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1. Introduction 

Pseudo Zernike Moments (PZMs) are orthogonal 

moments defined by mapping an image onto a set of 

pseudo Zernike polynomials [5]. These polynomials 

are orthogonal complex polynomials defined in polar 

coordinates over a unit circle. Teague [22] introduced 

orthogonal moments as alternatives to the non-

orthogonal moments in order to overcome their limited 

capabilities in image representation. The orthogonal 

moments are used to represent an image with the 

minimum amount of information redundancy [23]. In 

addition to this attractive property, ZMs and PZMs are 

rotation and flipping invariants by nature.  

By experiment, Teh and Chin [23] showed that 

PZMs are superior to conventional ZMs in terms of 

their feature representation capabilities, and more 

robust to image noise. Mukundan and Ramakrishnan 

[19] in their famous book on moment functions 

compared PZMs with ZMs shows that, the first set of 

moments has more feature vectors for the same 

maximum order. For example, with a moment order 

equal to 10, the feature vector of PZMs has 66 

dimensions while the corresponding one for ZMs has 

36 dimensions. This property ensures the robustness of 

PZMs in the presence of image quantization error.  

ZMs and PZMs are used in biometrics such as 

fingerprint and human face recognition [1, 8, 9, 13, 15, 

16, 20, 21], and watermarking of digital images [14, 

17, 24, 25], image registration [26], geometric object 

recognition [4] and Arabic handwriting recognition [6]. 

Despite of their better characteristics, the highly 

computational demands of the circular orthogonal 

PZMs hindered the wide application as in the case of 

ZMs. The direct computations through their 

polynomials are very time consuming procedures. 

Therefore, it is impractical to apply a direct method in 

any real world application. In addition to this, the 

computational process encounters more additional 

problems. These problems are related to the square to 

circle mapping transformation, where digital images 

are usually defined in the Cartesian coordinates while 

pseudo Zernike polynomials are by nature defined in 

the polar coordinates. Such transformation produced 

two kinds of errors. First, the geometric error is a result 

of the mapping transformation. Second; the numerical 

error is a result of approximation process.  

To accelerate the computational procedures, two 

remarkable algorithms are proposed [2, 7]. The 

implemented methodology in these two works is very 

similar where the authors concentrate on reducing the 

computational processes through applying a kind of 

recursive relations to compute the real-valued radial 

functions. These algorithms marginally reduce the 

computational times and unfortunately produce sets of 

inaccurate moments, where the integrals are replaced 

by summations. In fact, the recursive computation 

approach saves execution times while the memory 

requirements are still problematic. This is very clear for 

big size images where the memory requirements of the 

Chong's method [7] are very high. 

In [2], the author proposed a method to compute the 

real-valued radial pseudo Zernike functions, {S}, from 

the corresponding real-valued radial Zernike functions, 

{ℜ}, by using the following relation: 
 

( ) ( ) rrrS 1m2,1n2m,n ++ℜ=                  (1) 
 

He implemented different well known methods to 

compute real-valued radial Zernike functions {ℜ}. 

Unfortunately, in order to compute radial pseudo 

Zernike functions for the maximum order, Max, by 
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using equation 1, radial Zenike functions of order 

(2Max+1) are required. The implementation of this 

method monotonically increased the required memory. 

By converting to the Cartesian coordinates, the radial 

Zernike functions, {ℜ}, will be defined at each image 

pixel, (xi, yj). Therefore, these functions, ℜp,q(xi, yj), 

will be represented by four-dimensional array. The first 

index p is defined from “0” to “Max”. The second 

index q is defined from “0” to “p” according to the 

condition, (p-q)=even. The third and fourth indices are 

defined from “0” to “N-1,” where N×N is the size of 

the input image. Based on this explanation, increasing 

the maximum order from Max to (2Max+1), requires a 

huge memory and time-consuming computational 

process.       

This paper proposes a very fast method for accurate 

computation of PZMs. This method consists of three 

steps. In the first step, the input image is mapped inside 

the unit circle with a modified mapping transformation, 

where a kind of symmetry property is applied to reduce 

the computational complexity. Then, accurate 

geometric and radial geometric moments are computed 

by using mathematical integration of monomials over 

the mapped image pixels. Finally, accurate PZMs are 

computed as a linear combination of geometric and 

radial geometric moments. The proposed method 

completely removes the time-consuming process of 

computing radial pseudo Zernike functions. The 

conducted numerical experiments clearly show the 

efficiency of the proposed method. 

