
140 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

Employing Machine Learning Algorithms to Detect

Unknown Scanning and Email Worms

Shubair Abdulla
1
, Sureswaran Ramadass

2
, Altyeb Altaher

2
, and Amer Al-Nassiri

3

1
Instructional and Learning Technologies Department, Sultan Qaboos University, Oman

2
NAV6 Center of Excellence, Universiti Sains Malaysia, Malaysia

3
Faculty of Computer Engineering and Computer Science, Ajman University of Science and Technology,

UAE

Abstract: We present a worm detection system that leverages the reliability of IP-Flow and the effectiveness of learning

machines. Typically, a host infected by a scanning or an email worm initiates a significant amount of traffic that does not rely

on DNS to translate names into numeric IP addresses. Based on this fact, we capture and classify NetFlow records to extract

feature patterns for each PC on the network within a certain period of time. A feature pattern includes: No of DNS requests, no

of DNS responses, no of DNS normals, and no of DNS anomalies. Two learning machines are used, K-Nearest Neighbors

(KNN) and Naive Bayes (NB), for the purpose of classification. Solid statistical tests, the cross-validation and paired t-test, are

conducted to compare the individual performance between the KNN and NB algorithms. We used the classification accuracy,

false alarm rates, and training time as metrics of performance to conclude which algorithm is superior to another. The data set

used in training and testing the algorithms is created by using 18 real-life worm variants along with a big amount of benign

flows.

Keywords: IP-Flow, netflow, NB, KNN, scanning worms, email worms.

Received September 27, 2011; accepted May 22, 2012; published online January 29, 2013

1. Introduction

Worms' inventors are continuously inventing malicious

codes. They caused loss of millions of dollars to

businesses around the world. During the past 10-15

years, there have been many instances of worm that

were able to penetrate the defense systems in the

Internet, such as the Code Red worm in 2001 [34], the

Slammer worm in 2003 [15], the Sasser worm in 2004

[1], the Strom botnet in 2007 [30], the Conficker [21]

in 2008, and the Stuxnet worm in 2010 [14]. A

computer worm is a self-replicating program which

spreads stealthily over the network nodes by exploiting

the software vulnerabilities. After sneaking into the

network, the worm attacker remotely controls the

infected hosts to launch its malicious tasks, such as

stealing sensitive information, sending spam emails,

and generating Distributed Denial-of-Service (DDoS)

attacks.

Since the damage of worms is steadily growing,

worm detection research has become vital to the field

of Network Security. The security community has

adopted Network Intrusion Detection (NID) systems to

defend worms which can be classified into two

categories: content-based systems and behavior-based

systems. Relying on a pre-compiled database of

signatures, content-based systems explore the network

traffic to catch ongoing attack's signature. Without

discovering signatures, these systems cannot defend

against attack. Therefore, content-based systems are

not effective against unknown attacks. Considering the

significant amount of human involvement and time

consuming in discovering the worm's signature, many

research efforts [6, 9, 18, 22] have been devoted to

develop behavior-based systems which are more

sophisticated. They directly analyze the network

traffics, and consequently, detect the worms. However,

reducing the false-positive and false-negative rates is

still a challenging problem. Initially, the behavior-

based systems detect network statistical normals and

anomalies to measure a “baseline”, an alarm system

can trigger when there is a deviation from this

“baseline”.

To collect statistical information and build a

“baseline”, the behavior-based NID systems inspect

the payloads of every network packet to find known or

unknown attacks [23, 26]. This task is now hard or

even impossible due to high-speed lines, large number

of packets, and the huge volume of packet information

makes it too difficult to analyze. One option that has

been recently attracted the attention of the researchers

is IP-Flow-based technique. The IP-Flow is

unidirectional chains of IP packets of TCP/UDP

protocol travelling between a pair of IP addresses

within a certain period of time. The flow information

can be exported by using an export mechanism such as

CISCO NetFlow [3] and sFlow [20]. CISCO NetFlow

has become an industry standard for network traffic

141Employing Machine Learning Algorithms to Detect Unknown Scanning and Email Worms

monitoring and one of the most commonly used

NetFlow versions is NetFlow 5. A NetFlow record

contains wide variety of information that can be used

for a variety of purposes including data warehousing,

network monitoring, security analysis, etc. Although,

the information carried by flows is limited to the

network nodes interactions, the volume of flow records

is extremely huge. However, the flow information can

be used to build an effective NID system after being

sampled and normalized.

Recently, there has been a significant amount of

research that uses IP flow information to train learning

machine for the purpose of combating worms. The

applications of machine learning techniques involve

identifying a number of features of worms. The

features are attributes of worms calculated over

multiple packets. Then these features are used to train a

classifier to build a classification model. Most research

efforts in this area have been directed towards the

following aspects: Removing the redundancy and noise

from the data collected; performing efficient training

for the classifier by using real variants of worms;

identifying the most optimum classifier among the data

mining classification algorithms.

