)

http://en.wikipedia.org/wiki/International_Business_Machines
http://en.wikipedia.org/wiki/American_Airlines
http://en.wikipedia.org/wiki/Transaction_Processing_Facility
http://en.wikipedia.org/wiki/Transaction_Processing_Facility
http://en.wikipedia.org/wiki/Transaction_Processing_Facility
http://en.wikipedia.org/wiki/Sabre_(computer_system)
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/Operating_System_Embedded
http://en.wikipedia.org/wiki/RTLinux
http://en.wikipedia.org/wiki/LynxOS
http://en.wikipedia.org/wiki/QNX
http://en.wikipedia.org/wiki/VxWorks

A Metrics Driven Design Approach for Real Time Environment Application 733

the system modules may be given more concentration
because of error tolerance level for these modules are
very low.

3.7.3. Overridden Deadline Class Factor

It is defined as the ratio of the classes having
overridden deadlines to the total no. of classes having
soft, hard, overridden deadlines.

Oij

ij ij ij

Cn m

n j s h o
HDFC

C C C
= ∑∑

+ +

Where
n=Total number modules constraint by timing
restriction.
m=Total number classes per module constraint by
timing restriction.
Csij=ith class in the jth module with soft deadlines.
Chij=ith class in the jth module with hard deadlines.
Coij=ith class in the jth module with overridden
deadlines.

This factor is the most important because it tells
about deadline related ambiguities that lies in those
modules having high Overridden Deadline Class Factor
(ODCF) value. These ambiguities are due to the
inheritance of deadlines. Most of the concentration
must be given to those modules having high ODCF.

3.7.4. Soft Overriding Factor

The overriding factor is defined as the ratio of
overridden classes to the total no. of classes having
hard deadlines.

1

1

o

h

n
oo

n
hb

C ODFCSOF
HDFCC

=

=

∑
= =
∑

This factor tells the overall trend the module towards
soft or the hard real time approach. A value less than 1
means timing constraints have to be met all cost.

3.7.5. Message Exchange Factor

Number of exchanged messages considered per second
between project partitions.

1
en

ii m
MEF

T
=∑

=

Higher the MEF more critically that module must be
analyzed.

3.7.6. Early Decomposition Factor

The Early Decomposition Factor is defined as the ratio
of no. of project partitions to the project stage no. times
the message exchange factor.

()Number Of Partition Of Project
EDF (Message Exchange Factor)

(Project Stage Number)
= ×

Mathematically it is represented as:

1
en

p ii

n

N m
EDF

S T
=∑

= ×

If early partitioning into sections for a large system is
done then it could lead to a poor design if at a later
stage it is found out that message traffic between
different sections of the system will consume
enormous amount of resources. It is also kept in mind
that this metric has not as much of importance when
only object oriented systems are under consideration.

3.7.7. Deadline based Predictability Factor

The Deadline based Predictability Factor is defined as
ratio of the no of classes with soft deadline to the total
this factor is defined as number of sub classes plus total
no. of multithreaded objects.
Mathematically it is represented as:

1

11

o

b

n noo
mtn

bb

C
DBPF Obj

C
=

=

∑
= + ∑
∑

Ideally the first factor should be than 1 and practically
be close to zero. The second factor should be more
than 1, because multithreading increases the
predictability [20].

3.7.8. Life Cycle Support Factor

Life Cycle Support Factor (LCSF) is the ratio of
number of phases having support for deadlines to the
total number of phases on the life cycle plus one.

()
1

No. Of Phases having deadline support
EDF

(Total No. of phases in the life cycle)
=

+

Every methodology has support for Software life cycle
in some phases. If this factor is equal to 1 this means
that the methodology supports the entire life cycle
beyond the code release and into the code maintenance.

3.8. Implementation
In this phase we take the deliverables/documents
produced during the requirements phase and design
phase and implements them using suitable tools and
technologies. Test cases are accomplished and
prepared/automated in case of validation testing. In
general, an extensive amount of testing is also
performed on the early system versions during this
phase, not only to validate the system, but to validate
that there are no anomalies in the test cases themselves.
It is also necessary to take into account the
implementation languages like RTC++ or Ada 9X may
do the job. Along with the general purpose languages
like, Ada, Modula, and Java there are also special
purpose languages for real time systems like Esterel,
Lustre, Signal and Statecharts [29]. The
implementation may be done in any of the modeling
language. The Unified Modeling Language (UML) is a
popular choice for modeling of real time system [19].

