
116 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

A New Hybrid Architecture for the Discovery and

Compaction of Knowledge: Breast Cancer

Datasets Case Study

Faten Kharbat
1
, Mohammed Odeh

2
, and Larry Bull

2

1
College of Business Administration, Al-Ain University of Science and Technology, UAE

2
Department of Computer Science & Creative Technologies, University of the West of England, UK

Abstract: This paper reports on the development of a new hybrid architecture that integrates Learning Classifier Systems

(LCS) with Rete-based production systems inference engine to improve the performance of the process of compacting LCS

generated rules. While LCS is responsible for generating a complete ruleset from a given breast cancer pathological data-set,

an adapted Rete-based inference engine has been integrated for the efficient extraction of a minimal and representative ruleset

from the original generated ruleset. This has resulted in an architecture that is hybrid, efficient, component-based, elegant,

and extensible. Also, this has demonstrated significant savings in computing the match phase when building on the two main

features of the Rete match algorithm, namely structural similarity and temporal redundancy. Finally, this architecture may be

considered as a new platform for research on compaction of LCS rules using Rete-based inference engines.

Keywords: Hybrid architecture, LCS, rete algorithm, production systems.

Received June 6, 2012; accepted October 29, 2012; published online January 29, 2013

1. Introduction

Learning Classifier Systems (LCS) [13] and

Production Systems (PS) were two of the main issues

that have been investigated in Artificial Intelligence

(AI) over the last three decades. PS is a model of

knowledge representation [18] which was applied on

many real expert system applications, and used to build

expert system shells, such as CLIPS [10] and Jess [8].

LCS is a rule-based system which uses evolutionary

algorithms to facilitate rule discovery [5]. It has been

applied to different data mining problems and shown

effectiveness in both predicting and describing

evolving phenomenon [15]. However, in the real-

domain environments, having generated describable

rules, LCS needs further step in which a subset of

minimal number of rules is to be found that still can

describe the environment. In other words, a

compaction process is required over the rules

generated as an output of the classifier system.

A number of approaches have been attempted to

develop a sufficient compaction algorithm where a

minimal subset of rules can be extracted with minimal

run time required. However, these attempts suffer from

the same deficiency in terms of poor performance. This

work discusses how production systems cycles can be

utilized to improve the performance of the compaction

process. A three-phased hybrid architecture has been

developed that utilizes the Recognize-Act-Cycle

(RAC) used by PS inference engines, and in particular

adapting the Rete match algorithm to improve the

previous compaction algorithms resulting in an elegant

and promising approach to compacting LCS generated

rules. A brief introduction to PS is introduced in

section 2, followed in section 3 by a brief description

of learning classifier systems’ structure, and XCS in

particular. A brief description of the main compaction

algorithms cited in the literature is described in section

4. Finally, section 5 reports on the implementation of

the new approach followed by critical evaluation of the

results achieved.

2. Production Systems

Over the last three decades, AI has been the aim of

many researchers particularly in the field of expert

systems or knowledge-based systems. The production

system represents a model of knowledge representation

that is mostly applied in real applications of expert

systems; e.g., R1/XCON in configuring computer

systems [21], and MYCIN [20] in diagnosing bacterial

infections of the blood.

In general, the architecture of a production system

consists of three components: working memory,

production memory, and the inference engine. The

working memory (also called fact base) is the

collection of facts (cases), which could be any

information collected by the knowledge engineer or

extracted from information systems.

Production Memory (or Rule-Base) consists of a set

of rules (productions) that represent domain-specific

and problem-solving knowledge Gonzalez and Dankel

A New Hybrid Architecture for the Discovery and Compaction of Knowledge: Breast Cancer … 117

[11]. Each rule has a name and can be expressed by If-

Then statement. The if-part is the Left Hand Side

(LHS), which is also called condition part, or the

antecedent. It consists of one or more of condition

elements. The then-part, which is called the Right

Hand Side (RHS), consequent or action- consists of

number of actions. The action behavior may affect the

working memory by inserting, deleting, or modifying

any of its elements.