Our contributions to this research work are as

follows: First we investigated whether using machine

learning can detect variants of unknown worms. We

extracted unique features from the NetFlow records for

each host connected in a certain period of time. To

avoid the redundancy and noise, the features were

classified as: DNS request, DNS response, DNS

normal, or DNS anomaly. (18) the most dangerous

scanning and email worms have been used to train and

test the classifiers. Second, we compared the individual

performance between Naive Bayes (NB) and K-

Nearest Neighbors (KNN) machine learning classifiers

to show any of the classifiers performs better. Our

work is inspired by the work of Mesud et al. [13] to

detect email worms. However, our approach is more

comprehensive, it tries to detect both email and

scanning worms. In addition, we have extracted

different features which are unique and present in both

types of worms. To show which algorithm is superior

to another, we used the cross-validation and the paired

t-test to track the performance of NB and KNN by

using the classification accuracy, false alarm rates, and

the training and prediction times as performance

metrics.

The reminder of the paper is organized as follows:

Section 2 describes related work. Section 3 provides

background information on scanning and email worms.

Section 4 identifies briefly NB and KNN classifiers

and details the feature set worm variants along with the

system implementation. Section 5 explains the

experimental approach. Results and discussion are

presented in sections 6. Finally, section 7 concludes the

paper and gives directions for future work.

2. Related Work

Although machine learning has already been used for

detecting malicious attacks, the authors in [8]

mentioned that there have been few attempts to use

data mining techniques for the purpose of identifying

unknown worms. However, the authors in [4]

mentioned some research that has been done to

compare the performance of machine learning methods

in malware detection. A look at the literature reveals

that the most of the machine learning-based research

have been focusing on payload features to classify the

malicious codes [10, 24, 25, 29]. The payload features

that are extracted to train the classifiers in these

approaches could be the variable length of instruction

sequences, some strings, or the JUMP address. Several

learning methods have been applied by the researchers

such as: NB, Support Vector Machines (SVM),

Instance-Based k (IBk), KNN, and Term Frequency-

Inverted Document Frequency (TFIDF). It is obvious

that these methods are not suitable for high speed

networks as they require high processing to analyze the

network packet payloads online. One of the most

relevant to our work is [33] where the authors found

that the worm actions grouped into 3 categories:

Registry, file system, and network. They used SVM to

classify malicious programs classification. However,

our approach differs from their in that we consider the

network activities to avoid installing the system on

each network node to watch the Registry and file

system.

Using IP addresses by worms obviates the need for

a DNS query [31]. Based on this idea, some research

are devoted to detect scanning worms by studying the

DNS traffic. The method proposed by Whyte et al.

[31], relies on the correlation of DNS queries with

outgoing connections from an enterprise network to

detect scanning worms. In 2008, Binsalleeh et al. [2]

proposed a system that followed the same architecture

in [31] but the new system performs online processing

of TCP dump. In most of the above approaches, as in

[2], the system inspects the network packet to find the

DNS anomalies. This task is hard or even impossible

due to high-speed lines, large number of packets, and

the huge volume of packet information makes it too

difficult to analyze. In fact, the main difference that

distinguishes our work is our proposed system relies on

IP-flow rather than network packets.

The email worms also attracted the attention of the

researchers. The methods in [16, 17] are straight-

forward with focus on the volume of DNS queries for

Mail eXchange (MX) to detect email worm infections.

Ishibashi et al. [7], proposes an approach for detecting

worm based on prior knowledge of worm signature

DNS queries. However, the problem of legitimate

traffic that does not rely on DNS queries has not been

resolved completely. This legitimate traffic could be

originated by either normal users or network

142 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

applications. The authors in [31] suggested whitelist to

address those clients that legitimately do not rely on

DNS. The disadvantage of using whitelist is that it

needs to be updated regularly to reflect changes to the

network.

3. Scanning Worms and Email Worms

A worm is a malicious program that self-propagates

across the networks by exploiting the software

vulnerabilities. According to the way that is followed

in finding new host to infect, the worms are

categorized into four groups: Scanning Worms, Email

Worms, P2P Worms, and Instant Messaging Worms.

To limit our scope, we will consider two types of

worms, scanning worms and email worms, and since

we concentrate on the IP flows, the discussion will be

limited to the flows generated during the life-cycle of

these two types. Readers who are interested in worms

and their categories can refer to [12, 27].