The rest of the paper is organized as follows: In 

section 2, a concise description of PZMs is presented, 

followed by the description of the proposed method in 

section 3. Numerical experiments are discussed in 

section 4. The conclusion is presented in section 5. 

 

2. Pseudo Zernike Moments 

The complex PZMs of order p and repetition q are 

defined as [19]: 
 

  ( ) ( )
2 1

p ,q p ,q

0 0

p 1
A W r , f r , r dr d

π

θ θ θ
π
+

= ∫ ∫        (2) 

 

Where p = 0, 1, 2, 3, ..., ∞ and q is non-negative 

integer defined according to the condition q ≤ p. PZMs 

with negative values of q are computed from those of 

non-negative values by using the relation, 

qpqp AA ,, =−
. Pseudo Zernike polynomials, Wpq(r,θ),  

are complex functions defined over a unit disk by 

multiplying the real valued-radial functions, Sp,q(r), and 

the circular function, 
θqie

ˆ
as follows: 
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These polynomials are orthogonal where their 

orthognality relation is written as: 
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The real-valued radial functions, Sp,q(r), could be 

explicitly expressed as a linear function of the variable, 

r, as follows:  
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With the coefficients: 
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The direct computation of the coefficients, Bp,q,k, 

required calculation of four factorial terms plus the 

evaluation of an exponential function for every order p.  

This computational process is time and memory-

consuming. To avoid these consuming processes, 

recurrence relations are derived where the coefficients, 

Bp,q,k, could be computed by using the following 

recurrence relations: 
 

1,, =pppB                                    (7)  
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1

1

+−
++
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( )
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11
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             (9) 

 

The coefficients, Bp,q,k, are image-independent. Their 

dimensions are dependent only on the moment order. 

Therefore, these coefficients could be pre-computed 

and stored for future use.  

Conventional computation of orthogonal PZMs is 

generally based on replacing integrals in equation 2 by 

summations, where the approximate PZMs are: 
 

( ) ( )i j

N 1 N 1
î q

p q p q i j

x 0 y 0p

p 1
A S r e f x , y

θ

λ

− −
−

= =

+
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With 22 yxr yx +=  and θxy=arctan(y/x). The number 

λp refers to is the total number of pixels that achieves 

the condition |rij|≤1. The reconstruction from 

orthogonal moments only adds the individual 

components of each order to generate the reconstructed 

image. Pseudo Zernike polynomials are used to 

decompose the image intensity function, f(r,θ), as 

follows: 
 

( ) ( )∑∑
∞

=

=
0

,, ,,
p q

qpqp rWArf θθ                   (11) 

 

The coefficients, Ap,q, are the PZMs of order p and 

repetition q. Since the summation to infinity is 

impossible in computing community, Zernike moments 

of maximum order equal to Max be considered where 

(4) 

(6) 
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the image intensity function is approximated as 

follows: 
 

( ) ( )∑∑
=

≈
Max

p q

qpqpMax rWArf
0

,, ,,ˆ θθ  

 

3. The Proposed Method 

The proposed method is a numerical precipice for fast 

and accurate computation of PZMs. A proper image 

mapping is employed in order to minimize the effect of 

geometric error. Then, a symmetry property is applied 

in order to reduce the computational complexity by 

75%. Accurate PZMs are computed as a linear 

combination of accurate geometric and radial 

geometric moments, where these moments are 

accurately computed by using mathematical integration 

of monomials over image pixels. A fast algorithm is 

employed to significantly reduce the computational 

complexity. 

The input digital image of size N×N as depicted in 

Figure 1-a is mapped inside the unit circle by using the 

mapping transformations: 

2

12

N

Ni
x i

−−
= , 

2

12

N

Nj
y j

−−
=                (13) 

With i, j = 1, 2, ..., N  and the sampling intervals, ∆xi 

and ∆yj,  have a constant value equal to N2 . Each 

pixel of the mapped image is represented by one point 

in its centre, where the image intensity function is 

defined only for this discrete set of points 

( ) [ ] [ ]21,2121,21, −×−∈ji yx , as shown in 

Figure 1-b. 

 

 
a) Image plane.   

 
b) Square- to-circle mapping of the image plane. 

Figure 1. Image mapping. 