The inference engine is the production system

interpreter that executes rules. Two well-known

inferencing methods are used in production systems:

forward and backward chaining. Forward chaining is

reasoning from facts to conclusion, whereas the

backward chaining is the reverse reasoning i.e., from

the hypotheses to their supporting facts [10]. The

approach adopted in this paper is based on the forward

reasoning model which will be explained in the next

section.

2.1. The Recognize-Act-Cycle

In the forward reasoning, the inference engine

execution model is a three-phase cycle of: Match;

conflict resolution, and; act phases [11] as shown in

Figure 1. This cycle is commonly referred to as the

RAC, select-executed-cycle, or situation-action-cycle

[10].

Figure 1. The RAC.

In the match phase, the inference engine evaluates

the condition elements of all production rules

againstthe current Working Memory elements

according to a predefined match algorithm, for

example the Rete algorithm. In other words, the rule

base is compared to the fact base to determine which

rules are applicable. The applicable rules are

instantiated (activated) and grouped to form the

conflict set.

Rete algorithm was introduced by [7] as an efficient

match algorithm and since then it has been used as the

match algorithm in many production systems and

expert systems shells; e.g., CLIPS, Jess and others. The

main advantage of Rete algorithm is its performance

gain over previous match algorithms as it avoids

redundant match iterations between working memory

(facts) and production memory (rules) as fully

explained in [7]. More precisely, it exploits two

important characteristics of the rules in most

production system programs.

Temporal redundancy: this refers to the fact that

executing rules would change only few working

memory elements (facts) (3-4 on average). When a

new working memory element is matched against the

rule-base, match results are stored and subsequent

changes take place only when this working memory

element gets changed. Hence, this results in

performance gains when few working memory changes

take place and match results of previous cycles have

been saved.

Structural similarity: this refers to the structural

similarity between patterns in the LHS of more than

one production (rule). Rete makes the most of this

feature by indexing the patterns in a tree-structured

data-flow network [7].

The output of the match phase is the input to the

conflict resolution phase, where the conflict set is

sorted in descending order by the rule’s priority which

is assigned for each rule according to predefined

conflict-resolution strategy (for example depth

strategy). The agenda (which is the ordered conflict

set) is used in a similar way to a stack, where the top

instantiated rule is the first one executed, where only

one rule is selected for execution per production

system cycle. This happens in the third phase, namely

the Act phase, where the RHS of the selected rule

instantiation is executed. Each action in the RHS is

one of the following four possibilities:

1. Adding a new fact to the fact-base and/or a new

rule(s) to the knowledge base;

2. Modifying an existing fact;

3. Explicit deletion of a working memory element, or;

4. Halting the inference engine. The inference engine

also halts if the conflict set is empty, i.e., no more

rule instantiations exist to be selected for firing.

3. Learning Classifier Systems

LCS is a rule-based learning system that evolves

evolutionary computation techniques, reinforcement

learning, and other heuristics to generate an optimal set

of rules for a given environment [5]. The first LCS

architecture, namely CS-1, was introduced by [12].

However, this system was both complex and difficult

to predict its behavior [28]. In [23], built on his

Animate, in which Boole [24], New Boole [4], ZCS

[26], and XCS [27] were refined. However, it may be

118 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

said that most current LCS research has made a shift

away from Holland’s original formalism after Wilson

introduced XCS.

3.1. XCS

XCS uses the accuracy of rules’ predictions of

expected payoff as their fitness. In addition, XCS uses

Genetic Algorithms (GA) [14] to evolve

generalizations over the space of possible state-action

pairs of a reinforcement learning task with the aim of

easing the use of such approaches in large problems,

i.e., those with state-action combinations that are too

numerous for an explicit entry for each. It can also

avoid problematic ’overgeneral’ rules that receive a

high optimal payoff for some inputs, but are sub-

optimal to other lower payoff inputs. Further details on

XCS can be found in [27].