• Scanning Worms: The life-cycle of scanning worm

consists of four phases: victim finding, transferring,

activation, and infection. The scanning worm is

active over the network in victim finding and

transferring phases, while its activities are limited to

local hosts in the other phases. Most worms use

either blind or hit-list scanning strategies. In the

former strategy, the worm has no knowledge about

the targets while in the later strategy the worm

knows where the victims are. In both strategies, the

worms scan a TCP or UDP port on the targets to

find a host that runs vulnerable software and

penetrate it. This scanning process causes a

dramatic increase in anomaly traffic rate which

makes it possible for a vigilant NID system to catch

the worm [27]. Table 1 shows examples of scanning

worms along with their scanning ports and the

software vulnerabilities that they utilize.

Table 1. Examples of scanning worm.

Worm Scanning Port Software Vulnerability

CodeRed 2003 TCP 80
Buffer overflow in ms index server
or MS IIS

Slammer 2003 UDP 1434 Buffer overflow in MS SQL server

Sasser 2004 TCP 445
Local security authority subsystem
service LSASS

Witty 2004

Uses A UDP

port to scan

randomly

generated list

of UDP ports

Internet security systems

(ISS) protocol analysis module

(PAM)

Doomjuice

2005
TCP 3127

This worm spreads by entering

systems through a backdoor created

by the mydoom worm.

• Email Worms: This kind of worms spread by using

email messages. They spread through HTML links

or an attachment. If the HTML link or the

attachment is opened, the worm will infect the

computer and propagates by emailing itself using

the user's address book. Email worms, such as Sobig,

NetSky, and MyDoom, are programmed to drop

backdoors, launch DoS, and send documents via

email. Recently, most of the email worms' victims

become part of Botnet: a group of computers (bots)

infected by malicious programs that cause them to

operate against the owners' intention and without

their knowledge [11]. A bot becomes active over the

network when it launches DoS or SPAM attacks,

and when it tries to contact other bots searching for

an update. In all cases, it generates a significant

amount of anomalous traffic. Storm and Conficker

worms are among the most recent severe examples

of this kind of worms. When a host infected by

Storm worm, it receives an initial list of 290

possible “peer nodes” from the botnet and attempts

to contact each peer node to obtain more updated

list of “peer nodes” [19]. The Storm's body contains

a special function to turn the victim machine to a

TCP/IP client to specify a TCP connection to each

peer node. These connections evidently will

generate significant amount of anomalous traffic in

a few seconds.

Almost the same behavior found in conficker worm.

Within its life-cycle, the conficker generates randomly

a list of 250 domain names (rendezvous points), and

then it attempts to contact these domains [21]. When

the contacted domain is available, conficker will send a

URL request to TCP port 80 of the target IP. The aim

of this request is to download a malicious Windows

executable. If the domain is not connected to the

Internet, conficker will check for connection every 60

second. Based on our experiments, more than 1000

TCP port 80 requests could be generated by an infected

host within 20 minutes. Such number of requests for

same port in a short period indicates that the host

behaves abnormally.

4. The Methodology

4.1. Using Machine Learning (ML) to Detect

Worms

A learning machine is a computer program based on a

specific mathematical concept designed to learn

automatically from experience. The ML technique has

been applied in a various applications including search

engines, medical diagnosis, text and handwriting

recognition, and so on. In 1994 ML was utilized for

internet flow classification in the context of intrusion

detection [32]. Most of the existing ML algorithms are

fall into two categories: supervised and unsupervised

learning algorithms. In the supervised learning the

algorithm is provided with a collection of instances

that are pre-classified into their desired classes. While

the desired classes for all of the input instances are not

known in the unsupervised learning. In this research,

we investigate the performance of the KNN along with

the performance of the NB. These two algorithms are

143Employing Machine Learning Algorithms to Detect Unknown Scanning and Email Worms

among the most influential data mining algorithms in

the research community [28].

We will briefly define the KNN and NB algorithms,

readers interested in more information can refer to

[28]. KNN algorithm is a straight-forward algorithm. It

finds a group of K labels in the training set that are

closest distance (nearest neighbors) to the unknown

label. Then, the unknown label is classified by the

majority vote in the KNN. The number of nearest

neighbors, K, is considered as one of the most

influential factors in the accuracy of the classification.

For any given case, we need to set K to a large value in

order to minimize the probability of misclassification

and, at the same time, small value so that the K nearest

labels are close enough to the right class. NB algorithm

is based on the Bayesian theorem which finds the

probability of an event occurring giving the probability

on another event that has already occurred. The NB

classifier is specially designed for binary classification

problems. It is very easy to construct and in many

cases it outperforms some sophisticated methods when

dealing with huge data.

