
140                                                The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014  
 

 

 

Employing Machine Learning Algorithms to Detect 

Unknown Scanning and Email Worms 
 

Shubair Abdulla
1
, Sureswaran Ramadass

2
, Altyeb Altaher

2
, and Amer Al-Nassiri

3
 

1
Instructional and Learning Technologies Department, Sultan Qaboos University, Oman 

2
NAV6 Center of Excellence, Universiti Sains Malaysia, Malaysia 

3
Faculty of Computer Engineering and Computer Science, Ajman University of Science and Technology, 

UAE 
 
Abstract: We present a worm detection system that leverages the reliability of IP-Flow and the effectiveness of learning 

machines. Typically, a host infected by a scanning or an email worm initiates a significant amount of traffic that does not rely 

on DNS to translate names into numeric IP addresses. Based on this fact, we capture and classify NetFlow records to extract 

feature patterns for each PC on the network within a certain period of time. A feature pattern includes: No of DNS requests, no 

of DNS responses, no of DNS normals, and no of DNS anomalies. Two learning machines are used, K-Nearest Neighbors 

(KNN) and Naive Bayes (NB), for the purpose of classification. Solid statistical tests, the cross-validation and paired t-test, are 

conducted to compare the individual performance between the KNN and NB algorithms. We used the classification accuracy, 

false alarm rates, and training time as metrics of performance to conclude which algorithm is superior to another. The data set 

used in training and testing the algorithms is created by using 18 real-life worm variants along with a big amount of benign 

flows. 
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1. Introduction 
 

Worms' inventors are continuously inventing malicious 

codes. They caused loss of millions of dollars to 

businesses around the world. During the past 10-15 

years, there have been many instances of worm that 

were able to penetrate the defense systems in the 

Internet, such as the Code Red worm in 2001 [34], the 

Slammer worm in 2003 [15], the Sasser worm in 2004 

[1], the Strom botnet in 2007 [30], the Conficker [21] 

in 2008, and the Stuxnet worm in 2010 [14]. A 

computer worm is a self-replicating program which 

spreads stealthily over the network nodes by exploiting 

the software vulnerabilities. After sneaking into the 

network, the worm attacker remotely controls the 

infected hosts to launch its malicious tasks, such as 

stealing sensitive information, sending spam emails, 

and generating Distributed Denial-of-Service (DDoS) 

attacks.  

Since the damage of worms is steadily growing, 

worm detection research has become vital to the field 

of Network Security. The security community has 

adopted Network Intrusion Detection (NID) systems to 

defend worms which can be classified into two 

categories: content-based systems and behavior-based 

systems. Relying on a pre-compiled database of 

signatures, content-based systems explore the network 

traffic to catch ongoing attack's signature. Without 

discovering signatures,  these  systems  cannot  defend 
 

against attack. Therefore, content-based systems are 

not effective against unknown attacks. Considering the 

significant amount of human involvement and time 

consuming in discovering the worm's signature, many 

research efforts [6, 9, 18, 22] have been devoted to 

develop behavior-based systems which are more 

sophisticated. They directly analyze the network 

traffics, and consequently, detect the worms. However, 

reducing the false-positive and false-negative rates is 

still a challenging problem. Initially, the behavior-

based systems detect network statistical normals and 

anomalies to measure a “baseline”, an alarm system 

can trigger when there is a deviation from this 

“baseline”. 

To collect statistical information and build a 

“baseline”, the behavior-based NID systems inspect 

the payloads of every network packet to find known or 

unknown attacks [23, 26]. This task is now hard or 

even impossible due to high-speed lines, large number 

of packets, and the huge volume of packet information 

makes it too difficult to analyze. One option that has 

been recently attracted the attention of the researchers 

is IP-Flow-based technique. The IP-Flow is 

unidirectional chains of IP packets of TCP/UDP 

protocol travelling between a pair of IP addresses 

within a certain period of time. The flow information 

can be exported by using an export mechanism such as 

CISCO NetFlow [3] and sFlow [20]. CISCO NetFlow 

has become an industry standard for network traffic 
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monitoring and one of the most commonly used 

NetFlow versions is NetFlow 5. A NetFlow record 

contains wide variety of information that can be used 

for a variety of purposes including data warehousing, 

network monitoring, security analysis, etc. Although, 

the information carried by flows is limited to the 

network nodes interactions, the volume of flow records 

is extremely huge. However, the flow information can 

be used to build an effective NID system after being 

sampled and normalized. 