XCS consists of a limited size population [P] of

classifiers (rules). Each classifier is in the form of “IF

condition THEN action” and has a number of

associated parameters. The condition may consist of

binary representation for simple problems, integer

intervals [25], real values [29], or combination of these

for more complex one. One of the main measurements

in LCS is the performance which is the percentage of

the correct classifications that the classifier system

performs during its testing phase.

LCS in general and XCS in particular were applied

to different data mining problems. It was shown that

LCS could be effective for predicting and describing

evolving phenomenon, in addition to its modeling

ability [15]. In [19], applied XCS to the Monk datasets

showing that, with an appropriate representation, XCS

was able to solve these problems as accurate as or

better than other competitive machine learning

algorithms. Similar task was done in [1, 2, 6] on

further data mining tasks drawn from the UCI

Repository [3].

Moreover, Wilson [22, 25] applied XCS to a

medical dataset, namely the WBC Dataset, and showed

that XCS can tackle real complex learning problems, in

addition to its capability to deal with different

representations. Also, XCS was tested on other

datasets in [2] and showed to have a competitive

performance in both training and testing phases.

3.2. Case Study: The Wisconsin Breast Cancer

Dataset

Wisconsin datasets are three well-known breast cancer

datasets from the UCI Machine Learning Repository

[3]:

1. Wisconsin Breast Cancer (WBC) Dataset which

describes clinical images taken from fine needle

biopsies of breast masses.

2. Wisconsin Diagnostic Breast Cancer Dataset

(WDBC) which describes 30 characteristics of the

cell nuclei present in each image.

3. Wisconsin Prognostic Breast Cancer Dataset

(WPBC) which has follow-up data on breast cancer

cases.

The development of WBC started in 1989 in

Wisconsin University Hospitals by Dr. William

Wolberg, and since then it has been heavily used as a

test bed for machine learning techniques [17]. It

consists of 699 test cases, in which 16 cases have a

missing value. Every case has nine integer attributes

associated with the diagnosis. Also, each attribute

ranges between 1 and 10 while the diagnostic

parameter (action) has binary possibilities as either

malignant (34.5%), or benign (65.5%). The attributes

are: Clump Thickness, Uniformity of Cell Size,

Uniformity of Cell Shape, Marginal Adhesion, Single

Epithelial Cell Size, Bare Nuclei, Bland Chromatin,

Normal Nucleoli and Mitoses. Figure 2 shows the

prediction accuracy of XCS over the WBC (average

and standard deviation) compared to other learning

algorithms showing the efficiency and ability of XCS

to tackle real complex problems. In this research, WBC

dataset has been used as the test bed to study and

evaluate the outcomes of the new LCS compaction

approach, namely Compaction using Recognise-Act

Cycles (CRAC) [2].

Figure 2. Prediction accuracy of XCS and other learning algorithms

on the WBC.

4. Approaches to LCS Rule Compaction

• Goals of LCS Rule Compaction

XCS has been showing encouraging results in different

domains in terms of its capability to produce a

maximal, general, correct solution for a given

environment. The huge size of the generated solution,

however, may still be considered as a barrier to exploit

its entire knowledge. For example, more than 1100

rules were generated when WBC dataset was applied

to XCS [25].

The main objective of applying real-domain

problems to LCS is to provide the domain experts with

a complete, minimal, readable solution with an

organized underlying knowledge that have the ability

to describe the given environment. “Complete” is one

of the proved characteristics connected to XCS [16]

which means that XCS is able to describe all regions of

the input/action space (complete map) for the given

environment. However, by increasing the number of

rules describing the environment, overlapped patterns

are allowed to exist, which conflict with the second

term: “minimal”. In other words, there will be some

regions in the environment that are described and

A New Hybrid Architecture for the Discovery and Compaction of Knowledge: Breast Cancer … 119

covered by more than one rule (or pattern). Actually,

some of the real-domain problems require an

overlapping solution by their nature of complexity, but

the point is with the unnecessary overlapping that

could be avoided.