 (3)

 (4)

 (5)

(6)

 (7)

 (8)

734 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

It will help you measure metrics automatically through
available tools [27].

3.9. Deployment
Deployment starts with understanding the client
personals including system users, system operators,
support staff and system owner as shown in Figure 6.
Discuss deployment plan with key personals and
modify if needed. After your plan is vetted start
installation and onsite testing.

Start

Understand client, (user, operators,
system owner)

Training,
Documentation

Modify

End

Discuss deployment Plan

Installation & on site
testing

Acceptance

Figure 6. Deployment phase.

4. Case Study
We have considered the design of weapon firing
system example [7] as our case study to
experimentally evaluate the defined metrics. For
calculation of other design metrics consider the
behavior model of classes in concurrent operation as
shown in Figure 7.

1 1 0 125
1 1 1 1 1 1 1 1 8

SDFC .= = =
+ + + + + + +

The value for this factor is towards a lower side
meaning that the this module has 12.5% soft deadline
class objects and the module design can be considered
as tilting towards a soft real time class of applications.
This indicates that the predictability of the module is
towards higher side. Only once class objects has 1000
millisecond deadline which is achievable by most of
the currently available hardware software systems in
the market.

1 1 1 3 0 375
1 1 1 1 1 1 1 1 8

HDFC .+ +
= = =

+ + + + + + +

The value for this factor is also towards a lower side
meaning that the this module has 37.5% hard deadline
class objects and the module design can be considered
as tilting towards a soft real time class of applications.
Higher the Hard Deadline Cohesion Factor (HDFC)
factor means that the predictability is hard to
guarantee.

The ODFC factor for this module is zero. This
indicates that there are no class objects having

overridden soft deadlines with the hard deadlines. This
module’s complexity is zero.

0 0 0
1 1 1 1 1 1 1 1 8

ODFC = = =
+ + + + + + +

SOF is measured as: SOF = 0/0.375=0.
The MEF factor is calculated as:

23 0 023
1000

msg
ms

MEF .= =

The number of messages exchanged per millisecond
are not on the higher side for this module. The system
resources are sufficient to ensure the predictability of
all the tasks to be completed in specified time limit.To
calculate the EDF factor we use the Figures 7 and 8.
There are 11 partitions in this weapon delivery system
and at this stage the project stage number is 2 so the
metric is calculated as

11 13 0 0715
2 1000

EDF .= × =

Figure 7. Concurrent State threads with timing info [7].

Figure 8. Weapon delivery system Modules [7].

The value of this metric is normal and it is not too
early to partition the project. It will not consume too
much system resources and the decision to partition at
this stage is normal.

(9)

(10)

(11)

(12)

(13)

A Metrics Driven Design Approach for Real Time Environment Application 735

(15)

(17)

(18)

(19)

(20)

(21)

(23)

(24)

(25)

(16)

(22)

1 2 2 125
8

DBPF .= + =

For module of this size the number of multithreaded
objects is normal but there should be more
multithreaded objects for the predictability to increase.

Now for Life Cycle Support Factor (LCSF) metric
verification we consider the different methodologies,

as shown in the Table 1, and calculate the LCSF metric
for them.
We find out that which phases have support for the
deadlines in each of
the methodologies and calculate the LCSF factor for
each of the methodology. To simplify the case we have
considered the following precise number of phases for
deadline support consideration.

Table 1. Life cycle support factor for different methodologies [8, 14, 20, 24, 25].