Recently, there has been a significant amount of 

research that uses IP flow information to train learning 

machine for the purpose of combating worms. The 

applications of machine learning techniques involve 

identifying a number of features of worms. The 

features are attributes of worms calculated over 

multiple packets. Then these features are used to train a 

classifier to build a classification model. Most research 

efforts in this area have been directed towards the 

following aspects: Removing the redundancy and noise 

from the data collected; performing efficient training 

for the classifier by using real variants of worms; 

identifying the most optimum classifier among the data 

mining classification algorithms. 

Our contributions to this research work are as 

follows: First we investigated whether using machine 

learning can detect variants of unknown worms. We 

extracted unique features from the NetFlow records for 

each host connected in a certain period of time. To 

avoid the redundancy and noise, the features were 

classified as: DNS request, DNS response, DNS 

normal, or DNS anomaly. (18) the most dangerous 

scanning and email worms have been used to train and 

test the classifiers. Second, we compared the individual 

performance between Naive Bayes (NB) and K-

Nearest Neighbors (KNN) machine learning classifiers 

to show any of the classifiers performs better. Our 

work is inspired by the work of Mesud et al. [13] to 

detect email worms. However, our approach is more 

comprehensive, it tries to detect both email and 

scanning worms. In addition, we have extracted 

different features which are unique and present in both 

types of worms. To show which algorithm is superior 

to another, we used the cross-validation and the paired 

t-test to track the performance of NB and KNN by 

using the classification accuracy, false alarm rates, and 

the training and prediction times as performance 

metrics.  

The reminder of the paper is organized as follows: 

Section 2 describes related work. Section 3 provides 

background information on scanning and email worms. 

Section 4 identifies briefly NB and KNN classifiers 

and details the feature set worm variants along with the 

system implementation. Section 5 explains the 

experimental approach. Results and discussion are 

presented in sections 6. Finally, section 7 concludes the 

paper and gives directions for future work. 

 

2. Related Work 
 

Although machine learning has already been used for 

detecting malicious attacks, the authors in [8] 

mentioned that there have been few attempts to use 

data mining techniques for the purpose of identifying 

unknown worms. However, the authors in [4] 

mentioned some research that has been done to 

compare the performance of machine learning methods 

in malware detection. A look at the literature reveals 

that the most of the machine learning-based research 

have been focusing on payload features to classify the 

malicious codes [10, 24, 25, 29]. The payload features 

that are extracted to train the classifiers in these 

approaches could be the variable length of instruction 

sequences, some strings, or the JUMP address. Several 

learning methods have been applied by the researchers 

such as: NB, Support Vector Machines (SVM), 

Instance-Based k (IBk), KNN, and Term Frequency-

Inverted Document Frequency (TFIDF).  It is obvious 

that these methods are not suitable for high speed 

networks as they require high processing to analyze the 

network packet payloads online. One of the most 

relevant to our work is [33] where the authors found 

that the worm actions grouped into 3 categories: 

Registry, file system, and network. They used SVM to 

classify malicious programs classification. However, 

our approach differs from their in that we consider the 

network activities to avoid installing the system on 

each network node to watch the Registry and file 

system. 

Using IP addresses by worms obviates the need for 

a DNS query [31]. Based on this idea, some research 

are devoted to detect scanning worms by studying the 

DNS traffic.  The method proposed by Whyte et al. 

[31], relies on the correlation of DNS queries with 

outgoing connections from an enterprise network to 

detect scanning worms. In 2008, Binsalleeh et al. [2] 

proposed a system that followed the same architecture 

in [31] but the new system performs online processing 

of TCP dump. In most of the above approaches, as in 

[2], the system inspects the network packet to find the 

DNS anomalies. This task is hard or even impossible 

due to high-speed lines, large number of packets, and 

the huge volume of packet information makes it too 

difficult to analyze. In fact, the main difference that 

distinguishes our work is our proposed system relies on 

IP-flow rather than network packets. 