One of the other main problems caused by the huge

number of rules is presenting these rules to an expert.

This violates the third term: “readable” due to the over

expected number of rules that make it impossible to

comprehend them smoothly or make the maximum

benefit of them. For example, providing a breast cancer

specialist with 1100 rules describing the 700 WBC

cases may not be easily comprehendible to make use of

the underlying hidden knowledge for better

understanding and enrichment of breast cancer

knowledge.

Therefore, developing a compaction algorithm that

addresses the above dimensions is essential to increase

the level of rules readability, interpretation, and

organization of the underlying knowledge held in

them. The main algorithms attempted to compact LCS

rules are: Wilson's [22], Dixon, Wolfe and Oates [6],

Fu and Davis [9], and Wyatt, Bull and Parmee [30]. In

general, the main observation on these previous

attempts is that they all aim to select the minimum

number of rules that cover the dataset to produce a

minimal subset from the generated rules that describe

the original dataset on which LCS was initially trained

and further tested.

In summary, the importance of the compaction step

has been addressed as an essential post-phase in LCS

computations. The simplest algorithm was of Dixon,

Wolfe, and Oates which has a polynomial run-time

complexity rather than exponential as in the algorithms

of Wilson, and Fu et al. ones. Wyatt, Bull and Parmee

modification considered to be a performance

improvement to the latter ones. But, since the above

algorithms use a simple match algorithm (mainly the

XCS one), the acceptance of these algorithms is

expected to be severely affected by the excessive low

performance of matching. The next section addresses a

solution to the shortcomings outlined above building

on the well-know Rete match algorithm.

5. Compaction Using Recognize Act Cycle

As mentioned above, one of the main disadvantages of

the previous compaction algorithms is their

dependency on the simple classical match algorithm

(i.e., the classifier system’s match algorithm) which

implies that each fact is tested against all the ruleset

whenever performance of this ruleset is calculated to

result in a redundant match procedure without saving

any predecessor previous and similar matches. As a

consequence, the run-time cost for these algorithms

grows massively. This can be easily observed, for

example, in Wilson’s algorithm to require more than

two hours running over 1100 rules and 700 facts.

Figure 3 illustrates the general architecture of the

proposed approach which integrates the two systems:

1. Learning classifier system to generate a maximally

general ruleset describing the underlying problem;

2. Production System Inference Engine, enabled by its

RAC to compact LCS generated rules using one of

the algorithms described in the previous section.

 Figure 3. Architecture of the new CRAC approach.

This new approach, CRAC replaces the match

algorithm used in the above compaction algorithms by

Rete, the highly efficient match algorithm described in

section 2, using the LCS rules to generate a minimal

set of organized and representative knowledge. In

implementing the CRAC approach, XCS is used as the

LCS, and Jess shell as the production system shell with

one of the previous compaction algorithm specifies the

conflict resolution strategy.

Java expert system shell (Jess) [8] is one of the

developed expert system shells, which was written in

java and developed in the late 1990s. Since then a

number of AI applications have been written in Jess

considering the support of the forward and backward

reasoning by its inference engine. Also, having

additional functionalities than other shells, the ability

to control Jess reasoning engine thro java and to

integrate with other java programs via its well defined

API are considered to be a very strong features.

The implementation of the hybrid architecture

consists of three phases shown in Figure 4. The first

stage starts by converting the existing rules, which

were generated by LCS (XCS), to match the PS (Jess)

syntax as well as translating the WBC dataset cases

into its equivalent Jess format, based on a predefined

and customized template. This is done by a

transformation engine especially designed and

developed for this purpose as described in phase 1 of

Figure 4.