Figure 1 shows the overall structure of our system

that employs the KNN and NB classifiers. It contains

three modules: data collecting, data sampling, and the

classifier. The data collecting module collects the raw

data and extracts the NetFlow information fields and

then inserts these fields into a database. Table 2 shows

the columns of the database that is used to store the

NetFlow information. The data sampling module

categorizes every database entry according to special

rules into four categories: DNS requests, DNS

responses, DNS normals, and DNS anomalies. Based

on these four categories, the classifier will decide

whether the traffic is benign or malicious.

Figure 1. System structure.

Table 2. Database columns used to store NetFlow records.

Column Name Data Stored

Timestamp The time of sending the packets

SrcIP Source IP

DstIP Destination IP

SrcPort Source port

DstPort Destination port

Pckts Number of packets

Bytes Number of bytes

Srvc Service

L4 Pro Layer 4 protocol (TCP, UDP, ICMP, etc)

TCPFlag TCP flags

4.2. Feature Set

Our set of features is based on our observations of

scanning and email worms' behavior when they

become active over the networks. As discussed in

Section 3, a host infected by either type of worms

initiates a significant amount of traffic that does not

rely on DNS queries. Based on this fact, we extracted

the features shown in Table 3 from the NetFlow

records for each host connected to the network in a

certain period of time.

Table 3. The set of features we used to train SVM.

Feature Explanation

DNSREQ# Number of DNS requests initiated

DNSRES# Number of DNS responses to DNS requests

DNSNOR#

Number of flows sent based on previous DNS resolve. In

other words, number of flows sent by using fully qualified

domain names. However, any flows sent after 500

milliseconds of the last DNS resolve or they are not a

DNSNOR tail are considered as DNS anomaly.

DNSANO#

Number of flows sent by a host without a DNS resolve. In

other words, number of flows sent by using IP address

rather than fully qualified domain name

The features are extracted explicitly by the sampling

module which operates on regular basis. The operation

time periods can be customized according to the

sensitivity of the network information and the

possibility of being attacked. Throughout our

experiments, we used setting between 60-120 seconds

for the operation time period. The process of features

extraction includes two steps: classifying and

calculating. During the classifying step, for all the

NetFlow records captured, sampling module

investigates chronologically every record to classify it

as: DNSREQ, DNSRES, DNSNOR, or DNSANO. The

rules that were followed during the classification are

described in Table 4.

Table 4. The rules followed to classify every Netflow record.

NetFlow Record The Condition

DNSREQ

IF SrcPort is greater than 1023

 & DstIP equals DNS server IP

 & DstPort equals 53

DNSRES

IF SrcIP equals DNS server IP

 & SrcPort equals 53

 & DstIP equals IP that made a DNSREQ

 & DstPort equals port# that a DNSREQ was

 sent from

DNSNOR

IF SrcIP = IP that made a DNSREQ and

 has received DNSRES or it is a tail of
 DNSNORs

 & DNSREQ last time is less than DNS Age

 (DNS Age = 500 milliseconds)

DNSANO Otherwise

According to Microsoft, the standard port for DNS

server is 53 and the DNS request should be initiated

from port number greater than 1023. The value of DNS

Age 500 millisecond has been selected carefully after

investigating about 500 DNS requests from different

IPs. However, we used the DNS age as a variable to

suit the different settings of networks. To facilitate the

process of feature extraction, we cite some examples of

NetFlow records in Table 5 along with their category.

144 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

Table 5. Examples of NetFlow records captured, it shows an explanation of feature extraction process.

Type Timestamp SrcIP DstIP SrcPort DstPort Justification

DNSANO 4/1/2011 12:17.320 192.168.1.11 192.168.1.56 1105 5358
DNSANO because of no previous

DNSREQ

DNSREQ 4/1/2011 12:56.140 192.168.1.11 192.168.0.2 2115 53

DNSREQ because it has been sent from

port# greater than 1023 to destination port

of 53 on the server

DNSRES 4/1/2011 12:56.165 192.168.0.2 192.168.1.11 53 2115
DNSRES because there was a DNSREQ
within last 500 milliseconds from the same

IP and port#

DNSNOR 4/1/2011 12:56.210 192.168.1.11 192.168.1.13 138 230

DNSNOR because there was a DNSRES

within last 500 milliseconds from the same

IP

DNSNOR 4/1/2011 12:56.610 192.168.1.11 192.168.1.13 138 230

DNSNOR because it is a tail for the

previous DNSNOR within the last 500

milliseconds

After finishing the classifying step, the calculating

step starts. This step is very simple and straightforward.