The email worms also attracted the attention of the 

researchers. The methods in [16, 17] are straight-

forward with focus on the volume of DNS queries for 

Mail eXchange (MX) to detect email worm infections. 

Ishibashi et al. [7], proposes an approach for detecting 

worm based on prior knowledge of worm signature 

DNS queries. However, the problem of legitimate 

traffic that does not rely on DNS queries has not been 

resolved completely. This legitimate traffic could be 

originated by either normal users or network 
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applications. The authors in [31] suggested whitelist to 

address those clients that legitimately do not rely on 

DNS. The disadvantage of using whitelist is that it 

needs to be updated regularly to reflect changes to the 

network.  

 

3. Scanning Worms and Email Worms 
 

A worm is a malicious program that self-propagates 

across the networks by exploiting the software 

vulnerabilities. According to the way that is followed 

in finding new host to infect, the worms are 

categorized into four groups: Scanning Worms, Email 

Worms, P2P Worms, and Instant Messaging Worms. 

To limit our scope, we will consider two types of 

worms, scanning worms and email worms, and since 

we concentrate on the IP flows, the discussion will be 

limited to the flows generated during the life-cycle of 

these two types. Readers who are interested in worms 

and their categories can refer to [12, 27]. 
 

• Scanning Worms: The life-cycle of scanning worm 

consists of four phases: victim finding, transferring, 

activation, and infection. The scanning worm is 

active over the network in victim finding and 

transferring phases, while its activities are limited to 

local hosts in the other phases. Most worms use 

either blind or hit-list scanning strategies. In the 

former strategy, the worm has no knowledge about 

the targets while in the later strategy the worm 

knows where the victims are. In both strategies, the 

worms scan a TCP or UDP port on the targets to 

find a host that runs vulnerable software and 

penetrate it. This scanning process causes a 

dramatic increase in anomaly traffic rate which 

makes it possible for a vigilant NID system to catch 

the worm [27]. Table 1 shows examples of scanning 

worms along with their scanning ports and the 

software vulnerabilities that they utilize. 
 

Table 1. Examples of scanning worm. 
   

Worm Scanning Port Software Vulnerability 

CodeRed 2003 TCP 80 
Buffer overflow in ms index server 
or MS IIS 

Slammer 2003 UDP 1434 Buffer overflow in MS SQL server 

Sasser 2004 TCP 445 
Local security authority subsystem 
service LSASS 

Witty 2004 

Uses A UDP 

port to scan 

randomly 

generated list 

of  UDP ports 

Internet security systems 

(ISS) protocol analysis module 

(PAM) 

Doomjuice 

2005 
TCP 3127 

This worm spreads by entering 

systems through a backdoor created 

by the mydoom worm. 

 

• Email Worms: This kind of worms spread by using 

email messages. They spread through HTML links 

or an attachment. If the HTML link or the 

attachment is opened, the worm will infect the 

computer and propagates by emailing itself using 

the user's address book. Email worms, such as Sobig, 

NetSky, and MyDoom, are programmed to drop 

backdoors, launch DoS, and send documents via 

email. Recently, most of the email worms' victims 

become part of Botnet: a group of computers (bots) 

infected by malicious programs that cause them to 

operate against the owners' intention and without 

their knowledge [11]. A bot becomes active over the 

network when it launches DoS or SPAM attacks, 

and when it tries to contact other bots searching for 

an update. In all cases, it generates a significant 

amount of anomalous traffic. Storm and Conficker 

worms are among the most recent severe examples 

of this kind of worms. When a host infected by 

Storm worm, it receives an initial list of 290 

possible “peer nodes” from the botnet and attempts 

to contact each peer node to obtain more updated 

list of “peer nodes” [19]. The Storm's body contains 

a special function to turn the victim machine to a 

TCP/IP client to specify a TCP connection to each 

peer node. These connections evidently will 

generate significant amount of anomalous traffic in 

a few seconds.  
 

Almost the same behavior found in conficker worm. 