Having converted the syntax of the rules and facts to

their equivalent Jess format, Jess’s inference engine

starts, in the second phase, where the adapted LCS

rules are matched against the facts to build a data-flow

network in which each node represents a condition

element of the LHS (conditions) of each rule.

Successive match results of facts against condition

elements of the LHS of rules are stored saving a

significant re-computation match time in subsequent

inference engine cycles (i.e., RAC). In other words, the

output of this phase is a data-flow network in which

120 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

the condition elements of the rules are indexed along

with associated matched facts.

Figure 4. CRAC: Three phase hybrid architecture.

Based on one of the previous compaction

algorithms, the conflict resolution phase sorts out its

conflict set to determine the rules’ execution order as

shown in Figure 4-phase three. Each execution affects

the Rete tree structure which forces the inference

engine to reconstruct the affected part and not the

whole tree since it is an indexed tree. In fact, this can

be explained by the Rete exploitation to the

characteristic of the temporal redundancy as explained

before.

Typically, the system halts if the conflict set is

empty and the compacted ruleset should be extracted.

Bellow is the description of the previous compaction

algorithms when they are implemented by the new

approach CRAC. In brief, storing successive

matchresults of facts against condition elements of

rules save a significant re-computation match time in

subsequent inference engine cycles where redundant

match computations are performed and wasted from

cycle to cycle in the previous match algorithm.

• Knowledge Representation of LCS Rules using Jess

In Jess, the deftemplate construct is used to specify the

structure of data and its properties. Each template has a

name and number of slots, where each represent a

certain property. Jess does not seem to have a limit on

the number of templates and associated slots. The

general syntax of deftemplate in Jess is:

 (deftemplate <template name> (slot <slot name>) +)

To add new data element into the working memory,

the assert construct is used with the required template

name and asserted attribute values as follows:

(assert(<template name> (<slot name> <slot value>)+))

The two templates used in the CRAC implementation

are:

1. Breast-tissue in which the properties of the WBC

cases are included. Figure 5 shows the structure of

the breast-tissue template and an associated assert

statement.

2. Rule-property in which the XCS rules’ properties

are described to be used within the PS. PN is the

payoff numerosity product for the rule. It is used

instead of calculating it each time as shown in

Figure 6.

Figure 5. The breast-tissue template structure and an assert example.

A New Hybrid Architecture for the Discovery and Compaction of Knowledge: Breast Cancer … 121

 (deftemplate rule_property

(slot ruleNo) (slot action) (slot payoff)
(slot error) (slot fitness)(slot numerosity)

(slot experience) (slot PN))

Figure 6. The structure of rule-property template.

The formal way to express rules in Jess is by using

defrule construct. Each rule has a name and body

where the if-then block is specified.

6. Evaluation and Analysis of CRAC

Implementation

In CRAC and when using the Rete match algorithm to

replace the match computations in each of the

previously discussed compaction algorithms results in

a number of advantages ranging from significant

performance gain to better explanation and readability

of generated LCS rules. To study the effect of

exploiting Rete algorithm compared to the simple

classical match algorithm used in the above

compaction algorithms, we use the following simple

rules:

1. If X=2 & Y=5 & Z=3 then Action1

2. If X=2 & Y=5 then Action2

Figures 7-a and 7-b illustrate the application of the two

match algorithms when matching rules 1 and 2.

Although, the two rules have only two similar

condition elements (X=2 and Y=5), the simple

classical match algorithm handles them separately so

that each fact should be matched to five condition

elements (X=2, Y=5, Z=3, X=2, and Y=5) as shown in

Figure 7-a. On the other hand, Rete match algorithm

exploits the LHS structural similarity of rules and

builds its tree with only three condition elements

reducing the cost of initial matching of condition

elements by a factor of 3/5 without considering the

most common cases of rules having complex condition

elements with multiple features (or tests) that are

similar across the ruleset as can be strictly observed in

LCS generated rules over the breast cancer dataset.