Methodology Specification Design Implementation Testing and verification Deployment Maintenance Phases having Support LCSF
JSD N Y N N N N 1 0.1429

ATRS Y Y Y N N N 3 0.4286
COBRA N N Y N N N 1 0.1429

HOOD/PNO N N Y N N N 1 0.1429
HRT-HOOD Y Y Y Y N N 4 0.5714
OCTOPUS N Y Y N N N 2 0.2857

OMTs N N Y N N N 1 0.1429
ROOM Y Y Y N N N 3 0.4286

RTO N N Y N N N 1 0.1429
MDTRA Y Y Y Y Y N 6 0.714286
Transnet N N Y N N N 1 0.1429

After thoroughly studying these methodologies we

were able to come to the fact that not a single
methodology has full life cycle support for the
deadlines. Most of the methodologies support
deadlines only at the implementation phase or the
programming language. A 3-D plot of the above table
is shown Figure 9 to visualize the above mentioned
fact. From the plot it is clear that arts, hrt-hood, room
and octopus have better support for the deadlines in
various phases of the software development life cycle.

Figure 9. 3-D Plot of LCSF factor.

0 1 0 0 0 0
0 1428576 1 7JSD

N Y N N N N
LCSF .

+ + + + + + + + + +
= = =+

1 1 1 0 0 0
0 428571

6 1 7ARTS
Y Y Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

0 0 1 0 0 0
0 142857

6 1 7COBRA
N N Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

0 0 1 0 0 0
0 142857

6 1 7HOOD / PNO
N N Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

1 1 1 1 0 0
0 571429

6 1 7HRT HOOD
Y Y Y Y N N

LCSF .−
+ + + + + + + + + +

= = =
+

0 1 1 0 0 0
0 285714

6 1 7OCTOPUS
N Y Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

0 0 1 0 0 0
0 142857

6 1 7OMT
N N Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

1 1 1 0 0 0
0 428571

6 1 7ROOM
Y Y Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

0 0 1 0 0 0
0 142857

6 1 7RTO
N N Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

1 1 1 1 1 0
0 714286

6 1 7MDTRA
Y Y Y Y Y N

LCSF .
+ + + + + + + + + +

= = =
+

0 0 1 0 0 0
0 142857

6 1 7TRANSNET
N N Y N N N

LCSF .
+ + + + + + + + + +

= = =
+

In this calculation each ‘N’ is given 0 (zero) value. It
means that the methodology has no support in that
phase. Each ‘Y’ is given value 1 (one) which indicates
that the methodology has support for deadlines in that
phase.

Most of the methodologies leave this task of
handling the issues of deadlines to be handled by the
developers at the implementation phase. Unfortunately
we are not able to find real time system design
examples that have considered the timing constraints in
the entire life cycle. So we are unable to measure the
values for most of the metrics to evaluate the design
for quality.
For calculation of design metrics through tool
SDMetrics [27] is a good choice. It is a software
design metrics tool for the UML diagrams. UML is
becoming the favorite software design tool for most of
the designers.

5. Results of the Study
The results of our study reveal that no real time
system’s design methodology have support deadlines
for the entire life cycle. For methodology to be
considered as true real time system design
methodology, it must have to address the issues
relating to the deadlines as early as possible in the
software development life cycle and ideally in the
entire life cycle. The actual practice is that deadlines
are left as task for the developers to handle at the

(14)

736 The International Arab Journal of Information Technology, Volume 14, No. 5, September 2017

programming language level during the
implementation phase. We calculated the LCSF metric
for the various design methodologies manually and
results are plotted. We found that high value of LCSF
is required for a methodology to be closer to a true real
time methodology. To follow our approach the design
must be in object oriented approach and the timing
constraints must be introduced at the class and object
level. Then that design should be measured using our
defined metrics.

6. Conclusions
In this paper we have proposed a metrics driven design
approach for real time environment applications and
also suggested a slight modification in the design
technique when using state charts to resolve the
ambiguities that arise due to inheritance of state chart
objects having timing information on transition edges.
We have also incorporated the methodology with the
additional phase which we named as verification by
design metrics. Eight design metrics have been defined
to test the design for identifying the areas where a
more thorough concentration is required. Those areas
or the modules are studied again and the ambiguities
are resolved.

References
[1] Ahmed M., “Design Quality Metrics for Real

Time Environment Application,” Ph.D.
Dissertation, Department of Computer Science
and Engineering, University of Engineering and
Technology, Lahore-Pakistan, 2012.

[2] Ahmed M. and Shoaib M., “Novel Design
Metrics to Measure Real Time Environment
Application Design,” Journal of American
Science, vol. 7, no. 7, pp. 222-226, 2011.