Within its life-cycle, the conficker generates randomly 

a list of 250 domain names (rendezvous points), and 

then it attempts to contact these domains [21]. When 

the contacted domain is available, conficker will send a 

URL request to TCP port 80 of the target IP. The aim 

of this request is to download a malicious Windows 

executable. If the domain is not connected to the 

Internet, conficker will check for connection every 60 

second. Based on our experiments, more than 1000 

TCP port 80 requests could be generated by an infected 

host within 20 minutes. Such number of requests for 

same port in a short period indicates that the host 

behaves abnormally. 

 

4. The Methodology 

4.1. Using Machine Learning (ML) to Detect 

Worms 
 

A learning machine is a computer program based on a 

specific mathematical concept designed to learn 

automatically from experience. The ML technique has 

been applied in a various applications including search 

engines, medical diagnosis, text and handwriting 

recognition, and so on. In 1994 ML was utilized for 

internet flow classification in the context of intrusion 

detection [32]. Most of the existing ML algorithms are 

fall into two categories: supervised and unsupervised 

learning algorithms. In the supervised learning the 

algorithm is provided with a collection of instances 

that are pre-classified into their desired classes. While 

the desired classes for all of the input instances are not 

known in the unsupervised learning. In this research, 

we investigate the performance of the KNN along with 

the performance of the NB. These two algorithms are 
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among the most influential data mining algorithms in 

the research community [28].  

We will briefly define the KNN and NB algorithms, 

readers interested in more information can refer to 

[28]. KNN algorithm is a straight-forward algorithm. It 

finds a group of K labels in the training set that are 

closest distance (nearest neighbors) to the unknown 

label. Then, the unknown label is classified by the 

majority vote in the KNN. The number of nearest 

neighbors, K, is considered as one of the most 

influential factors in the accuracy of the classification. 

For any given case, we need to set K to a large value in 

order to minimize the probability of misclassification 

and, at the same time, small value so that the K nearest 

labels are close enough to the right class. NB algorithm 

is based on the Bayesian theorem which finds the 

probability of an event occurring giving the probability 

on another event that has already occurred. The NB 

classifier is specially designed for binary classification 

problems. It is very easy to construct and in many 

cases it outperforms some sophisticated methods when 

dealing with huge data. 

Figure 1 shows the overall structure of our system 

that employs the KNN and NB classifiers. It contains 

three modules: data collecting, data sampling, and the 

classifier. The data collecting module collects the raw 

data and extracts the NetFlow information fields and 

then inserts these fields into a database. Table 2 shows 

the columns of the database that is used to store the 

NetFlow information. The data sampling module 

categorizes every database entry according to special 

rules into four categories: DNS requests, DNS 

responses, DNS normals, and DNS anomalies. Based 

on these four categories, the classifier will decide 

whether the traffic is benign or malicious. 

 

 
 

Figure 1. System structure. 

 

Table 2. Database columns used to store NetFlow records. 
 

Column Name Data Stored 

Timestamp The time of sending the packets 

SrcIP  Source IP 

DstIP Destination IP 

SrcPort Source port 

DstPort Destination port 

Pckts Number of packets 

Bytes Number of bytes 

Srvc Service 

L4 Pro Layer 4 protocol (TCP, UDP, ICMP, etc) 

TCPFlag TCP flags 

4.2. Feature Set 
 

Our set of features is based on our observations of 

scanning and email worms' behavior when they 

become active over the networks. As discussed in 

Section 3, a host infected by either type of worms 

initiates a significant amount of traffic that does not 

rely on DNS queries. Based on this fact, we extracted 

the features shown in Table 3 from the NetFlow 

records for each host connected to the network in a 

certain period of time. 
 

Table 3. The set of features we used to train SVM. 
 

Feature Explanation 

DNSREQ# Number of DNS requests initiated 

DNSRES# Number of DNS responses to DNS requests 

DNSNOR# 

Number of flows sent based on previous DNS resolve. In 

other words, number of flows sent by using fully qualified 

domain names. However, any flows sent after 500 

milliseconds of the last DNS resolve or they are not a 

DNSNOR tail are considered as DNS anomaly. 