And, exploiting Rete match algorithm in CRAC has

shown some significant gain in performance compared

to the simple classical match algorithm used within the

space of applying compaction. This can be evident

when the matching phase gets repeated using high

number of cycles, where redundant match

computations are performed and wasted from cycle to

cycle. For example if ten facts are matched to the

above two rules, the simple classical match algorithm

will have to perform 50 matching tests, whereas Rete

algorithm performs only 30. In fact, in the case of the

WBC generated ruleset, there are more than 361,000

similar patterns in the 1100 rules. While this paper is

not about analyzing the complexity of Rete match

algorithm, the simple classical match algorithm

requires excessive computation time compared to Rete

and this is expected to rise exponentially with the

increasing number of facts and rules. In addition to the

similarity structural advantage, the proposed approach

makes use of Rete network in storing information

about both the rules and their associated satisfied facts.

Therefore, the time needed in the match process is

reduced significantly since the stored information is

used in the subsequent matches instead of re-matching

the patterns with facts again.

a) Rete. b) Algorithm in representing

 rules.

Figure 7. The behavior of the simple classical match.

As explained in the previous section, each

production system cycle execution (RAC) in Jess

affects some minimal part of the corresponding Rete

tree of the LHSs of the ruleset. This leads the inference

engine to update only the affected part rather than the

whole inference tree. This is because matching the

facts to the patterns in rules is done only once during

initial stage when the indexed tree is built followed by

few changes to the memory nodes in the Rete tree as a

result of adding new facts, and/or modifying or

deleting existing matched facts.

The performance of the compaction algorithms

discussed earlier has been compared both when using

the CRAC (Rete-based) and the stand-alone

implementation of these algorithms based on the

simple classical match algorithm. Table 1 presents the

execution results of both approaches when compacting

the generated rules from running XCS over the original

WBC dataset.

Table 1. The execution time for the compaction algorithms.

Compaction

Algorithms

Execution Time (in Minutes)
Speed up

Factor(T2/T1)
 T1: CRAC

(Rete Based)

T2: Simple

 Match

Wilson ~36 ~180 5

Dixon et al. ~35 ~2 .06

Fu & Davis ~36 ~150 4.17

Table 1 provides some strong indication on the

possible speed up factors that can be obtained from

implementing the compaction algorithms of Wilson,

Dixon et al. and Fu & Davis using the new CRAC

approach. In particular, the speed up factor obtained

reached is 5 times as can be observed in the case of

Wilson CRAC based implemented. Moreover, this

speed up is expected much higher if larger number of

rules/facts are used given that the cost of matching

using the simple match algorithm expected to rise

122 The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014

exponentially. Furthermore, the cost of computing

match consumes 75% of the total execution time. In

the case of the CRAC approach, the majority time of

the time is spent in building the Rete tree for the first

time. For example, building the Rete tree in Wilson

algorithm took about 30 minutes where the rest of

computations accounted only for only 6 minutes. This

simply implies that the cost of constructing the Rete

match tree in the first execution consumes most of the

total execution time.

Furthermore, simple and classical match algorithms

spend more than 90% of their total run-time in

matching patterns [7] since the whole matching

process gets repeated because of redundant match

computations. However, Dixon et al. algorithm is a

special case as shown in Table 1 since the matching

phase occurs only once and this explains the efficient

performance of this algorithm compared to the CRAC

implementation. We simply attribute the higher

computation cost in the Dixon et al. CRAC based

implementation to the cost of constructing the Rete

match tree.

7. Conclusions and Future Work

In summary, integrating LCS with CRAC results in an

efficient hybrid architecture to compact knowledge

discovery that is component-based, elegant, and

extensible. Also, this architecture acts as bridge

between LCS research and efficient execution of

production systems. While LCS is responsible for

generating a complete map solution for a given

environment, CRAC works on the efficient extraction

of a minimal ruleset from the original LCS generated

ruleset. The results, so far, show that the new hybrid

architecture was able to achieve competitive results in

terms of run-time complexity.