It involves one function to calculate the number of

DNSREQ, DNSRES, DNSNOR, and DNSANO

records and create the Feature Pattern (FP) which

represents the traffic activities initiated by a host

within 120 seconds. The fp consists of four columns as

in the following:

fp(1)=DNSREQ# fp(2)=DNSRES#

fp(3)=DNSNOR# fp(4)=DNSANO#

Two different sets of worms' variants were used

throughout the research. First, we created semi-real

variants of Slammer and Storm worms for using them

in developing and testing the software system. The

semi-real variants of these two worms were created by

injecting the Assembly language codes that are

responsible for activating the worm into a customized

program. The result was worms without harmful parts.

Figure 2 gives an example of creating semi-slammer

worm. The second set was 18 real-life variants

obtained from a publicly available malware databases

[5, 28]. We used these variants in training and testing

KNN and NB classifiers.

Figure 2. Assembly code that represents slammer’s pseudo-random

number generator injected into delphi procedure.

5. The Experiments

5.1. Experiment Setup

Before approaching the experiments, we built a virtual

network environment by using GNS 3 0.7.1 and VMW

are workstation 7.0.0 software to simulate the

functions of 3600 CISCO router and two switched

segments of network. The using of virtual environment

aims at programming and testing the software system.

After the completion of programming the system, we

put the same design of the network on the ground to

conduct the experiments.

The real network design is used in training and

testing the KNN and NB classifications. Figure 3

depicts the network design used in our experiments. To

make our setup closer to reality, we setup the domain

server to act as: proxy server, DHCP server, and DNS

server. We also allocated one PC to function as Oracle

database server, one PC to function as web server, and

one PC to provide a shared folder that hosts different

software and documents. We inherited the system more

comprehensiveness by installing Debian GNU/Linux

4.0 on one PC. Furthermore, (5) students from IT

specialty have been engaged to act as real network

users.

Figure 3. The experiment setup, two switched segments connected

by a NetFlow enabled CISCO rout.

5.2. Data Set

Two different data sets were used, one for training and

one for testing. The training data set was created by

capturing 15 days NetFlow records. By more than 120

hours, we captured 125661 NetFlow records and
created 6017 feature patterns 50% of which were

benign and 50% were malicious. On each capturing

day, there were two working sessions. During the first

session, we clean the network to ensure non-existence

of worms, and then we capture the benign traffic. In

the second session, we inject 10 worms to capture

malicious traffic: CodeRed, Slammer, Sasser, Witty,

Doomjuice, Sobig, NetSky, MyDoom, Storm and

Conficker. To create a consistent worm model, we

apply a special filter to exclude the unneeded traffic.

145Employing Machine Learning Algorithms to Detect Unknown Scanning and Email Worms

The main theme of this filter is relying on monitoring

the DHCP server log file. According to Microsoft,

typically, the DHCP logs are saved as text files in the

folder of “C:\WINNT\System32 \DHCP” on DHCP

servers with naming format of “DhcpSrvLog-*.txt”.

From this log file we created a dynamic “node-living

list” by collecting the event IDs: 10 (new lease) and 11

(renew a lease) periodically. Any traffic initiated by a

node that is not listed in “node-living list” will be

excluded. For testing, we used a data set of 3000

feature patterns created by capturing three days

NetFlow records. First, we cleaned the network and

captured 1500 benign feature patters. Then, we

injected 11 real-life worms to create 1500 feature

patterns: Welchia, Dabber, BlueCode, Myfip, Nimda,

Sober, Bagle, Francette, Sasser, MyDoom, and

Conficker.

6. Results and Discussion

This section discusses the results of comparing

individual performance between KNN and NB

classifiers. The comparison will be in terms of

classification accuracy, false alarm rates, and training

and prediction times. Initially, we establish the optimal

KNN configuration to use in this comparison.

6.1. Optimal Number of Nearest Neighbors

As we mentioned in section 4-1, choosing K value is

essential in building the KNN model. To estimate the

value of K accurately, we used the n-fold cross

validation technique. First, we divided the data set into

10 folds of randomly selected instances, each fold

contains 600 instances. Consequently, we performed

10 iterations of training and testing such that 9 folds

are used in each iteration for training and a different

fold is held-out for testing. We repeated these 10

iterations 7 times on 7 different K values, 5, 7, 11, 15,

23, 25, and 29. Figure 4 shows how the classification

accuracy is affected by the number of neighbors. The

results show that the optimal value of K is 11 or 15 for

a training data size of 6000 instances.

 A
cc
u
ra
cy
 (
%
)

5 7

11 15

23 25 29

50.00

60.00

70.00

80.00

90.00

100.00

110.00

3 13 23 33
 Neighbors #

Figure 4. Impact of the number of neighbors (K) on the accuracy of

KNN for a training data size of 6000 instances.