DNSANO# 

Number of flows sent by a host without a DNS resolve. In 

other words, number of flows sent by using IP address 

rather than fully qualified domain name 

 

The features are extracted explicitly by the sampling 

module which operates on regular basis. The operation 

time periods can be customized according to the 

sensitivity of the network information and the 

possibility of being attacked. Throughout our 

experiments, we used setting between 60-120 seconds 

for the operation time period. The process of features 

extraction includes two steps: classifying and 

calculating. During the classifying step, for all the 

NetFlow records captured, sampling module 

investigates chronologically every record to classify it 

as: DNSREQ, DNSRES, DNSNOR, or DNSANO. The 

rules that were followed during the classification are 

described in Table 4.  
 

Table 4. The rules followed to classify every Netflow record. 
 

NetFlow Record The Condition 

DNSREQ 

IF  SrcPort is greater than 1023 

      & DstIP equals DNS server IP  

      & DstPort equals 53  

DNSRES 

IF SrcIP equals DNS server IP 

     & SrcPort equals 53 

     & DstIP equals IP that made a DNSREQ 

     & DstPort  equals port# that a DNSREQ was   

         sent from 

DNSNOR 

IF SrcIP = IP that made a DNSREQ and  

     has received DNSRES or it is a tail of  
     DNSNORs 

     & DNSREQ last time is less than DNS Age 

    (DNS Age = 500 milliseconds) 

DNSANO Otherwise 

 

According to Microsoft, the standard port for DNS 

server is 53 and the DNS request should be initiated 

from port number greater than 1023. The value of DNS 

Age 500 millisecond has been selected carefully after 

investigating about 500 DNS requests from different 

IPs. However, we used the DNS age as a variable to 

suit the different settings of networks. To facilitate the 

process of feature extraction, we cite some examples of 

NetFlow records in Table 5 along with their category. 
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Table 5. Examples of NetFlow records captured, it shows an explanation of feature extraction process. 
 

Type Timestamp SrcIP DstIP SrcPort DstPort .....  Justification 

DNSANO 4/1/2011 12:17.320 192.168.1.11 192.168.1.56 1105 5358 .....  
DNSANO because of no previous 

DNSREQ 

DNSREQ 4/1/2011 12:56.140 192.168.1.11 192.168.0.2 2115 53 .....  

DNSREQ because it has been sent from 

port# greater than 1023 to destination port 

of 53 on the server 

DNSRES 4/1/2011 12:56.165 192.168.0.2 192.168.1.11 53 2115 .....  
DNSRES because there was a DNSREQ 
within last 500 milliseconds from the same 

IP and port# 

DNSNOR 4/1/2011 12:56.210 192.168.1.11 192.168.1.13 138 230 ....  

DNSNOR because there was a DNSRES 

within last 500 milliseconds from the same 

IP 

DNSNOR 4/1/2011  12:56.610 192.168.1.11 192.168.1.13 138 230 ....  

DNSNOR because it is a tail for the 

previous DNSNOR within the last 500 

milliseconds 

 

After finishing the classifying step, the calculating 

step starts. This step is very simple and straightforward. 

It involves one function to calculate the number of 

DNSREQ, DNSRES, DNSNOR, and DNSANO 

records and create the Feature Pattern (FP) which 

represents the traffic activities initiated by a host 

within 120 seconds. The fp consists of four columns as 

in the following: 
 

fp(1)=DNSREQ# fp(2)=DNSRES# 

fp(3)=DNSNOR# fp(4)=DNSANO# 
 

Two different sets of worms' variants were used 

throughout the research. First, we created semi-real 

variants of Slammer and Storm worms for using them 

in developing and testing the software system. The 

semi-real variants of these two worms were created by 

injecting the Assembly language codes that are 

responsible for activating the worm into a customized 

program. The result was worms without harmful parts.  

Figure 2 gives an example of creating semi-slammer 

worm. The second set was 18 real-life variants 

obtained from a publicly available malware databases 

[5, 28]. We used these variants in training and testing 

KNN and NB classifiers. 

 

 

Figure 2. Assembly code that represents slammer’s pseudo-random 

number generator injected into delphi procedure. 
 