[3] Alur R. and Dill L., “The Theory of Timed
Automata,” Theoretical Computer Science
Jornal, vol. 126, no. 2, pp. 47-73, 1994.

[4] Burns A. and Wellings A., A Structured Design
Method for Hard Real-Time Systems, Real Time
System, Springer, 1994.

[5] Chidamber S. and Kemerer C., “A Metrics Suite
for Object-Oriented Design,” IEEE Transactions
on Software Engineering, vol. 20, no. 6, pp. 476-
493, 1994.

[6] Daponte P., Nigro L., and Tisato F., “Object
Oriented Design of Measurement Systems,”
IEEE Transactions on Instrumentation and
Measurement, vol. 41, no. 6, pp. 874-880, 1992.

[7] Douglass B., Real time UML Lecture Slides,
Telelogix, 2010.

[8] European Space Agency,
http://www.esa.int/TEC/Software_engineering_a
nd_standardisation/TECKLAUXBQE_0.html,
Last Visited 2011.

[9] Fenton N., Shari Lawrence Pfleeger: Software
Metrics, A Rigorous and Practical Approach,
Thomson Learning, 2003.

[10] Gomaa H., “A Behavioral Analysis Method for
Real-Time Control Systems,” Control
Engineering Practice, vol. 1, no. 1, pp. 33-72,
1993.

[11] Harel D., “Statecharts: A Visual Formalism for
Complex Systems,” Journal of Science of
Computer Programming, vol. 8, no. 3, pp. 231-
274, 1987.

[12] Ishikawa Y., Tokuda H., and Mercer C., “An
Object-Oriented Real-Time Programming
Language,” Computer Journal, vol. 25, no. 10,
pp. 66-73, 1992.

[13] Jackson M., http://jackson-system-
development.co.tv, Last Visited 2014.

[14] Jackson M., Tools and Notions for Program
Construction: An Advanced Course, Cambridge
University Press, 1982.

[15] Jalote P., A Concise Introduction to Software
Engineering, Springer Link, 2008.

[16] Jonsson D., http://www.cse.chalmers.se, Last
Visited 2011.

[17] Kwon B., Yang S., Kim K., and Cho J, “Real-
Time System Design Tools for RT0.e (Real-Time
0bject.extended),” in Proceeding of Software
Engineering Conference, Melbourne, pp. 376-
383, 1996.

[18] Laplante P., Real-Time Systems Design and
Analysis, Wiley IEEE press, 2004.

[19] Long G., “A UML-Based Design Methodology
for Real-Time and Embedded Systems,” in
Proceeding of Design Automation and Test in
Europe Conference and Exhibition, Paris, pp.
776-779, 2002.

[20] Mercer C. and Tokuda H., “The ARTS Real-
Time Object Model,” in Proceeding of 11th IEEE
Real Time System Symposium, Florida, pp. 2-10,
1990.

[21] Moutaz S. and Shamala S., “Hierarchical AED
Scheduling Algorithm for Real-Time Networks,”
The International Arab Journal of Information
Technology, vol. 3, no. 3, pp. 219-225, 2006.

[22] Northrop L., “Let's Teach Architecting High
Quality Software,” in Proceeding of IEEE 19th
Conference on Software Engineering Education
and Training, Hawaii, pp. 5, 2006.

[23] Paludetto M. and Raymond S., “A Methodology
based on Objects and Petri Nets for Development
of Real-Time Software,” in proceeding IEEE
International Conference on Systems, Le
Touquet, pp. 705-710, 1993.

[24] Rollo L., Jackson System Development,
Introduction to Software Design Methodologies,
IEEE Colloquium on, 1992.

http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://www.esa.int/TEC/Software_engineering_and_standardisation/TECKLAUXBQE_0.html
http://michael-a-jackson.co.tv/
http://michael-a-jackson.co.tv/
http://www.cse.chalmers.se/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Joong-Sup%20Cho.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4281
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4281
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4281
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4281
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7834
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7834
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7834
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1565

A Metrics Driven Design Approach for Real Time Environment Application 737

[25] Rumbaugh J., (2011, December 23). Object
Modeling Technique (OMT) [Online]. Available:
http://en.wikipedia.org/

[26] Sacha K., “Transnet Approach to Requirements
Specification and Prototyping,” in Proceeding of
Computer Systems and Software IEEE, Hague,
pp. 220-225, 1992.