In addition, integrating Rete match algorithm in the

compaction process has shown significant run-time

results in the form of significant savings in computing

the match stage. This is because Rete builds on the two

main characteristics, structural similarity and temporal

redundancy. Finally, this architecture may be

considered as a new platform for research on

compaction of LCS rules using Rete-based inference

engines.

8. References

[1] Bernado E., Llorà X., and Garrell J., “XCS and

GALE: A Comparative Study of Two Classifier

Systems with Six other Learning Algorithms on

Classification Tasks,” in Proceedings of the

International Workshop on Learning Classifier

System, London, pp. 115-132, 2001.

[2] Bernado E., Llora X., and Garrell J., “XCS and

GALE: A Comparative Study of Two Learning

Classifier Systems on Data Mining,” in

Proceedings of the 4
th
 International Workshop,

Advances in Learning Classifier Systems, Berlin,

Germany, vol. 2321 pp. 115-132, 2002.

[3] Blake C. and Merz C., “UCI Repository of

Machine Learning Databases,” available at:

http://www.ics.uci.edu/~mlearn/MLRepository.

html, last visited 1998.

[4] Bonelli P., Parodi A., Sen S., and Wilson S.,

“NEWBOOLE: A Fast GBML System,” in

Proceedings of International Conference on

Machine Learning, USA, pp. 153-159, 1990.

[5] Bull L., Applications of Learning Classifier

Systems, Springer, 2004.

[6] Dixon P., Corne D., and Oates M., “A Ruleset

Reduction Algorithm for the XCS Learning

Classifier System,” in Proceedings of the 5
th

International Workshop, Learning Classifiers

Systems, Spain, pp. 20-29, 2003.

[7] Forgy C., “Rete: A Fast Algorithm for the Many

Pattern/Many Object Pattern Match Problem,”

Artificial Intelligence, vol. 19, no. 1, pp. 17-37,

1982.

[8] Friedman-Hill E., Jess in Action Java Rule-Based

Systems, USA, 2008.

[9] Fu C. and Davis L., “A Modified Classifier

System Compaction Algorithm,” in Proceedings

of the Genetic and Evolutionary

Computation Conference, USA, pp. 920-925,

2002.

[10] Giarratano J. and Riley G., Expert Systems:

Principles and Programming, Course

Technology, USA, 1998.

[11] Gonzalez A. and Dankel D., The Engineering of

Knowledge-Based Systems: Theory and Practice,

Prentice-Hall, USA, 1993.

[12] Holland J. and Reitman J., “Cognitive Systems

Based on Adaptive Algorithms,” in Proceedings

of ACM SIGART Bulletin, USA, pp. 49-49, 1977.

[13] Holland J., Progress in Theoretical Biology IV,

Academic Press, pp. 263-93, 1976.

[14] Holland J., Adaptation in Natural and Artificial

Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial

Intelligence, Bradford Book, 1992.

[15] Holmes J., Lanzi P., Stolzmann W., and Wilson

S., “Learning Classifier Systems: New Models,

Successful Applications,” Information

Processing Letters, vol. 82, no. 1, pp. 23-30,

2002.

[16] Kovacs T., “XCS Classifier System Reliably

Evolves Accurate, Complete, and Minimal

Representations for Boolean Functions,” in

Proceedings of Soft Computing in Engineering

Design and Manufacturing, England, UK, pp. 59-

68, 1997.

[17] Mangasarian O. and Wolberg H., “Cancer

Diagnosis via Linear-Programming,” SIAM

News, vol. 23, no. 5, pp. 1-18, 1990.

A New Hybrid Architecture for the Discovery and Compaction of Knowledge: Breast Cancer … 123

[18] Odeh M., Concurrent Object-Oriented Execution

of OPS5 Production Systems, University of Bath,

UK, 1993.