6.2. Comparison of KNN and NB Algorithms

Equipped with the optimal value for K=11, we

compare the KNN and NB classifiers in terms of

classification accuracy, false alarm rates, and training

and prediction times. We performed 6 phases of

training by using different data set sizes ranged from

1000-6000 instances. After each training phase, we

tested the model by using dataset of 3000 instances,

1500 benign instances and 1500 malicious instances.

Table 6 shows classification accuracies that resulted

from these tests.

Table 6. The classification accuracy of KNN and NB on different

dataset sizes.

Training Data

Size

Classification Accuracy (%)

KNN NB

1000 89.04 89.17

2000 88.97 85.84

3000 88.97 85.67

4000 88.97 85.64

5000 98.07 94.94

6000 98.07 96.97

To confirm which algorithm performs better, we

conducted a two-sample statistical hypothesis test to

compare the mean of above results. Initially, we put a

null-hypothesis assumption that the two algorithms

perform evenly. Then, we started gathering facts

against this assumption. Using the “classification

accuracy” as a predetermined performance metric, we

used the paired t-test to show which algorithm, KNN

or NB, is superior to another. The data shown in Figure

5 represents the results of the paired t-test.

 KNN NB

Mean: 92.011 89.700

Variance: 22.011 25.643

Observations: 6 6

Pearson Correlation: 0.96

Hypothesized Mean Difference: 0

Df: 5

t Stat: 3.857

P(T<=t) one-tail: 0.006

t Critical one-tail: 2.015

P(T<=t) two-tail: 0.012

t Critical two-tail: 2.571

Figure 5. The results of t-test: Paired 2 samples for the means of

classification accuracy.

As shown in Figure 5, the value of “t Stat” is greater

than “t Critical two-tail”. Also, the probability that our

hypothesis is true, “P (T<=t) two-tail”, is smaller than

Alpha (0.05). Therefore, we reject the hypothesis and

simply we can say that there is a significant difference

between the classification accuracies, and by

comparing the mean values, 92.011 and 89.700, we

conclude that the KNN algorithm performs better than

NB on our particular data set. Figure 6 compares

graphically the KNN and NB classification accuracy.

The graph confirms that the KNN being slightly more

accurate than the NB. The graph in the Figure 7

compares the false alarm rates for the KNN and NB.

For each training data size, the number of false alarms

is the average of false-positives and false-negatives.

146 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

The results confirm that the NB suffers from a

considerably higher number of false alarms for our

particular data. Arguably, the training time is not a key

performance measure since it can be done offline.

While the prediction time is essential since we tend to

have a prompt classifier that has ability to set an alarm

in the very first moment of worm attack. The KNN is

constantly outperformed by NB in terms of prediction

time as it is much slower in prediction. In each

prediction attempt, the KNN performs a calculation of

the distance between the unknown class and all of the

instances in the date set. However, the training and

prediction times highly depend on the number of

features for each instance as well as the training data

set size.

 A
cc
u
ra
cy
 (
%
)

50.00

60.00

70.00

80.00

90.00

100.00

1000 2000 3000 4000 5000 6000

KNN BN

 Training data size

Figure 6. Comparing the KNN and NB classification accuracy on

different sizes of data set.

 F
al
se
 A
la
rm

(%
)

0.00

5.00

10.00

15.00

20.00

1000 2000 3000 4000 5000 6000

KNN BN

 Training data set

Figure 7. Comparing the KNN and NB false alarm rates on

different sizes of data set.

7. Conclusions and Future Directions

In the worm detection research field, the ML and IP

flow techniques have showed encouraging outcomes.

We have investigated the optimal leveraging of the

effectiveness of machine learning and the reliability of

NetFlow data captured. We have demonstrated that the

NetFlow data captured, after being properly sampled

and analyzed, can be used for setting an alarm for a

worm attack and consequently identifying the source

of the suspicious payloads. For the classification

purpose, we have employed two learning machines,

KNN and NB. These two algorithms are among the

most influential data mining algorithms in the research

community. Both algorithms have demonstrated high

performance and good accuracy rates. However, our

statistical tests conclude that the KNN algorithm is

slightly more accurate than the NB when using our

particular data set, but the NB algorithm is much faster

in terms of prediction time. To overcome our work

limitations, the future work will focus on enhancing

the feature pattern and increasing the entries of the

training and testing data sets to detect P2P worms and

Instant Messaging worms.

References

[1] Analysis: Sasser Worm, available at:

http://www.eeye.com/Resources/SecurityCenter/

Research/SecurityAdvisories/AD20040501, last

visited 2011.

[2] Binsalleeh H. and Youssef A., “An

Implementation for a Worm Detection and

Mitigation System,” in Proceedings of the 24
th

Biennial Symposium on Communications,

Kingston, Jamaica, pp. 54-57, 2008.