3.1. Accurate Pseudo Zernike Moments 

Orthogonal PZMs are expressed in terms of geometric 

and radial geometric moments [3] as follows: 

{ } { }[ ]
oddqkevenqkqp AA

p
A

=−=−
+

+
= 21,

1

π
              (14) 
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Where S1=(k-q)/2, S2=(k-q-1)/2 and 1ˆ −=i . The 

geometric and radial geometric moments Gp,q and Hp,q 

are defined as follows: 

( ) dydxyxfyxG q

x y

p

qp ,, ∫ ∫=                (17) 

( ) dydxyxhyxH q

x y

p

qp ,, ∫ ∫=                (18) 

With: 

( ) ( ) ( )yxfyxyxh ,, 2

1
22 +=                  (19) 

Direct computation of orthogonal PZMs by using 

equation 14 is time-consuming. Similar to our 

successfully approach for fast computation of accurate 

Zernike moments [12], a fast method for accurate 

pseudo Zernike moments for binary and gray level 

images is proposed. Equation 14 is rewritten as 

follows: 

p p
G H
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2
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= =
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The time-consuming direct computations of 

combinational terms in equations 21 and 22 are 

avoided by using the recurrence relations [12]. 

 

3.2. Accurate Radial Geometric Moments 

Based on the equations 20, 21 and 22, radial moments 

are expressed as a linear combination of geometric and 

radial geometric moments. Therefore, efficient 

computation of these geometric moments represents 

the cornerstone of the whole computational process.  

As seen in Figure 1-b, both axes divide the transformed 

image into four quadrants. Each point P1, with the 

Cartesian coordinates (xi,yj) in the first quadrant which 

has three similar points in the other three quadrants. 

 

(12) 
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These points are P2(xN-i+1, yj), P3(xN-i+1, yN-j+1) and  

P4(xi, yN-j+1). All of these four points have the same 

radial distance from the origin point [12]. Based on this 

symmetry property, two augmented functions are 

defined based on the values of p and q. The augmented 

functions are defined as follows:  

• Case 1: p and q are both even: 

( ) ( ) ( )
( ) ( )1jNi41jN1iN3

j1iN2ji1jiK

y,xfy,xf

y,xfy,xfy,xf

+−+−+−

+−

++

+=         (23) 
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+−

++

+=          (24) 

• Case 2: p is even and q is odd: 
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• Case 3: p is odd and q is even: 
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• Case 4: p and q are both odd: 
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Where  f1(xi,yj) and h1(xi,yj) are the intensity functions 

in the first quadrant; the functions f2(xN-i+1, yj), h2(xN-i+1, 

yj), f3(xN-i+1, yN-j+1), h3(xN-i+1, yN-j+1), f4(xi, yN-j+1) and 

h4(xi, yN-j+1) are the intensity functions at the 

corresponding pixel points in the second, third and 

fourth quadrants respectively. 

Geometric and radial geometric moments, Gp,q and 

Hp,q, of order (p+q) are computed accurately by mixing 

the discussed symmetry property and a modified 

version of our method [10] as: 
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The kernels, Ip(xi) and Iq(yj), are image independent; so 

the same kernels are used to compute accurate 

geometric and radial geometric. These kernels are pre-

computed, stored and recalled whenever needed. 

The computational complexity of equations 31 and 

32 could be greatly reduced through the successive 

computation of the 1D q-th order moments for each 

row. These equations will be rewritten in a separable 

form as follows: 
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Where: 
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3.3. Pseudo-Code 

For easy programming, all detailed processes are 

summarized through the steps of the following pseudo-

code, where 2D PZMs are computed for input image of 

size N×N. A maximum moment order, Max, is 

considered in all the conducted experiments. 

Step 1: For i =1 to N+1 

Compute ( )
2

12

N

Ni
U i

−−
=    

Step 2: For i =1 to N 

Compute 
2

1 ii

i

UU
x

+
= + & h(xi,yj) 

Step 3: For p = 0 to Max &  For i = 1 to N  

Construct the Kernel matrix Ip(xi) using equations 34 

and 35 

Step 4: For p = 0 to Max 

Compute the coefficients, B, of pseudo Zernike 

polynomials 

Step 5: For i = 1 to N/2  and j = 1 to N/2     
Compute the augmented functions, fK(xi,xj) and 

hK(xi,xj) using equations 23 and 24 

Step 6: For p = 0 to Max &  For i = 1 to N/2   
Compute Y 

f
i,q and Y 

h
i,q using equations 39 and 40 

Step 7: For p = 0 to Max &  For q = 0 to Max-p 

Compute accurate geometric and radial geometric, 

Gpq and Hpq, using equations 37 and 38 

Step 8: For p = 0 to Max and q = 0 to Max-p 
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Compute Y
G

p,q and R
H

p,q  using equation 21 

Step 9: For p = 0 to Max-1 & For q = p 

Compute Ap,q  using equation 20 

 

4. Numerical Experiments 

Numerical experiments are conducted with different 

sets of image database. Based on the discussion in 

introduction, the method [2] is excluded from the 

comparison. The performance for the proposed method 

is evaluated and compared with Chong's method [7]. 