[27] SDMetrics, http://www.sdmetrics.com, Last
Visited 2011.

[28] Selic B., Gullekson G., McGee J., and Engelberg
L., “ROOM: An Object-Oriented Methodology
for Developing Real-Time Systems,” in
Proceeding of 5th International Workshop on
Computer-Aided Software Engineering IEEE,
Montreal, pp. 230-240, 1992.

[29] Shyamasundar R. and Ramesh S., Real Time
Programming Languages, Specification and
Verification, World Scientific Publishing, 2010.

[30] Stankovic J., “Misconceptions about Real-Time
Computing: a Serious Problem for Next-
Generation Systems,” Computer Journal, vol. 21,
no. 10, pp. 10-19, 1988.

[31] Suonio K., “Real time: further misconceptions
(or half-truths),” Computer Journal, vol. 27, no.
6, pp. 71-76, 1994.

[32] Wang J. and Chen H., “A Formal Technique to
Analyze Real-time Systems,” in proceeding of
International Computer Software and
Applications Conference IEEE Computer
Society, Phoenix, pp. 180-185, 1993.

[33] Wikipedia. (2011, May 2). Real Time Operating
System Examples [Online]. Available:
http://en.wikipedia.org/wiki/

[34] Williams R., Real-Time Systems Development,
Butterworth-Heinemann Publications, 2006.

[35] Ziegler J., Awad M., and Kuusela J., “Applying
Object-Oriented Technology in Real-Time
Systems with the OCTOPUS Method,” in
Proceeding of First IEEE International
Conference on Engineering of Complex
Computer Systems, Florida, pp. 306-309, 1995.

Mahmood Ahmed is PhD Student
at Department of Computer Science
and Engineering, University of
Engineering and Technology
Lahore, Pakistan. He is also working
as senior scientist in a research
organization. His PhD scholarship

has been funded by the Higher Education Commission
of Pakistan. He completed his Masters Degree in
Computer Science from the Department of Computer
Science and Engineering, University of Engineering
and Technology Lahore, Pakistan in 2005. He
published his research papers in the fields of
performance evaluation of computer networks and
systems and in the area related to his PhD topic i-e
Design Quality Metrics for real Time Environment
Applications. He also attended conference on the open
source tools in his University organized by KICS (Al-
Khawarizmi Institute of Computer Science.

Muhammad Shoaib is Professor at
Computer Science and Engineering
Department at the University of
Engineering and Technology (UET)
Lahore, Pakistan. He received his
M.Sc. in Computer Science from
Islamia University, Bahawalpur,

Pakistan. He has completed his Ph.D. from the
University of Engineering and Technology, Lahore,
Pakistan in 2006. His Post Doc. is from Florida
Atlantic University, USA, in 2009. His current
research interests include Information Retrieval (IR)
Systems, Information Systems, Software Engineering
and Semantic Web.

http://en.wikipedia.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=405
http://www.sdmetrics.com/
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=294859&queryText%3DMisconceptions+about+real-time+computing%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=294859&queryText%3DMisconceptions+about+real-time+computing%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=294859&queryText%3DMisconceptions+about+real-time+computing%26openedRefinements%3D*%26searchField%3DSearch+All
http://en.wikipedia.org/wiki/

	Introduction
	Related Work
	Proposed Design Method
	Steps of the Design Approach
	System Requirements Specifications (SRS) is the “what” part (mean what is the problem) which is a logical document. It specifies the system requirements without dictating how those requirements must be implemented. Design is the “how” part (How the pr...
	Specification
	Object Identification
	Decomposition
	Integrated Real Time System Design
	3.5.1. Architectural Design
	3.5.2. Detail Design

	Hardware Software Selection
	Verification using Proposed Design Metrics
	Overridden Deadline Class Factor
	Soft Overriding Factor
	Message Exchange Factor
	Early Decomposition Factor
	3.7.7. Deadline based Predictability Factor
	3.7.8. Life Cycle Support Factor

	Implementation
	Deployment

	Case Study
	Results of the Study
	Conclusions
	References