[19] Saxon S. and Barry A., “XCS and the Monk's

Problems,” in Proceedings of Learning Classifier

Systems, Berlin, Germany, vol. 1813, pp. 223-

242, 2000.

[20] Shortliffe E., Computer-Based Medical

Consultations: MYCIN, Elsevier, USA, 1976.

[21] Soloway E., Bachant J., and Jensen K.,

“Assessing the Maintainability of XCON-IN-

RIME: Coping with the Problems of a VERY

Large Rule-Base,” in Proceedings of the

International Conference on Artificial

Intelligence, USA, pp. 825-829, 1987.

[22] Wilson S., “Compact Rulesets from XCSI,” in

Proceedings of the 4
th
International Workshop on

Learning Classifier Systems, London, UK, pp.

197-210, 2001.

[23] Wilson S., “Knowledge Growth in an Artificial

Animal,” in Proceedings of the 4
th
 Yale

Workshop on Applications of Adaptive Systems

Theory, USA, pp. 98-104, 1985.

[24] Wilson S., “Quasi-Darwinian Learning in a

Classifier System,” in Proceedings of the 4
th

International Workshop on Machine Learning,

USA, pp. 59-65, 1987.

[25] Wilson S., “Mining Oblique Data with XCS,” in

Proceedings of the 3
rd
 International Workshop,

Learning Classifier Systems, France, vol. 1996,

pp. 158-174, 2001.

[26] Wilson S., “ZCS: A Zeroth Level Classifier

System,” Evolutionary Computation, vol. 2, no.

1, pp. 1-18, 1994.

[27] Wilson S., “Classifier Fitness Based on

Accuracy,” Evolutionary Computation, vol. 3,

no. 2, pp. 149-175, 1995.

[28] Wilson S. and Goldberg D., “A Critical Review

of Classifier Systems,” in Proceedings of the 3
rd

International Conference on Genetic Algorithms,

USA, pp. 244-255, 1989.

[29] Wilson S., “Get Real! XCS with Continuous-

Valued Inputs,” in Proceedings of Learning

Classifier Systems, Berlin, Germany, vol. 1813,

pp. 209-219, 2000.

[30] Wyatt D., Bull L., and Parmee I., “Building

Compact Rulesets for Describing Continuous-

Valued Problem Spaces using a Learning

Classifier System,” in Proceedings of Adaptive

Computing in Design and Manufacture VI,

London, UK, pp. 235-248, 2004.

Faten Kharbat is an assistant professor in Artificial

Intelligence at the Al-Ain University, Abu Dhabi

Campus, UAE. She holds PhD degree in computer

science from the University of the West of England,

UK, in 2006. Her main research interest are learning

classifier systems, applying ontology into translation

engines, knowledge based systems, applying data

mining techniques to marketing, and recently is

involved in quality of higher education.

Mohammed Odeh is senior lecturer

in software engineering and

associate of the Complex

Cooperative Systems Centre at the

University of West of England,

Bristol, UK. He holds PhD degree in

computer science from the

University of Bath, 1993 in addition to PG Cert in

Higher Education and membership of ACM and ILT.

He has more than 20 years of experience including

extensive project management experience in planning

and leading a range of IT related projects in addition to

management posts. He is the UWE principal

investigator on the Onto REM knowledge exchange

partnership with Airbus, and the SoAgile project being

reviewed. His main research interests are bridging the

gap between business process models and system

models, ontology-driven requirements engineering,

semantic and service-oriented software engineering,

software cost estimation, grid computing, and

knowledge management. His applied software

engineering experience has been associated with

banking, aerospace manufacturing, and medical

informatics.

Larry Bull is a professor of

artificial intelligence and based in

the Department of Computer

Science & Creative Technologies at

UWE. His research interests are in

intelligent and unconventional

systems, with an emphasis on

evolution. He is the founding Editor-in-Chief of the

Springer journal Evolutionary Intelligence.