[3] Claise B., “Cisco Systems NetFlow Services

Export Version 9,” available at:

http://www.ietf.org/rfc/rfc3954.txt, last visited

2008.

[4] El-Halees A., “Filtering Spam E-Mail from

Mixed Arabic and English Messages: A

Comparison of Machine Learning Techniques,”

the International Arab Journal of Information

Technology, vol. 6, no. 2, pp. 52-59, 2009.

[5] Global Hackers, available at:

http://globalhackers.blogspot.com/2008/06/virus-

collections.html, last visited 2011.

[6] Huang C-T., Thareja S., and Shin Y-J.,

“Wavelet-Based Real Time Detection of

Network Traffic Anomalies,” in Proceedings of

Securecomm and Workshops, Baltimore, USA,

pp. 1-7, 2006.

[7] Ishibashi K., Toyono T., Toyama K., Ishino M.,

Ohshima H., and Mizukoshi I., “Detecting Mass-

Mailing Worm Infected Hosts by Mining DNS

Traffic Data,” in Proceedings of the ACM

SIGCOMM Workshop on Mining Network Data,

USA, pp. 159-164, 2005.

[8] Ismail I., Marsono M., and Nor S., “Detecting

Worms using Data Mining Techniques: Learning

in the Presence of Class Noise,” in Proceedings

of the 6
th
 International Conference on Signal-

Image Technology and Internet-Based Systems,

Malaysia, pp. 187-194, 2010.

[9] Khayam S., Radha H., and Loguinov D., “Worm

Detection at Network Endpoints using

Information-Theoretic Traffic Perturbations,” in

Proceedings of IEEE International Conference

on Communications, China, pp. 1561-1565, 2008.

[10] Kolter J. and Maloof M., “Learning to Detect

Malicious Executables in the Wild,” in

Proceedings of the 10
th
 ACM SIGKDD

International Conference on Knowledge

147Employing Machine Learning Algorithms to Detect Unknown Scanning and Email Worms

Discovery and Data Mining, USA, pp. 470-478,

2004.

[11] Lee W., Wang C., and Dagon D., Botnet

Detection: Countering the Largest Security

Threat, USA, Springer, 2010.

[12] Li P., Salour M., and Su X., “A Survey of

Internet Worm Detection and Containment,”

IEEE Communications Surveys & Tutorials, vol.

10, no. 1, USA, pp. 20-35, 2008.

[13] Masud M., Khan L., and Thuraisingham B.,

“Email Worm Detection using Data Mining,” in

Proceedings of Techniques and Applications for

Advanced Information Privacy and Security:

Emerging Organizational, Ethical, and Human

Issues, USA, pp. 20-34, 2009.

[14] Matrosov A., Rodionov E., Harley D., and

Malcho J., Stuxnet Under the Microscope, USA,

ESET, 2011.

[15] Moore D., Paxson V., Savage S., Shannon C.,

Staniford S., and Weaver N., “Inside the

Slammer Worm,” IEEE Security & Privacy, vol.

1, no. 4, pp. 33-39, 2003.

[16] Musashi Y. and Rannenberg K., “Detection of

Mass Mailing Worm-Infected PC Terminals by

Observing DNS Query Access,” Science Links

Japan, Gateway to Japan's Scientific and

Technical Information, vol. 2004, no. 129, pp.

39-44, 2004.

[17] Musashi Y., Matsuba R., and Sugitani K.,

“Indirect Detection of Mass Mailing Worms-

Infected PC Terminals for Learners,” in

Proceedings of the 3
rd
 International Conference

on Emerging Telecommunications Technologies

and Applications, Slovakia, pp. 233-237, 2004.

[18] Naiman D., “Statistical Anomaly Detection via

HTTPD Data Analysis,” Computational Statistics

& Data Analysis, vol. 45, no. 1, pp. 51-67, 2004.

[19] Nguyen T. and Armitage G., “A Survey of

Techniques for Internet Traffic Classification

using Machine Learning,” IEEE Communications

Surveys & Tutorials, vol. 10, no. 4, pp. 56-76,

2008.

[20] Phaal P., Panchen S., and McKee N., “InMon

Corporation's sFlow: A Method for Monitoring

Traffic in Switched and Routed Networks,”

available at: http://tools.ietf.org/html/rfc3176,

last visited 2001.

[21] Porras P., Saidi H., and Yegneswaran V., “An

Analysis of Conficker's Logic and Rendezvous

Points,” available at: http://mtc.sri.com/

Conficker/, last visited 2009.

[22] Rasheed M., Norwawi N., Ghazali O., and

Kadhum M., “Intelligent Failure Connection

Algorithm for Detecting Internet Worms,” the

International Journal of Computer Science and

Network Security, vol. 9, no. 5, pp. 280-285,

2009.