5. The Experiments 

5.1. Experiment Setup 

Before approaching the experiments, we built a virtual 

network environment by using GNS 3 0.7.1 and VMW 

are workstation 7.0.0 software to simulate the 

functions of 3600 CISCO router and two switched 

segments of network. The using of virtual environment 

aims at programming and testing the software system. 

After the completion of programming the system, we 

put the same design of the network on the ground to 

conduct the experiments. 

The real network design is used in training and 

testing the KNN and NB classifications. Figure 3 

depicts the network design used in our experiments. To 

make our setup closer to reality, we setup the domain 

server to act as: proxy server, DHCP server, and DNS 

server. We also allocated one PC to function as Oracle 

database server, one PC to function as web server, and 

one PC to provide a shared folder that hosts different 

software and documents. We inherited the system more 

comprehensiveness by installing Debian GNU/Linux 

4.0 on one PC. Furthermore, (5) students from IT 

specialty have been engaged to act as real network 

users. 
 

 
Figure 3. The experiment setup, two switched segments connected 

by a NetFlow enabled CISCO rout. 

 

5.2. Data Set 
 

Two different data sets were used, one for training and 

one for testing. The training data set was created by 

capturing 15 days NetFlow records. By more than 120 

hours, we captured 125661 NetFlow records and 
created 6017 feature patterns 50% of which were 

benign and 50% were malicious. On each capturing 

day, there were two working sessions. During the first 

session, we clean the network to ensure non-existence 

of worms, and then we capture the benign traffic. In 

the second session, we inject 10 worms to capture 

malicious traffic: CodeRed, Slammer, Sasser, Witty, 

Doomjuice, Sobig, NetSky, MyDoom, Storm and 

Conficker. To create a consistent worm model, we 

apply a special filter to exclude the unneeded traffic. 
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The main theme of this filter is relying on monitoring 

the DHCP server log file. According to Microsoft, 

typically, the DHCP logs are saved as text files in the 

folder of “C:\WINNT\System32 \DHCP” on DHCP 

servers with naming format of “DhcpSrvLog-*.txt”. 

From this log file we created a dynamic “node-living 

list” by collecting the event IDs: 10 (new lease) and 11 

(renew a lease) periodically. Any traffic initiated by a 

node that is not listed in “node-living list” will be 

excluded. For testing, we used a data set of 3000 

feature patterns created by capturing three days 

NetFlow records. First, we cleaned the network and 

captured 1500 benign feature patters. Then, we 

injected 11 real-life worms to create 1500 feature 

patterns: Welchia, Dabber, BlueCode, Myfip, Nimda, 

Sober, Bagle, Francette, Sasser, MyDoom, and 

Conficker. 

 

6. Results and Discussion 
 

This section discusses the results of comparing 

individual performance between KNN and NB 

classifiers. The comparison will be in terms of 

classification accuracy, false alarm rates, and training 

and prediction times. Initially, we establish the optimal 

KNN configuration to use in this comparison. 

6.1. Optimal Number of Nearest Neighbors 

As we mentioned in section 4-1, choosing K value is 

essential in building the KNN model. To estimate the 

value of K accurately, we used the n-fold cross 

validation technique. First, we divided the data set into 

10 folds of randomly selected instances, each fold 

contains 600 instances. Consequently, we performed 

10 iterations of training and testing such that 9 folds 

are used in each iteration for training and a different 

fold is held-out for testing. We repeated these 10 

iterations 7 times on 7 different K values, 5, 7, 11, 15, 

23, 25, and 29. Figure 4 shows how the classification 

accuracy is affected by the number of neighbors. The 

results show that the optimal value of K is 11 or 15 for 

a training data size of 6000 instances. 
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u
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%
) 

5 7

11 15
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50.00
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70.00

80.00

90.00

100.00

110.00

3 13 23 33  
           Neighbors # 

Figure 4. Impact of the number of neighbors (K) on the accuracy of 

KNN for a training data size of 6000 instances. 