Several numerical experiments are performed where 

the set of PZMs is computed using the proposed 

method and the method of Chong and his co-workers. 

The average elapsed CPU times are computed for 

different images and moment orders, where all 

numerical experiments are performed with 1.8GHz 

Pentium IV PC with 512 MBYTE RAM. The code is 

designed by using Matlab7.  

The Execution-Time Improvement Ratio (ETIR) 

[12] is used as a criterion to compare the different 

computation methods and defined as ETIR=(1-

Time1/Time2)×100 where Time1 and Time2 are the 

execution-time of the first and the second methods, 

ETIR=0 if both execution times are identical.  

A set of binary images of size 256×256 as showed 
in Figure 2 is used in the first numerical experiment. 

This set contains sixteen binary shapes. These shapes 

are selected from the MPEG7_Shape_1_Part_B 

database [18]. The CPU elapsed times and the 

execution-time improvement ratio for selected moment 

orders are included in Table 1. Average elapsed times 

are plotted against the moment order in Figure 3. It is 

clear that, the proposed method tremendously reduced 

the execution time. 

 

  
Figure 2. Binary images. 

 

In the second and the third numerical experiments, a 

set of standard gray-level images as shown in Figure 4. 

The size 128×128 is used in the first experiment while 

the size 256×256 is used in the second experiment. The 

full set of PZMs is computed by using both methods. 

The CPU elapsed times and the execution-time 

improvement ratio are included in Tables 2 and 3. 

Elapsed times are plotted against the moment order in 

Figures 5 and 6. It is clear that, Chong's method is very 

time-consuming. On the other side, the proposed 

method is a very fast. 
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Moment Order 

Figure 3. Graphical representation of average CPU times in 

seconds for the set of binary images of size 256×256. 
 

Table 1. Average CPU times and percentage reduction for selected 

moment orders: Binary images of size 256×256. 

Max 
p-Recursive 

Method [7] 

Proposed 

Method 

Percentage  

of Reduction 

1 3.8600 0.0620 98.39 % 

5 9.5320 0.1150 98.79 % 

10 26.3440 0.1920 99.27 % 

15 50.6410 0.2660 99.47 % 

20 81.9220 0.3440 99.58 % 

 

 

Figure 4. A set of gray level images. 

 

Table 2. Average CPU times and percentage reduction for selected 

moment orders: Gray level images of size 128×128. 

Max 
p-Recursive 

Method [7] 

Proposed 

Method 

Percentage  

of Reduction 

1 0.8130 0.0110 98.64 % 

5 2.1720 0.0280  98.71 % 

10 5.1870 2.0470 99.09 % 

15 9.3280 0.0790 99.15 % 

20 16.2500 0.1080 99.33 % 

 

Table 3. Average CPU times and percentage reduction for selected 

moment orders: Gray level images of size 256×256. 

Max 
p-Recursive 

Method [7] 

Proposed 

Method 

Percentage  

of Reduction 

1 0.8130 0.0110 98.64 % 

5 2.1720 0.0280  98.71 % 

10 5.1870 2.0470 99.09 % 

15 9.3280 0.0790 99.15 % 

20 16.2500 0.1080 99.33 % 

 



248                                                             The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014 

 

  
 C
P
U
 E
la
p
se
d
 T
im

es
 i
n
 S
ec
o
n
d
s-
L
o
ar
it
h
m
ic
 S
ca
le
 

 
Moment Order 

Figure 5. Graphical representation of average CPU times in 

seconds for the set of gray level images of size 128×128. 
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Moment Order 

Figure 6. Graphical representation of average CPU times in 

seconds for the set of gray level images of size 256×256. 

 

5. Conclusions 

This paper proposes an algorithm for fast computation 

of 2D PZMs for binary and gray-level images. The 

proposed method completely removes the numerical 

errors where geometric and radial geometric moments 

are accurately computed through mathematical 

integrations over the image pixels. The proposed 

method saves 75% of the whole computational 

complexity by employing symmetry property. In 

general, the proposed method is outperformed over 

than all available methods for pseudo Zernike 

moment's computations. 
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