[23] Roesch M., Snort, Intrusion Detection System,

available at: http://www.snort.org, last visited

2008.

[24] Schultz M., Eskin E., and Stolfo S., “Data

Mining Methods for Detection of New Malicious

Executables,” in Proceedings of the IEEE

Symposium on Security and Privacy, Oakland,

New Zealand, pp. 38-49, 2001.

[25] Siddiqui M., Wang M., and Lee J., “Detecting

Internet Worms using Data Mining

Techniques,” Journal of Systemics, Cybernetics

and Informatics, vol. 6, no. 6, pp. 48-53, 2009.

[26] Sperotto A., Schaffrath G., Sadre R., Morariu C.,

Pras A., and Stiller B., “An Overview of IP

Flow-Based Intrusion Detection,” IEEE

Communications Surveys & Tutorials, vol.12, no.

3, pp. 343-356, 2010.

[27] Tang Y., Luo J., Xiao B., and Wei G., “Concept,

Characteristics and Defending Mechanism of

Worms,” The Institute of Electronics,

Information and Communication Engineers

Transactions on Information and Systems, vol. 92,

no. 5, pp. 799-809, 2009.

[28] VX Heavens Virus Collection, available at:

http://vx.netlux.org, last visited 2011.

[29] Wang W. and Luo D., “A New Attempt to Detect

Polymorphic Worms Based on Semantic

Signature and Data-Mining,” in Proceedings of

the 1
st
 International Conference of IEEE

Communications and Networking, China, pp. 1-3,

2006.

[30] Wei C., Sprague A., and Warner G., “Detection

of Networks Blocks used by The Storm Worm

Botnet,” in Proceedings of the 46
th
 Annual

Southeast Regional Conference, Alabama, USA,

pp. 356-360, 2008.

[31] Whyte D., Kranakis E., and Oorschot P., “DNS-

Based Detection of Scanning Worms in an

Enterprise Network,” in Proceedings of the 12
th

Symposium on Network and Distributed Systems

Security, pp. 181-195, 2005.

[32] Wu X., Kumar V., Quinlan J., Ghosh J., Yang Q.,

Motoda H., McLachlan G., Ng A., Liu B., and

Yu P., “Top 10 Algorithms in Data Mining,”

Knowledge and Information Systems, vol. 14, no.

1, pp. 1-37, 2008.

[33] Zeng Y., Hu X., Wang H., Shin K., and Bose A.,

“Containment of Network Worms via Per-

Process Rate-Limiting,” in Proceedings of the 4
th

International Conference on Security and

Privacy in Communication Networks, Istanbul,

Turkey, pp. 14, 2008.

[34] Zou C., Gong W., and Towsley D., “Code Red

Worm Propagation Modeling and Analysis,” in

Proceedings of the 9
th
 ACM Conference on

Computer and Communications Security, USA,

pp. 138-147, 2002.

148 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

Shubair Abdullah is a PhD student

at National Advanced IPv6 Centre of

Excellence, University Sains

Malaysia, Malaysia. He received his

BSc degree in computer science

from University of Basrah, Iraq in

1994 and MSc degree in computer

sciences form University Sains Malaysia in 2007. His

research interests include pattern recognition, network

security, machine learning, and fuzzy inference

systems.

Sureswaran Ramadass obtained his

BsEE/CE (Magna Cum Laude) and

Ms in electrical and computer

engineering from the University of

Miami in 1987 and 1990 respectively.

He obtained his PhD from Universiti

Sains Malaysia in 2000 while

serving as a full time faculty in the School of

Computer Sciences. Currently, he is a professor and

the director of the National Advanced IPv6 Centre of

Excellence at Universiti Sains Malaysia. His research

interest includes multimedia streaming, network

security and IPv6 deployment.

Altyeb Altaher received his BSc
degree in computer science from

International University of Africa in

2000. He received his Ms and PhD

degrees in computer science from

University of Khartoum in 2002 and

2007 respectively. Currently, he is a

post doctoral research fellow at the National Advanced

Ipv6 Center Universiti Sains Malaysia, before that he

had been a senior lecturer at the computer science

department, College of Computer Science and

Information Technology, University of Sciences and

Technology. His research interest include computer

network monitoring, gird computing and computer

network security.

Amer Al-Nassiri obtained his BSc

degree in electrical engineering and

MSc in computer science from

University of Basrah, Iraq in 1977

and 1979, respectively. In 1996, he

obtained his PhD in computer

sciences. He has been working as

faculty staff for almost 30 years. Currently, he is an

associate professor in the Faculty of Computer

Engineering and Computer Science in Ajman

University of Science and Technology. His research

interests include pattern recognition, arabic character

recognition, data compression, and computer security.