 

6.2. Comparison of KNN and NB Algorithms 

Equipped with the optimal value for K=11, we 

compare the KNN and NB classifiers in terms of 

classification accuracy, false alarm rates, and training 

and prediction times. We performed 6 phases of 

training by using different data set sizes ranged from 

1000-6000 instances. After each training phase, we 

tested the model by using dataset of 3000 instances, 

1500 benign instances and 1500 malicious instances. 

Table 6 shows classification accuracies that resulted 

from these tests. 
 

Table 6. The classification accuracy of KNN and NB on different 

dataset sizes. 
 

Training Data 

Size 

Classification Accuracy (%) 

KNN NB 

1000 89.04 89.17 

2000 88.97 85.84 

3000 88.97 85.67 

4000 88.97 85.64 

5000 98.07 94.94 

6000 98.07 96.97 

 

To confirm which algorithm performs better, we 

conducted a two-sample statistical hypothesis test to 

compare the mean of above results. Initially, we put a 

null-hypothesis assumption that the two algorithms 

perform evenly. Then, we started gathering facts 

against this assumption. Using the “classification 

accuracy” as a predetermined performance metric, we 

used the paired t-test to show which algorithm, KNN 

or NB, is superior to another. The data shown in Figure 

5 represents the results of the paired t-test. 

 
  KNN NB 

Mean: 92.011 89.700 

Variance: 22.011 25.643 

Observations: 6 6 

Pearson Correlation: 0.96  

Hypothesized Mean Difference: 0  

Df: 5  

t Stat: 3.857  

P(T<=t) one-tail: 0.006  

t Critical one-tail: 2.015  

P(T<=t) two-tail: 0.012  

t Critical two-tail: 2.571  
 

Figure 5. The results of t-test: Paired 2 samples for the means of 

classification accuracy.  

 

As shown in Figure 5, the value of “t Stat” is greater 

than “t Critical two-tail”. Also, the probability that our 

hypothesis is true, “P (T<=t) two-tail”, is smaller than 

Alpha (0.05). Therefore, we reject the hypothesis and 

simply we can say that there is a significant difference 

between the classification accuracies, and by 

comparing the mean values, 92.011 and 89.700, we 

conclude that the KNN algorithm performs better than 

NB on our particular data set. Figure 6 compares 

graphically the KNN and NB classification accuracy. 

The graph confirms that the KNN being slightly more 

accurate than the NB. The graph in the Figure 7 

compares the false alarm rates for the KNN and NB. 

For each training data size, the number of false alarms 

is the average of false-positives and false-negatives. 
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The results confirm that the NB suffers from a 

considerably higher number of false alarms for our 

particular data. Arguably, the training time is not a key 

performance measure since it can be done offline. 

While the prediction time is essential since we tend to 

have a prompt classifier that has ability to set an alarm 

in the very first moment of worm attack. The KNN is 

constantly outperformed by NB in terms of prediction 

time as it is much slower in prediction. In each 

prediction attempt, the KNN performs a calculation of 

the distance between the unknown class and all of the 

instances in the date set. However, the training and 

prediction times highly depend on the number of 

features for each instance as well as the training data 

set size. 
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Figure 6. Comparing the KNN and NB classification accuracy on 

different sizes of data set. 
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Figure 7. Comparing the KNN and NB false alarm rates on 

different sizes of data set. 
 

7. Conclusions and Future Directions 

In the worm detection research field, the ML and IP 

flow techniques have showed encouraging outcomes. 

We have investigated the optimal leveraging of the 

effectiveness of machine learning and the reliability of 

NetFlow data captured. We have demonstrated that the 

NetFlow data captured, after being properly sampled 

and analyzed, can be used for setting an alarm for a 

worm attack and consequently identifying the source 

of the suspicious payloads. For the classification 

purpose, we have employed two learning machines, 

KNN and NB. These two algorithms are among the 

most influential data mining algorithms in the research 

community. Both algorithms have demonstrated high 

performance and good accuracy rates. However, our 

statistical tests conclude that the KNN algorithm is 

slightly more accurate than the NB when using our 

particular data set, but the NB algorithm is much faster 

in terms of prediction time. To overcome our work 

limitations, the future work will focus on enhancing 

the feature pattern and increasing the entries of the 

training and testing data sets to detect P2P worms and 

Instant Messaging worms. 
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